[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5834215A - Clamping member - Google Patents

Clamping member

Info

Publication number
JPS5834215A
JPS5834215A JP13443381A JP13443381A JPS5834215A JP S5834215 A JPS5834215 A JP S5834215A JP 13443381 A JP13443381 A JP 13443381A JP 13443381 A JP13443381 A JP 13443381A JP S5834215 A JPS5834215 A JP S5834215A
Authority
JP
Japan
Prior art keywords
sme
alloy
transformation
joint
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13443381A
Other languages
Japanese (ja)
Other versions
JPS6239283B2 (en
Inventor
長浦 歳一
雅信 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP13443381A priority Critical patent/JPS5834215A/en
Publication of JPS5834215A publication Critical patent/JPS5834215A/en
Publication of JPS6239283B2 publication Critical patent/JPS6239283B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Connection Of Plates (AREA)
  • Insertion Pins And Rivets (AREA)
  • Snaps, Bayonet Connections, Set Pins, And Snap Rings (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は形状記憶合金を用いて構成した締付は部材に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fastening member constructed using a shape memory alloy.

形状記憶合金は相変態により次のような特異な性質を示
す。
Shape memory alloys exhibit the following unique properties due to phase transformation.

1) 第1図に示すように変態温度(マルテンサイト相
から母相への逆変態終了温度)以上で見かけの降伏点a
を越えて変形(塑性変形)させても応力を除荷すれば歪
が解消し元の形状に戻る。・・・超弾性効果 2) 第2図に示すように変態温度以下で塑性変形させ
ると永久歪Rが残るが変態温度以上に加熱すれば歪が解
消し元の形状に戻る。・・・形状記憶効果 そして従来、形状記憶合金の形状回復とそれに伴う逆変
態応力を利用した締付は部材が提案賂れている。第3図
は形状記憶合金(以下SME合金という)を利用したス
テンレスパイプの継手の従来例の説明図である。SME
合金材からなる継手/の内径を、パイプ−の外径よりグ
チ程度小ざく成形しておく。これをMJ点以下に冷却す
るとマルテンサイト相は非常に軟らかいので容易に拡げ
ることができる。同図(a)は継手/を拡げた状態であ
り、この状態でパイプ−を挿入する。その後使用温度に
加熱すると、SME合金は逆変態を行なう為に継手/の
内径は元に戻る。同図(b)は継手/が元の形状に戻る
ことによってパイプコを締付けている状態を示す。継手
/には強い逆変態応力が働きパイプコ内を通過するガス
、油等の漏れを防ぐ。
1) As shown in Figure 1, the apparent yield point a occurs above the transformation temperature (the temperature at which the reverse transformation from the martensitic phase to the parent phase ends).
Even if the material is deformed beyond this point (plastic deformation), if the stress is removed, the strain will be resolved and it will return to its original shape. ...Superelastic effect 2) As shown in Fig. 2, if the material is plastically deformed below the transformation temperature, a permanent strain R remains, but if it is heated above the transformation temperature, the strain is eliminated and it returns to its original shape. ... Shape memory effect and conventionally, the tightening of parts using the shape recovery of shape memory alloys and the accompanying reverse transformation stress has been proposed. FIG. 3 is an explanatory diagram of a conventional example of a stainless steel pipe joint using a shape memory alloy (hereinafter referred to as SME alloy). SME
The inner diameter of the joint made of an alloy material is formed to be about a inch smaller than the outer diameter of the pipe. When this is cooled to below the MJ point, the martensite phase is very soft and can be easily expanded. Figure (a) shows the joint in an expanded state, and the pipe is inserted in this state. When the SME alloy is then heated to the operating temperature, the inner diameter of the joint returns to its original value because the SME alloy undergoes reverse transformation. Figure (b) shows a state in which the joint returns to its original shape and tightens the pipe joint. A strong reverse transformation stress acts on the joint to prevent leakage of gas, oil, etc. passing through the pipe.

第7図はSME合金を利用して一枚の板体の締付はピン
とした従来例の説明図である。SME合金よりなる締付
はピン3を同図(、)の形状に形状記憶処理し、これを
M5点以下に冷却すふとマルテンサイト相は非常に軟ら
かいので容易に曲げることができる。同図(b)のよう
に曲げを伸ばし直線状にした締付はピン3を同図(C)
のように2枚の板体グの挿入口jへ挿入する。この後締
付はピン3の温度を使用温度まで加熱すれば逆変態によ
って締付はピン3は元の形状に戻る。よって同図(d)
のようになり板体グは接合される。
FIG. 7 is an explanatory diagram of a conventional example in which a single plate is fastened with a pin using an SME alloy. For tightening pins made of SME alloy, the pin 3 is subjected to shape memory treatment in the shape shown in the figure (,), and once it is cooled to below the M5 point, the martensite phase is very soft and can be easily bent. To tighten pin 3 after straightening the bend as shown in the same figure (b), tighten the pin 3 as shown in the same figure (C).
Insert into the insertion slots j of the two plates as shown in the figure. After this, if the temperature of the pin 3 is heated to the operating temperature, the pin 3 will return to its original shape due to reverse transformation. Therefore, the same figure (d)
The plates are joined together as shown below.

以上のSME合金を利用した締付は部材は銀ろう付けな
どのように高温加熱が不要であり、熱変化による劣化や
損傷がなく、低温Gこすれば再び取りはずしか可能であ
る。又直接アクセスできない場所(原子力関連機器等)
での利用が可能等の特徴を有し、特殊技術部門での応用
が開発されてい本発明は以上説明したSME合金利用の
締付は部材の改良に関するものであり、特に取りはずし
の点での技術的改善を施し、取扱いを簡易化した締付は
部材を提供することを目的とするものである。
When tightening using the above-mentioned SME alloy, the parts do not require high-temperature heating unlike silver brazing, and there is no deterioration or damage due to thermal changes, and they can be removed only by rubbing them with low-temperature G. Also, places that cannot be directly accessed (nuclear related equipment, etc.)
The present invention relates to the improvement of parts using the SME alloy described above, and is particularly applicable to the technology of removal. The purpose of this invention is to provide a fastening member that has been improved and is easier to handle.

以下、本発明に係わる締付は部材の実施例を図面を用い
詳細に説明する。
Hereinafter, embodiments of the tightening member according to the present invention will be described in detail with reference to the drawings.

第1の実施例 第3図に示す従来例を参照すれば一度継手/にてパイプ
コの締付けを行なった場合、再び継手/を取りはずすに
はMf点以下に冷却し継手/をマルテンサイト状態にし
て継手/を拡げてからはずさねばならない。本発明の第
1の実施例は継手/を取り付けた状態より更に加熱する
ことによって取りはずしを可能とするものである。
1st Embodiment Referring to the conventional example shown in Fig. 3, once the pipe joint is tightened at the joint, in order to remove the joint again, the joint must be cooled to below the Mf point and brought into a martensitic state. You must expand the joint before removing it. In the first embodiment of the present invention, the joint can be removed by further heating the joint from the attached state.

第5図は本発明に係わる第1の実施例を説明する為の説
明図である。継手/は一枚のSME合金簡/a 、 /
bよりなる。該一枚のSME合金筒/a、/bはそれぞ
れ異なる変態温度と厚みを有するSME合金よりなり互
いに接合される。SME合金筒/aの変態温度をTIs
厚みをml、SME合金筒/bの変態温度をT2.厚み
をm2とすれば、Tl(T2  、ml <mzである
FIG. 5 is an explanatory diagram for explaining the first embodiment of the present invention. Coupling / is a piece of SME alloy strip /a, /
Consists of b. The single SME alloy cylinders /a and /b are made of SME alloys having different transformation temperatures and thicknesses, and are joined to each other. Transformation temperature of SME alloy cylinder/a is TIs
The thickness is ml, and the transformation temperature of the SME alloy tube/b is T2. If the thickness is m2, then Tl(T2, ml<mz).

又、内側のSME合金筒/aはその内径がパイプ−の外
径より小さく形状記憶処理され、外側のSME合金簡/
bはその内径がパイプコの外径より充分大きい径となる
ように形状記憶処理される。
In addition, the inner diameter of the inner SME alloy tube/a is smaller than the outer diameter of the pipe and is subjected to shape memory treatment, and the outer SME alloy tube/a is
b is subjected to shape memory treatment so that its inner diameter is sufficiently larger than the outer diameter of the pipe.

同図(a)は外部温度TがT < T 1< T 2の
時の形態を示す。2枚のSME合金筒は共にマルテンサ
イト状態であるから非常(こ軟らかく継手/は拡げるこ
とができる。同図(b)では外部温度TがT+<TくT
2の時の形態を示す。SME合金筒/aは母相となり元
の形に戻る。この時SME合金筒/bハマタマルテンサ
イト相の柔かい状態であるのでSME合金筒/aの収縮
力によ1て継手/はパイプ−を締付ける。同図(c)は
外部温度TがTI<T2〈Tの時の形態を示す。SME
合金簡/a、/bは共に母相となり元の形状に戻ろうと
する。しかし、前述の如く内側のSME合金簡/aはそ
の内径がパイプコの外径より小さく形状記憶処理され外
側のSME合金筒/bはその内径がパイプ−の外径より
充分大きな径となるように形状記憶処理されているので
、sME合金筒/a、/bの復帰力は互いに逆向きに働
く。前述の様にSME合金筒/aの厚みmlはSME合
金簡/bの厚みm2より小さいので復帰力はSME合金
簡/bの方が大きい。従ってSME合金筒/bの復帰の
方向つまり拡がる方向に継手/は変形する。よってパイ
プコは抜き取り可能となる。
The figure (a) shows the configuration when the external temperature T is T<T1<T2. Since both of the two SME alloy cylinders are in a martensitic state, the joint is very soft and can be expanded. In the same figure (b), the external temperature T is T+<T
The form at time 2 is shown. The SME alloy cylinder/a becomes a matrix and returns to its original shape. At this time, since the SME alloy tube /b is in a soft state of the hamata martensite phase, the joint /pipe is tightened by the contraction force of the SME alloy tube /a. The figure (c) shows the configuration when the external temperature T is TI<T2<T. SME
Alloy strips /a and /b both become a matrix and try to return to their original shape. However, as mentioned above, the inner SME alloy tube/a is treated with shape memory so that its inner diameter is smaller than the outer diameter of the pipe, and the outer SME alloy tube/b has an inner diameter that is sufficiently larger than the outer diameter of the pipe. Since the sME alloy cylinders /a and /b are subjected to shape memory treatment, the return forces of the sME alloy cylinders /a and /b act in opposite directions. As mentioned above, the thickness ml of the SME alloy tube/a is smaller than the thickness m2 of the SME alloy tube/b, so the return force is greater in the SME alloy tube/b. Therefore, the joint deforms in the direction of return of the SME alloy cylinder /b, that is, in the direction of expansion. Therefore, the pipe can be removed.

以上の継手は次の点で有効である。即ち第3図に示した
従来の継手では取りはずす時冷却し継手/をマルテンサ
イト相になして拡げねばならない。
The above joint is effective in the following respects. That is, in the conventional joint shown in FIG. 3, when it is removed, it is necessary to cool the joint to turn it into a martensitic phase and expand it.

しかし一端締め付けた状態の継手を拡げる作業は比較的
手間のかかるものである。本発明の第1の実施例の方式
のものでは継手/自体が拡がるので特別な作業を必要と
しない。
However, it is relatively time-consuming to widen a joint that has been tightened at one end. In the method of the first embodiment of the present invention, the joint itself expands, so no special work is required.

第7図に示すに、1例を参照すれば締付はピン3によっ
て板体を接合後再び締付はピン3を取りはずすには5点
以下に冷却し締付はピン3をマルテンサイト状態にして
締付はピン3の足を直線状に曲げを伸ばしてからはずさ
ねばならない。本発明の第一の実施例は締付はピン3を
更に加熱することによって簡単に取りはずし可能とした
ものであ不。
As shown in Fig. 7, referring to an example, after joining the plates with pin 3, tightening is performed again.To remove pin 3, cooling to below 5 points is required, and tightening brings pin 3 into a martensite state. When tightening, it is necessary to bend and straighten the leg of pin 3 into a straight line before removing it. In the first embodiment of the present invention, the tightening can be easily removed by further heating the pin 3.

第に図は本発明に係わる第2の実施例を説明する為の説
明図である。締付はピン3の一本の足部はそれぞれ一枚
のSME合金板!a、、lbよりなる。該一枚のSME
合金板Ja 、Jbはそれぞれ異なる変態温度と厚みを
有するSME合金よりなり互いに接合される。SME合
金板3aの変態温度をT1.厚みを”ls 5M8合金
板3bの変態温度をT2.厚みをn2とすれば、T1<
 Tz nnt<n2である。SME合金板3aは曲げ
状態に形状記憶処理され5M8合金板3bは直線状態(
こ形状記憶処理される。
The third figure is an explanatory diagram for explaining a second embodiment of the present invention. For tightening, each leg of pin 3 is made of one SME alloy plate! Consisting of a, lb. That one SME
The alloy plates Ja and Jb are made of SME alloys having different transformation temperatures and thicknesses, respectively, and are joined to each other. The transformation temperature of the SME alloy plate 3a is set to T1. If the thickness is "ls", the transformation temperature of the 5M8 alloy plate 3b is T2, and the thickness is n2, then T1<
Tz nnt<n2. The SME alloy plate 3a is subjected to shape memory treatment in a bent state, and the 5M8 alloy plate 3b is in a straight state (
This shape memory processing is performed.

外部温度TがT < T s < T 2の時は2枚の
SME合金板J a 、 J bは共にマルテンサイト
相であるから非常に軟らかいので、第Z図(a)の如く
直線状にすることができる。この様にした締付はピン3
を同図価)のように一枚の板体グの挿入口5へ挿入する
。同図(c)は外部温度がTl<T<T2の時の形態を
示す。SME合金板3aは母相となり元の形に戻り、5
M8合金板3bはまだマルテンサイト相の柔かい状態で
あるのでSME合金板3aの復帰力によって締付はピン
3は2枚の板体グを締付ける。同図(d)は外部温度T
がT 3 < T 2 (Tの時の形態を示す。SME
合金板3a 、Jbは共に母相となり元の形状に戻ろう
きする。しかし前述の如<SME合金板3aは曲線状憂
こ形状記憶処理され、5M8合金板3bは直線状lこ形
状記憶処理されているのでSME合金板、3a、Jbの
復帰力は互いに逆向きに働く。前述の様にSME合金板
3aの厚みnlは5M8合金板3bの厚みn2より小さ
いので復帰力は5M8合金板3bの方が大きい。従って
5M8合金板3bの復帰の方向つまり直線状になるよう
に締付はピン3は変形する。
When the external temperature T is T < Ts < T2, the two SME alloy plates J a and J b are both in the martensitic phase and are very soft, so they are made straight as shown in Figure Z (a). be able to. Tightening in this way is done by pin 3.
Insert it into the insertion slot 5 of one plate as shown in the same figure). The figure (c) shows the configuration when the external temperature is Tl<T<T2. The SME alloy plate 3a returns to its original shape as a matrix, and 5
Since the M8 alloy plate 3b is still in a soft martensitic state, the pin 3 tightens the two plates by the restoring force of the SME alloy plate 3a. The figure (d) shows the external temperature T.
indicates the form when T 3 < T 2 (T.SME
Both alloy plates 3a and Jb become the matrix and return to their original shape. However, as mentioned above, since the SME alloy plate 3a is subjected to a curved shape memory treatment and the 5M8 alloy plate 3b is subjected to a straight shape memory treatment, the return forces of the SME alloy plates 3a and Jb are in opposite directions. work. As mentioned above, since the thickness nl of the SME alloy plate 3a is smaller than the thickness n2 of the 5M8 alloy plate 3b, the return force of the 5M8 alloy plate 3b is greater. Therefore, when tightened, the pin 3 is deformed in the direction of return of the 5M8 alloy plate 3b, that is, in a straight line.

よ]て締付はピン3は簡単に抜き取り可能となる。After tightening, pin 3 can be easily removed.

桿上の締付はピンは次の点で有効である。即ち、ピンの
足部が装置内部に隠れ曲げによる取りはずし操作が困難
な場合であってもピンの頭部を加熱し熱の伝導で足部を
直線状とすれば装置を分解せずとも容易にピンをはずす
ことができる。
When tightening on a rod, a pin is effective in the following respects. In other words, even if the foot of the pin is hidden inside the device and is difficult to remove due to bending, it can be easily removed without disassembling the device by heating the head of the pin and making the foot a straight line through heat conduction. The pin can be removed.

以上の実施例は変態温度と断面積の異なる一種のSME
合金材を貼り合わせて構成したが、断面積が同一であっ
ても変態温度と イT(σ:応力T:温度)の異なる2
種のSME合金材を貼り合わせて構成すれば前述したも
のと同じ作動を行なう継手あるいは締付はピンを得るこ
とができる。
The above embodiments are a type of SME with different transformation temperatures and cross-sectional areas.
It was constructed by bonding alloy materials together, but even if the cross-sectional area is the same, the transformation temperature and T (σ: stress T: temperature) are different.
By laminating various SME alloy materials together, it is possible to obtain a joint or a fastening pin that performs the same operation as described above.

ここでd6/dTは変態応力の外部温度に対する傾きを
示す。第2図は互いに異なる 4□を有する一種のSM
E合金材a、bの変態応力と外部温度と・の関係を示す
グラフ図である。外部温度TがT < T 1 < T
 2の時SME合金材a、bは共にマルテンサイト状態
である。外部温度TがT、<TくT2の時SME合金材
aは母相、SME合金材すはマルテンサイト相の状態で
ありSME合金材aの逆変態による動きの通りに全体は
変形する。
Here, d6/dT represents the slope of transformation stress with respect to external temperature. Figure 2 shows a type of SM with different 4□
It is a graph diagram showing the relationship between transformation stress and external temperature of E alloy materials a and b. External temperature T is T < T 1 < T
In case 2, both SME alloy materials a and b are in a martensitic state. When the external temperature T is T,<T<T2, the SME alloy material a is in a matrix state, and the SME alloy material is in a martensitic phase state, and the entire material deforms as the SME alloy material a moves due to reverse transformation.

外部温度TがT 1(T 2 < Tの時SME合金材
a。
When the external temperature T is T 1 (T 2 < T), the SME alloy material a.

bは共に母相の状態となる。外部温度TがT3<Tとな
った時SME合金材aの変態応力よりSME合金材すの
変態応力の方が遥かに大きいのでSME合金材すの逆変
態による動きの通りに全体は変形する。以上の様な変形
動作は第1の実施例、第2の実施例と同様であり、従−
て構造的には合金材を取り換えるだけで第1.第一の実
施例と同一作用を行なう。ここで /dTの調節を行な
うには合金の成分化、熱処理条件を変えればよい。
Both b are in the matrix state. When the external temperature T becomes T3<T, the transformation stress of the SME alloy material A is much larger than the transformation stress of the SME alloy material a, so that the whole deforms as the SME alloy material moves due to reverse transformation. The above-described deformation operation is the same as in the first embodiment and the second embodiment, and
Structurally, the first step is to simply replace the alloy material. The same operation as in the first embodiment is performed. Here, /dT can be adjusted by changing the composition of the alloy and the heat treatment conditions.

以上の実施例においてSME合金としてはTi(jθ%
)−NiCjOチ)、Cu−Zn−Aj!合金等を用い
ればよい。
In the above examples, the SME alloy is Ti(jθ%
)-NiCjOchi), Cu-Zn-Aj! An alloy or the like may be used.

以上説明した様に本発明の締付は部材は一度取り付けた
締付は部材を更に加熱することにより、簡単に取りはず
しかできるという極めて便利なものである。
As explained above, the fastening method of the present invention is extremely convenient in that once a member is attached, it can be easily removed by further heating the member.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超弾性効果を示す特性グ′ラフ図、第一図は形
状記憶効果を示す特性グラフ図、第3図は従来のステン
レスパイプの継手の説明図、第グ図は従来の締付はピン
の説明図、第5図は本発明に係わる一実施例のステンレ
スパイ−ブの継手の説明図、第2図は本発明に係わる一
実施例の締付はピンの説明図、第2図は 41の異なる
2種のSME合金材の変態応力と温度の関係を示す説明
図である。 図中、/:継手、 、2ニステンレスパイプ、3:締付
はピン、  グ:板体、  j:挿入口。 代理人 弁理士  福 士 愛 彦 応ヵ    第1図 雇雇 #I2図 (σ〕 第3図 (G)        (b) (C)        (d) 第4図 (CI) (b) 第5図
Figure 1 is a characteristic graph showing the superelastic effect, Figure 1 is a characteristic graph showing the shape memory effect, Figure 3 is an explanatory diagram of a conventional stainless steel pipe joint, and Figure 3 is a characteristic graph showing the conventional tightening. is an explanatory diagram of a pin, FIG. 5 is an explanatory diagram of a stainless steel pipe joint according to an embodiment of the present invention, and FIG. The figure is an explanatory diagram showing the relationship between transformation stress and temperature of 41 different types of SME alloy materials. In the figure, /: fitting, , 2 stainless steel pipe, 3: pin for tightening, gu: plate, j: insertion port. Agent Patent Attorney Ai Hikoka Fukushi Figure 1 Employment #I2 Figure (σ) Figure 3 (G) (b) (C) (d) Figure 4 (CI) (b) Figure 5

Claims (1)

【特許請求の範囲】 1、 変態温度の大小関係と所定温度状態における変態
力の大小関係が同じである複数の形状記憶合金材を接合
してなる部材を少なくとも一部に具備したことを特徴と
する締付は部材。 2、断面積の相違する複数の形状記憶合金材を備えたこ
とを特徴とする第1項記載の締付は部材。 3、変態応力の温度に対する傾きが相違する複数の形状
記憶合金材を備えたことを特徴とする第1項記載の締付
は部材。
[Scope of Claims] 1. At least a part of the device is equipped with a member formed by joining a plurality of shape memory alloy materials having the same magnitude relationship of transformation temperature and the same magnitude relationship of transformation force in a predetermined temperature state. Tighten the parts. 2. The tightening member according to item 1, characterized by comprising a plurality of shape memory alloy materials having different cross-sectional areas. 3. The tightening member according to item 1, characterized by comprising a plurality of shape memory alloy materials having different slopes of transformation stress with respect to temperature.
JP13443381A 1981-08-26 1981-08-26 Clamping member Granted JPS5834215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13443381A JPS5834215A (en) 1981-08-26 1981-08-26 Clamping member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13443381A JPS5834215A (en) 1981-08-26 1981-08-26 Clamping member

Publications (2)

Publication Number Publication Date
JPS5834215A true JPS5834215A (en) 1983-02-28
JPS6239283B2 JPS6239283B2 (en) 1987-08-21

Family

ID=15128257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13443381A Granted JPS5834215A (en) 1981-08-26 1981-08-26 Clamping member

Country Status (1)

Country Link
JP (1) JPS5834215A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608514A (en) * 1983-06-28 1985-01-17 住友電気工業株式会社 Connection structure
JPS6038910U (en) * 1983-08-26 1985-03-18 加藤発条株式会社 Retaining ring
JPS60127189U (en) * 1984-01-31 1985-08-27 株式会社ハ−マン Gas plug with fuse mechanism
JPS60201130A (en) * 1984-03-26 1985-10-11 Hino Motors Ltd Construction of leaf spring
JPS6415892U (en) * 1987-07-09 1989-01-26
JPH06511164A (en) * 1991-06-14 1994-12-15 サイベロニクス インク Audio inhibition of vagus nerve stimulation
JP2005342066A (en) * 2004-06-01 2005-12-15 Japan Lifeline Co Ltd Guide wire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608514A (en) * 1983-06-28 1985-01-17 住友電気工業株式会社 Connection structure
JPS6038910U (en) * 1983-08-26 1985-03-18 加藤発条株式会社 Retaining ring
JPS60127189U (en) * 1984-01-31 1985-08-27 株式会社ハ−マン Gas plug with fuse mechanism
JPH0110522Y2 (en) * 1984-01-31 1989-03-27
JPS60201130A (en) * 1984-03-26 1985-10-11 Hino Motors Ltd Construction of leaf spring
JPS6415892U (en) * 1987-07-09 1989-01-26
JPH06511164A (en) * 1991-06-14 1994-12-15 サイベロニクス インク Audio inhibition of vagus nerve stimulation
JP2005342066A (en) * 2004-06-01 2005-12-15 Japan Lifeline Co Ltd Guide wire

Also Published As

Publication number Publication date
JPS6239283B2 (en) 1987-08-21

Similar Documents

Publication Publication Date Title
JPH02142627A (en) Instrument for composite joint
US4149911A (en) Memory metal article
JPS59113371A (en) Expansion universal seal
US4754538A (en) Annular tube-like driver
JPS60128252A (en) Shape memory alloy
US5400827A (en) Metallic sleeve for bridging a leakage point on a pipe
US20030116924A1 (en) Stress-induced connecting assembly
JPS5834215A (en) Clamping member
US4740253A (en) Method for preassembling a composite coupling
JPS61180087A (en) Composite joint device for coupling cylindrical type base material and method thereof
JPH10103325A (en) Method for fastening flange by bolt
EP0470902A1 (en) Liner for pipe joint by use of shape memory alloy
JPH04171390A (en) Terminal metal fitting for fluid transporting pipe
JPS6344707Y2 (en)
JPS62167992A (en) Joint
CA1228003A (en) Annular memory metal driver
JPS63227754A (en) Formation of niti shape memory alloy
JPH042369B2 (en)
JP2565604Y2 (en) Getter pump unit
JPS59170246A (en) Production of titanium nickel alloy parts having reversible shape memory effect
JPS6127497A (en) Method of repairing pipe
JPH03234997A (en) Connecting method of pipes
JPH0727493A (en) Heat transfer pipe for heat exchanger
Huang et al. Simulation of novel microassembly using shape memory alloy
JP3198387B2 (en) Shape memory joint