JPS63227754A - Formation of niti shape memory alloy - Google Patents
Formation of niti shape memory alloyInfo
- Publication number
- JPS63227754A JPS63227754A JP6049487A JP6049487A JPS63227754A JP S63227754 A JPS63227754 A JP S63227754A JP 6049487 A JP6049487 A JP 6049487A JP 6049487 A JP6049487 A JP 6049487A JP S63227754 A JPS63227754 A JP S63227754A
- Authority
- JP
- Japan
- Prior art keywords
- shape
- alloy
- shape memory
- temperature
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001285 shape-memory alloy Inorganic materials 0.000 title claims abstract description 10
- 230000015572 biosynthetic process Effects 0.000 title 1
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 53
- 239000000956 alloy Substances 0.000 claims abstract description 53
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 17
- 229910001000 nickel titanium Inorganic materials 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 8
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 6
- 229910001566 austenite Inorganic materials 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000005097 cold rolling Methods 0.000 abstract description 3
- 238000005098 hot rolling Methods 0.000 abstract description 3
- 238000011084 recovery Methods 0.000 abstract description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 12
- 239000003353 gold alloy Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 230000009466 transformation Effects 0.000 description 7
- 230000000452 restraining effect Effects 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003446 memory effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はNil’−i系形状記憶合金(以下NT金合金
略記)をある部品の所定の場所に組みつけるために必要
な形状に成形する方法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a method for forming a Nil'-i-based shape memory alloy (hereinafter abbreviated as NT gold alloy) into a shape necessary for assembling it in a predetermined location of a certain part. It is about the method.
NT金合金はNiと1’−tを原子比で1:1の割合で
含む金属間化合物NiTi又はそのNiとTiの何れか
一方又は双方を微量の伯元素、例えばFe、Cr、CO
等で置換した合金であり、形状記憶効果、超弾性効果及
び防搬効果を有するものである。熱弾性型マルテンサイ
ト変態に起因する形状記憶効果はNT金合金マルテンサ
イト相に変態し始める温度(以下MS点と略記)又は母
相であるオーステナイト相とマルテンサイト相の中間の
存在するR相に変態し始める温度(以下M2S点と略記
)以下の温度で該NT合金に加えた変形が加熱によりあ
る温度(以下AS点と略記)でオーステナイト相に逆変
態を行ないあらかじめオーステナイト相で記憶させた形
状に復元する現象である。また母相での応力誘起マルテ
ンサイト変態に起因する超弾性効果及び防振効果におい
て、前者は応力を加えて数%程度の歪を与えることによ
りマルテンサイト変態を生ぜしめ、除荷することによる
逆変態によって完全に形状が復元する現象を言い、後者
は超弾性効果に付随して起る応力−歪曲線のヒステリシ
スによって外部からの振動エネルギーを吸収して振動を
早く減衰させる現象を言う。NT gold alloy is an intermetallic compound NiTi containing Ni and 1'-t in an atomic ratio of 1:1, or either one or both of Ni and Ti is combined with a trace amount of an element such as Fe, Cr, CO.
It is an alloy substituted with, etc., and has a shape memory effect, a superelastic effect, and a transport prevention effect. The shape memory effect caused by thermoelastic martensitic transformation occurs at the temperature at which the NT gold alloy begins to transform into the martensitic phase (hereinafter abbreviated as the MS point) or at the R phase that exists between the austenite phase and the martensitic phase, which are the parent phases. The deformation applied to the NT alloy at a temperature below the temperature at which transformation begins (hereinafter abbreviated as the M2S point) undergoes reverse transformation to the austenite phase at a certain temperature (hereinafter abbreviated as the AS point) due to heating, and the shape is memorized in the austenite phase in advance. This is a phenomenon of restoration. In addition, regarding the superelastic effect and vibration damping effect caused by stress-induced martensitic transformation in the matrix, the former is caused by applying stress and giving a strain of several percent, causing martensitic transformation, and unloading it to reverse the effect. This refers to a phenomenon in which the shape is completely restored through transformation, and the latter refers to a phenomenon in which vibration energy from the outside is absorbed and vibrations are quickly attenuated by the hysteresis of the stress-strain curve that occurs along with the superelastic effect.
このような効果は゛NT合金に限らずAuCd。This effect is not limited to NT alloys but also AuCd.
CuZnA1合金等にも見い出されているが、その特性
と加工性の点においてNT合金が最も優れており、従来
からアクチュエータ、ファスナー、ばね等として種々の
利用法が検討され一部では盛んに実用化されている。さ
らに最近はNT合金の応用分野はかなり広がり、その用
途も複雑になる一方であり、電子部品などの小物部品へ
の適用が積極的に試みられてきている。Although it has also been found in CuZnA1 alloys, etc., NT alloys are the most superior in terms of properties and workability, and various uses have been considered for actuators, fasteners, springs, etc., and in some cases they have been put into practical use. has been done. Furthermore, recently, the fields of application of NT alloys have expanded considerably, and their uses have become more and more complex, and active attempts have been made to apply them to small parts such as electronic parts.
例えばFPCとガラス基板の接合の補強部材としてのフ
ァスナー、ゼロフォースインサージョンコネクターなど
である。Examples include fasteners as reinforcing members for joining FPCs and glass substrates, zero force insertion connectors, and the like.
これら小物部品に組み付ける素子として用いるNT合金
を形状記憶処理するには温間成形法などによりある形状
に成形する方法がとられている。一方NT合金素子を小
物部品に組み付けるには上記形状記憶処理した合金を所
定の形状に変形させて組み付けなければならない。しか
しNT合金は一般の金属と比較して弾性域が広いため、
特にオーステナイト相において所定の形状に変形させて
も拘束力を除くと元の形状に戻ってしまう。即ち第1図
に示すようにテープ状の条をU字型の一端がさらに開い
た形状に成形して形状記憶処理を施したNT合金(1)
を第3図に示すように該合金のU字型の開いた一端が閉
じた形状を得るべく、第2図に示すように0字の開いて
いる一端の2つの先端を閉じるように拘束する治具(2
a) (2b)を取り除くと第4図に示すようにNT合
金(1)はほぼ変形前の形状に戻ることになり、組み付
けに適した形状を得ることができない。In order to perform shape memory treatment on the NT alloy used as an element to be assembled into these small parts, a method is used in which the NT alloy is molded into a certain shape by a warm forming method or the like. On the other hand, in order to assemble the NT alloy element into a small part, the shape memory treated alloy must be deformed into a predetermined shape and then assembled. However, since NT alloys have a wider elastic range than ordinary metals,
Particularly in the austenite phase, even if it is deformed into a predetermined shape, it will return to its original shape when the restraining force is removed. That is, as shown in Fig. 1, an NT alloy (1) is formed by forming a tape-like strip into a U-shape with one end further open and subjected to shape memory treatment.
In order to obtain the U-shaped open end of the alloy as shown in Fig. 3, the two tips of the open end of the 0-shape are closed as shown in Fig. 2. Jig (2
a) If (2b) is removed, the NT alloy (1) will almost return to its pre-deformation shape as shown in FIG. 4, making it impossible to obtain a shape suitable for assembly.
そこで現在上記組み付けはNT合金をR相又はマルテン
サイト相領域まで冷却して変形した(支、外力を除去し
ても該合金がR相又はマルテンサイト相領域にあれば変
形した形状を保ち易いことを利用して行なわれている。Therefore, in the current assembly, the NT alloy is deformed by cooling it to the R phase or martensitic phase region. It is done using.
しかしなかならこのようなR相又はマルテンサイト相に
おいてもNT合金は弾性変形弁のスプリングバックによ
り完全に所定の形状を得ることはできない。即ち第1図
に示す形状記憶処理を施したU字型のNT合金(1)を
第2図に示すように0字の開いた一端の2つの先端を閉
じるように拘束する治具(2a) (2b)にてMS点
以下の温度で変形させた後、同じ温度で該治具(2a)
(2b)を取り除いた場合、該NT合金(1)は第5図
に示すように0字の開いた一端は完全に閉じることなく
スプリングバックにより必ず開いてしまい、NT合金を
他の部品に組み付ける場合につき合わせによって所定の
形状を得るために必要以上に変形を加えないと所望の形
状を得ることが困難であった。However, even in such an R phase or martensitic phase, the NT alloy cannot completely obtain a predetermined shape due to the springback of the elastic deformation valve. That is, a jig (2a) is used to restrain the U-shaped NT alloy (1) that has been subjected to shape memory treatment as shown in FIG. After deforming the jig (2b) at a temperature below the MS point, the jig (2a) is deformed at the same temperature.
If (2b) is removed, the open end of the 0 character of the NT alloy (1) will not be completely closed and will always open due to springback, as shown in Figure 5, and the NT alloy will not be assembled into other parts. It has been difficult to obtain the desired shape unless more deformation is applied than necessary to obtain the desired shape.
本発明はこれに鑑み種々検討の結果、次のことを知見し
た。In view of this, the present invention has made the following findings as a result of various studies.
50、6at%N 1−49.4at%Ti合金を常法
に従い溶解・鋳造後、熱間圧延、冷間圧延をしてテープ
状に加工したNT合金条をロールフォーミングにより第
6図(イ)に示すようにU字型の開いた一端の2つの先
端が互いに接触する閉じた形状に成形し、該形状で形状
記憶処理を施した。なおこのNiTi合金のマルテンサ
イト相からオーステナイト相への逆変態の終了温度(以
下Af点と略記)は30℃であり、Af点以上の温度で
は該合金はすべてオーステナイト相である。該NT合金
(3)を第6図(ロ)に示すように接触した先端の間に
引張り試験用治具(4a) (4b)を挟み込み互いに
反対方向に荷重(W)で引張りNT金合金3)の接触し
た一端の変位(i)を測定してこのような形状のNT金
合金嵌合圧の測定を行なった。その結果を第7図に引張
り荷重(W)と変位<i>の関係として示した。図中の
曲線(A)は第6図(イ)に示すNT金合金3)を−6
0℃の温度下で第6図(ロ)のように引張り試験用治具
(4a) (4i))を挟み込んだ後、−30’Cに昇
温してから引張り試験を実施した結果を示し、曲線(B
)は同じく第6図(イ)が示すNT金合金3)を−60
℃の温度下で第6図(ロ)のように引張り試験用治具(
4a) (4b)を挟み込んだ後、全体を40℃まで加
熱し、しかる後−30’Cまで冷却してから引張り試験
を行なった結果を示すものである。この図かられかるよ
うに曲線(A)と曲線(B)では初期の引張り荷重の立
上り、即ち嵌合力が大きく異なっており、曲線(13)
では嵌合力がほとんど発生していないのに対して、曲線
(A)は明らかに発生している。After melting and casting a 50.6at%N 1-49.4at%Ti alloy according to a conventional method, the NT alloy strip was processed into a tape shape by hot rolling and cold rolling, and the NT alloy strip was formed into a tape shape by roll forming as shown in Fig. 6 (a). As shown in the figure, the two ends of the open end of a U-shape were formed into a closed shape in which they were in contact with each other, and shape memory treatment was performed in this shape. Note that the completion temperature of the reverse transformation from the martensite phase to the austenite phase of this NiTi alloy (hereinafter abbreviated as Af point) is 30° C., and at temperatures above the Af point, the alloy is entirely in the austenite phase. As shown in FIG. 6 (b), the tensile test jigs (4a) (4b) are sandwiched between the contacting tips of the NT alloy (3), and the NT gold alloy 3 is pulled with a load (W) in opposite directions. ) was measured to measure the fitting pressure of the NT gold alloy having such a shape. The results are shown in FIG. 7 as a relationship between tensile load (W) and displacement <i>. The curve (A) in the figure shows the NT gold alloy 3) shown in Figure 6 (a) at -6
The results are shown in Figure 6 (b), where the tensile test jig (4a) (4i)) was inserted at a temperature of 0°C, and then the tensile test was carried out after raising the temperature to -30'C. , curve (B
) is -60% of the NT gold alloy 3) shown in Figure 6 (a).
At a temperature of ℃, the tensile test jig (
4a) After sandwiching (4b), the whole was heated to 40°C, then cooled to -30'C, and then subjected to a tensile test. As can be seen from this figure, the rise of the initial tensile load, that is, the mating force, is significantly different between curve (A) and curve (B), and curve (13)
In curve (A), almost no fitting force is generated, whereas in curve (A), fitting force is clearly generated.
このことはN丁合金をオーステナイト相で形状を拘束し
たままマルテンサイト相に冷却すれば拘束を解除しても
拘束時の形状を維持することを示している。以上の知見
に基づき更に検討の結果、NT金合金所望の形に成形で
きる方法を開発したものである。This indicates that if the N-type alloy is cooled to the martensitic phase while its shape is restrained by the austenite phase, the shape at the time of restraint will be maintained even if the restraint is released. Based on the above knowledge and as a result of further studies, we have developed a method that allows NT gold alloy to be formed into a desired shape.
即ち本発明の一つは金属間化合物Nil’−iを主成分
とする形状記憶合金に形状記憶処理を施した後、該合金
をオーステナイト相が発生し始める温度以上で変形して
形状を拘束し、しかる後R相又はマルテンサイト相の発
生し始める温度以下に冷却して上記拘束を解除し、所望
の形状に成形することを特徴とするものである。That is, one aspect of the present invention is to apply shape memory treatment to a shape memory alloy containing the intermetallic compound Nil'-i as a main component, and then deform the alloy at a temperature higher than the temperature at which the austenite phase begins to be generated to restrain the shape. Then, the above-mentioned restriction is released by cooling to a temperature below which the R phase or martensitic phase starts to be generated, and the product is molded into a desired shape.
また本発明の他の一つは金属間化合物NiTiを主成分
とする形状記憶合金に形状記憶処理を施した後、該合金
をR相又はマルテンサイト相が発生し始める温度以下で
変形して形状を拘束し、しかる俊オーステナイト相が発
生し始める温度以上に加熱し、その後R相又はマルテン
サイト相が発生し始める温度以下に冷却して上記拘束を
解除し所望の形状に成形することを特徴とするものであ
る。Another aspect of the present invention is to perform shape memory treatment on a shape memory alloy containing the intermetallic compound NiTi as a main component, and then deform the alloy at a temperature below the temperature at which R phase or martensitic phase begins to occur. is restrained, heated above a temperature at which an austenite phase begins to occur, and then cooled down to a temperature at which an R phase or a martensitic phase begins to be generated to release the above restraint and form it into a desired shape. It is something to do.
NT金合金As点以上で所望の形状に変形したままMS
点又はM’S点以下に冷却してその形状拘束力を解除し
ても、該合金にスプリングバックがほとんど発生しない
のはMS点又はV/S点でみかけの応力がゼロになるよ
うなマルテンサイト変態が起るためであり、従って拘束
力を解除しても形状を元に戻す力が生じないからである
。NT gold alloy MS is deformed into the desired shape above the As point.
Even if the shape restraining force is released by cooling below the M'S point or the M'S point, springback hardly occurs in the alloy. This is because site metamorphosis occurs, and therefore, even if the restraining force is released, no force is generated to restore the shape to its original shape.
また最初にMs点又はMZs点以下の温度で変形して形
状を拘束し、しかる後AS点以上に加熱し、その後再び
MS点又はM Zs点以下に冷却するのは、マルテンサ
イト相領域又はR相領域の方がオーステナイト相領域よ
りも弾性係数が小さく、変形に必要な力が小さいためで
あり、従ってMS点又はM’S点以下ではわずかな力で
所望の形状に変形できる。In addition, it is the martensitic phase region or R that is first deformed at a temperature below the Ms point or MZs point to restrict its shape, then heated above the AS point, and then cooled again below the MS point or MZs point. This is because the phase region has a smaller elastic modulus than the austenite phase region and requires less force for deformation, and therefore can be deformed into a desired shape with a small force below the MS point or M'S point.
(実施例〕 本発明の実施例を以下に説明する。(Example〕 Examples of the present invention will be described below.
実施例(I)
50、68℃%N 1−49.4at%l−i合金を常
法に従い溶解・鋳造後、熱間圧延と冷間圧延を行ないテ
ープ状に加工したNT合金条をロールフォーミングによ
り第1図に示すようにU字型の一端がざらに開いた形状
に成形して、該形状で形状記憶処理を施した。なおこの
合金(1)のAf点は30℃である。該合金(1)を4
0℃の温度下で第2図に示すようにU字型の開いた一端
の2つの先端が閉じるように拘束する治具(2a) (
2b)にて変形拘束した。次に該治具(2a) (2b
)と共にNT金合金1)を−60℃に冷却した後、拘束
治具(2a)(2b)を取り除いたところNT金合金1
)は第3図に示すように拘束されていた形状を維持して
おり、スプリングバックによる形状の回復はなかった。Example (I) After melting and casting a 50.68°C% N 1-49.4at% l-i alloy according to a conventional method, the NT alloy strip was processed into a tape shape by hot rolling and cold rolling, and then roll forming. As shown in FIG. 1, it was molded into a U-shape with one end roughly open, and shape memory treatment was performed in this shape. Note that the Af point of this alloy (1) is 30°C. The alloy (1) is 4
A jig (2a) that restrains the two ends of the open end of the U-shape as shown in Figure 2 at a temperature of 0°C (
The deformation was restrained in 2b). Next, the jig (2a) (2b
) and the NT gold alloy 1) were cooled to -60°C, and the restraint jigs (2a) and (2b) were removed.
) maintained its restrained shape as shown in Figure 3, and there was no recovery of the shape due to springback.
実施例(II)
また上記の形状記憶処理を施したNT金合金1)を−6
0℃に冷却した状態で第2図に示す拘束治具(2a)(
2b)で変形拘束した後、該治具(2a)(2b)とと
もにN丁合金(1)を40℃に加熱し、再度−60℃に
冷却して拘束持具(2a) (2b)を取り除いたとこ
ろNT合金(1)は第3図に示すように拘束ざ丘ていた
形状を維持していた。ざらにこの場合−60℃での拘束
力は実施例(I)での40℃での拘束力の半分以下であ
った。Example (II) In addition, the NT gold alloy 1) subjected to the above shape memory treatment was
The restraining jig (2a) shown in Fig. 2 in a state cooled to 0°C (
After deforming and restraining in step 2b), the N-type alloy (1) was heated to 40°C together with the jigs (2a and 2b), cooled again to -60°C, and the restraint holders (2a and 2b) were removed. However, the NT alloy (1) maintained its constricted shape as shown in FIG. In this case, the binding force at -60°C was roughly less than half of the binding force at 40°C in Example (I).
(発明の効果〕
このように本発明によればNT合金を部品として組み付
ける際の形状及び寸法が容易に成形できる等工業上顕著
な効果を奏するものである。(Effects of the Invention) As described above, according to the present invention, the shape and dimensions can be easily formed when assembling the NT alloy as a component, and other industrially significant effects are achieved.
第1図は変形前のNT合金を示す側面図、第2図はNT
合金を変形拘束した状態を示す側面図、第3図は本発明
実施例による拘束力解除後のNT合金を示す側面図、第
4@及び第5図はそれぞれ従来例による拘束力解除後の
NT合金を示す側面図、第6図(イ) (ロ)は嵌合圧
の測定方法を示すものであり、(イ)は測定前のNT合
金を示す側面図、(ロ)は引張り治具を取り付けた側面
図、第7図は嵌合圧試験の結果を示すものであり、引張
り荷重と変位との関係を表わす実測図である。
1・・・・・・・・成形試験用NT合金2a、2b・・
・・変形拘束治具
3・・・・・・・・嵌合圧測定用NT金合金a、 4b
・・・・引張り試験用治具A・・・・・・・・マルテン
サイト相で拘束した後測定した荷重−変位曲線
B・・・・・・・・オーステナイト相で拘束した後測定
した荷重−変位曲線
各W
→ 1【 1重 (、e)Figure 1 is a side view of the NT alloy before deformation, and Figure 2 is a side view of the NT alloy before deformation.
FIG. 3 is a side view showing the state in which the alloy is deformed and restrained. FIG. 3 is a side view showing the NT alloy after the restraining force is released according to the embodiment of the present invention. FIGS. A side view showing the alloy, Figures 6 (a) and (b) show the method for measuring the fitting pressure, (a) is a side view showing the NT alloy before measurement, and (b) shows the tension jig. The attached side view and FIG. 7 show the results of a fitting pressure test, and are actual measurement diagrams showing the relationship between tensile load and displacement. 1...NT alloys 2a, 2b for forming tests
...Deformation restraint jig 3...NT gold alloy a, 4b for fitting pressure measurement
...Tensile test jig A...Load measured after being restrained in the martensite phase-displacement curve B...Load measured after being restrained in the austenite phase- Displacement curve each W → 1 [ 1 fold (, e)
Claims (2)
金に形状記憶処理を施した後、該合金をオーステナイト
相が発生し始める温度以上で変形して形状を拘束し、し
かる後R相又はマルテンサイト相の発生し始める温度以
下に冷却して上記拘束を解除し、所望の形状に成形する
ことを特徴とするNiTi系形状記憶合金の成形方法。(1) After shape memory treatment is applied to a shape memory alloy containing the intermetallic compound NiTi as a main component, the alloy is deformed at a temperature higher than the temperature at which austenite phase begins to be generated to restrict its shape, and then R phase or martenite phase is formed. A method for forming a NiTi-based shape memory alloy, which comprises cooling the NiTi-based shape memory alloy to a temperature below the temperature at which a site phase begins to release the above-mentioned constraint, and forming the NiTi-based shape memory alloy into a desired shape.
金に形状記憶処理を施した後、該合金をR相又はマルテ
ンサイト相が発生し始める温度以下で変形して形状を拘
束し、しかる後オーステナイト相が発生し始める温度以
上に加熱し、その後R相又はマルテンサイト相が発生し
始める温度以下に冷却して上記拘束を解除し、所望の形
状に成形することを特徴とするNiTi系形状記憶合金
の成形方法。(2) After applying shape memory treatment to a shape memory alloy containing the intermetallic compound NiTi as a main component, the alloy is deformed at a temperature below the temperature at which R phase or martensitic phase begins to be generated to restrain its shape, and then NiTi-based shape memory characterized by heating above a temperature at which an austenite phase begins to occur, and then cooling below a temperature at which an R phase or a martensitic phase begins to release the above constraints and forming into a desired shape. How to form alloys.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6049487A JPS63227754A (en) | 1987-03-16 | 1987-03-16 | Formation of niti shape memory alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6049487A JPS63227754A (en) | 1987-03-16 | 1987-03-16 | Formation of niti shape memory alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63227754A true JPS63227754A (en) | 1988-09-22 |
Family
ID=13143902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6049487A Pending JPS63227754A (en) | 1987-03-16 | 1987-03-16 | Formation of niti shape memory alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63227754A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100481484B1 (en) * | 2001-08-08 | 2005-04-07 | 주식회사 메타텍 | Method of manufacturing a wide bow of a pair of spectacles using shape memory alloy |
-
1987
- 1987-03-16 JP JP6049487A patent/JPS63227754A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100481484B1 (en) * | 2001-08-08 | 2005-04-07 | 주식회사 메타텍 | Method of manufacturing a wide bow of a pair of spectacles using shape memory alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4533411A (en) | Method of processing nickel-titanium-base shape-memory alloys and structure | |
US6106642A (en) | Process for the improved ductility of nitinol | |
Piao et al. | Mechanism of the As temperature increase by pre-deformation in thermoelastic alloys | |
JPH02142627A (en) | Instrument for composite joint | |
US4631094A (en) | Method of processing a nickel/titanium-based shape memory alloy and article produced therefrom | |
US4740253A (en) | Method for preassembling a composite coupling | |
JPS59166646A (en) | Thermally recovering article | |
US4502896A (en) | Method of processing beta-phase nickel/titanium-base alloys and articles produced therefrom | |
Kafka | Shape Memory: A New Concept of Explanation and of Mathematical Modelling: Part I: Micromechanical Explanation of the Causality in the SM Processes | |
Otsuka | Fe-Mn-Si based shape memory alloys | |
EP1574587B1 (en) | METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC | |
CA1269915A (en) | Method of processing a nickel/titanium-based shape memory alloy and article produced therefrom | |
JPS63227754A (en) | Formation of niti shape memory alloy | |
JPS6361377B2 (en) | ||
JPS5834215A (en) | Clamping member | |
JPH0128252B2 (en) | ||
Tanaka et al. | Martensitic transformation and shape memory effect in ausaged Fe–Ni–Si–Co alloys | |
JPS6214217B2 (en) | ||
JPS60169551A (en) | Manufacture of shape memory alloy | |
CA1038653A (en) | Heat-treating method | |
JPS609864A (en) | Production of superelastic spring and using method thereof | |
Martynov et al. | Stress-induced martensitic transformation and a new 7-layer martensite phase in the 63.1 Ni-Al alloy | |
Sun et al. | Two-way memory effect (TWME) in NiTi-Pd high-temperature shape memory alloys | |
JPS62167992A (en) | Joint | |
Wang et al. | Effect of the applied stress on martensitic transformation temperature, M sub s, of TiNi alloy |