JPS5834914A - Mask for selective diffusion - Google Patents
Mask for selective diffusionInfo
- Publication number
- JPS5834914A JPS5834914A JP13381481A JP13381481A JPS5834914A JP S5834914 A JPS5834914 A JP S5834914A JP 13381481 A JP13381481 A JP 13381481A JP 13381481 A JP13381481 A JP 13381481A JP S5834914 A JPS5834914 A JP S5834914A
- Authority
- JP
- Japan
- Prior art keywords
- film
- layer
- diffusion
- crystal
- mask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0332—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は半導体結晶、例えば価、 Si、 GaAへI
nP等への不純物、例えばZP Cd、 B等の選択拡
散工程に使用される拡散用マスクに関するものであシ、
不純物の拡散に対すS阻止能力が良好で、かつ、マスク
を構成する元素が拡散工程中に母体結晶内に浸入するこ
とがな−マスクを提供するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides semiconductor crystals such as Si, GaA, I
This relates to a diffusion mask used in the selective diffusion process of impurities such as ZP, Cd, B, etc. to nP, etc.
The object of the present invention is to provide a mask that has good S blocking ability against diffusion of impurities and prevents elements constituting the mask from penetrating into the host crystal during the diffusion process.
拡散用マスクとして基本的な機能は、不純物を母体結晶
中に拡散する際に目的とする箇所以外に拡散しない事、
母体結晶と拡散マスクとの界面における不必要な熱応力
や結晶の不完全性によシ拡散深さなどの制御を因縁にし
ない事、マスク自体の中の不純物が母体結晶中に拡散さ
れない事、などである。The basic function of a diffusion mask is to prevent impurities from being diffused to other than the intended location when diffusing into the host crystal.
Control of the diffusion depth should not be affected by unnecessary thermal stress or crystal imperfections at the interface between the host crystal and the diffusion mask, and impurities in the mask itself should not be diffused into the host crystal. etc.
従来は、これらの目的のために8i0n* 8i、N、
、 +Jンガラ!x(P2O)などの単層膜が多く用い
られてき丸。しかしながら、これらの単層膜においては
いくつ力1の欠点が指摘されている。その典型的な一一
例としてn型Ge単結晶へのP型不純物としてZnを拡
散した場合について述べ、あわせて本発明によって改善
された点について図面に従って詳細に記す。Conventionally, for these purposes, 8i0n* 8i,N,
, +J Ngara! Single layer films such as x(P2O) are often used. However, several drawbacks have been pointed out in these single-layer films. As a typical example, a case will be described in which Zn is diffused as a P-type impurity into an n-type Ge single crystal, and the points improved by the present invention will be described in detail with reference to the drawings.
第1図はn mGe単結晶(8bドープn〜lX101
an )KCVD法で形成された厚さ2000人cD
8i0゜膜を通して650℃40hの熱処理でZn拡散
した試料におけるZnの深さ方向濃度プロファイルを二
次イオン質量分析器(SIMS)で測定したものである
。図に見られるようにSi偽膜を透過して、かなシのZ
nがGe 結晶中に拡散しているのがわかる。Figure 1 shows an nmGe single crystal (8b doped n~lX101an) with a thickness of 2000 cD formed by KCVD method.
The depthwise concentration profile of Zn in a sample in which Zn was diffused through an 8i0° film by heat treatment at 650° C. for 40 hours was measured using a secondary ion mass spectrometer (SIMS). As seen in the figure, Kanashi's Z passes through the Si pseudomembrane.
It can be seen that n is diffused into the Ge crystal.
このZnの浸入はsto、gを厚くする事によっても軽
減されるが、膜厚が厚く立ると、必然的に半導体との界
面で熱応力が犬書くな)、設計値通ヤの接合深さを得る
のが困酸になる。また、この檎の界面の不完全性はマス
ク、半導体界面での不純物の横ひろがシ拡散を助長し、
また転位の発生を伴なう事があり、デバイスの信頼性上
、非常に不都合である。This infiltration of Zn can also be reduced by increasing the thickness of sto and g; however, as the film thickness becomes thicker, thermal stress inevitably increases at the interface with the semiconductor), and the junction depth exceeds the design value. It becomes difficult to obtain the desired value. In addition, this imperfection at the interface is caused by the horizontal spread of impurities at the mask and semiconductor interface, which promotes the diffusion of impurities.
Furthermore, dislocations may occur, which is very inconvenient in terms of device reliability.
第2図はn型Ge単結晶にCVD法で形成されたン威分
7襲)の二層膜を通して650 40hの熱処理でZn
拡散し九材料におけるzaおよびPの深さ方向、濃度プ
!フィルを8IM8で測定したものである。図にみられ
る様にZno拡散はP2O膜によって阻止されているが
、リンガラス膜中のリンがGe結晶中に多量に拡散され
ている事がわホる。Figure 2 shows that Zn is passed through a double-layer film of n-type Ge single crystal formed by CVD and heat-treated for 650 to 40 hours.
Depth direction and concentration of za and P in the diffused material! The fill was measured using 8IM8. As seen in the figure, Zno diffusion is blocked by the P2O film, but it is clear that a large amount of phosphorus in the phosphorus glass film is diffused into the Ge crystal.
従ってGe結晶内におけるドナー譲度が大巾に変化する
ので、後続の工1i!によってP型不純物を拡散あるい
はイオンインプランテイシ冒ンで導入しても接合位置を
設計通りに制御できない事になる。以上の事から1)
8i0.膜のみではZnの阻止力が弱い事、2)P2O
膜のみではZnの阻止力は弱いが、P8G膜中のリンが
GC結晶へ拡散して接合位置を乱す事がわかった。Therefore, since the donor yield within the Ge crystal varies widely, the subsequent process 1i! Therefore, even if a P-type impurity is introduced by diffusion or ion implantation, the junction position cannot be controlled as designed. From the above 1)
8i0. The stopping power of Zn is weak with only a film, 2) P2O
Although the stopping power of Zn is weak when used as a film alone, it was found that phosphorus in the P8G film diffuses into the GC crystal and disturbs the bonding position.
しかし、第2図で注目すべき事は、PEG膜中のリン’
pGe結晶へは拡散するが、表面の8i0を膜\
中へは殆んど拡散していない事である。However, what should be noted in Figure 2 is the phosphorus in the PEG film.
Although it diffuses into the pGe crystal, 8i0 on the surface hardly diffuses into the film.
そこで、我々は上記の性質とPSG膜がZn拡散を阻止
する実験事実に着巨し、第3図に示したIlt造の拡散
用マスクを作製した。第1層のSiO,膜2けPSG膜
3中のリンがGe結結晶内へ拡散するのを阻止するため
のものである。第2層のPEG膜3はZnの拡散を阻止
するための膜でもあり、リン成分は7%のものを用いた
。第31の5in2膜4は吸湿性のPSG膜3に対する
保護膜の目的をもたせである。選択拡散用窓5はフォト
リソグラフィーによって形成した。各層の厚さは8i0
2膜2.: 500AP S GI[3: 2000A
、 Sin!膜4 : 100OAとした◎第4図は、
上記構造の拡散マスクを用いて、650’O= 40
hOZn拡散した場合の試料におけるZnおよびPの深
さ方向プロファイルでちる。Therefore, based on the above properties and the experimental fact that the PSG film inhibits Zn diffusion, we fabricated the Ilt diffusion mask shown in FIG. 3. This is to prevent phosphorus in the first layer of SiO and PSG film 3 from diffusing into the Ge crystal. The second layer PEG film 3 is also a film for preventing Zn diffusion, and has a phosphorus content of 7%. The thirty-first 5in2 film 4 serves as a protective film for the hygroscopic PSG film 3. The selective diffusion window 5 was formed by photolithography. The thickness of each layer is 8i0
2 membranes 2. : 500AP S GI [3: 2000A
, Sin! Membrane 4: 100OA ◎Figure 4 shows
Using a diffusion mask with the above structure, 650'O=40
This is the depth profile of Zn and P in the sample when hOZn is diffused.
Znは第3層8i0.巾を、かなり拡散しているが、第
2層・P8G膜内で大部分が堆積していることがわかる
。これはPSGの強い化学的ゲッター作用によるもので
ある。第1層の8i01膜の作用によや、PSG膜中の
リンがGe結晶内に拡散していかないことも、この図か
ら理解される。第1rft!8i0゜膜は、ae結晶と
の熱W*係数が、かなり違う(Ger 5.7 X
10 deg 8i02: 0.4XIT)@
deg’)のでなるべく薄い事が好ましく、第1層の厚
さを種々変えた実験の結果、約500八で充分にリンに
対する阻止力がある事がわかった。なお、熱膨張係数が
よυGeに近い物質、たとえばSi、N、膜の使用も有
効である。Zn is in the third layer 8i0. Although the width is considerably diffused, it can be seen that most of it is deposited within the second layer P8G film. This is due to the strong chemical getter action of PSG. It is also understood from this figure that phosphorus in the PSG film does not diffuse into the Ge crystal due to the action of the 8i01 film of the first layer. 1st rft! The thermal W* coefficient of the 8i0° film is quite different from that of the ae crystal (Ger 5.7
10 deg 8i02: 0.4XIT) @
deg'), so it is preferable that the first layer be as thin as possible, and as a result of experiments in which the thickness of the first layer was varied, it was found that a thickness of about 5,000 degrees has a sufficient blocking power against phosphorus. Note that it is also effective to use a material whose thermal expansion coefficient is close to υGe, such as Si, N, or a film.
本発明の構成による拡散マスクはOeに対するZnのみ
ならず、8i、 GaAs、 InP等への不純物拡散
、例えば、Cd、 Mn、 M g等のP型不純物8e
、 Te等のn型不純物に対し7ても同様な効果が期待
される。The diffusion mask according to the structure of the present invention can diffuse not only Zn to Oe, but also impurity diffusion to 8i, GaAs, InP, etc., for example, P-type impurity 8e such as Cd, Mn, Mg, etc.
A similar effect is expected for n-type impurities such as Te.
不純物の選択拡散は局所化された活性領域をもつすべて
の半導体デバイスにとって重要な技術であり本発明のも
たらす効果は非常に大きい0Selective diffusion of impurities is an important technology for all semiconductor devices with localized active regions, and the effects of the present invention are extremely large.
第1図は8i0.単層膜を通してGeへZn拡散をした
試料のSIMSによるZnの深さ方向プロファイル。
第2図はP S O,5i022層嘆を通してGeへZ
n拡散をした試料のSIMSによるZn およびPの
深さ方向プロファイル。
第3図はSiO,、P S G、 Sin、の3層膜
によって構成される選択拡散用マスクの断面図。
FA LCh v> テ、1は()e結晶、2は5iO
JJ、3はPSG膜、4は8i0.膜、5は選択拡散用
窓である。
笥4図は、8i0. 、 P S G、 5in2膜
3層那′1を通してGeへZn拡散をした試料のS T
is■SによるZnおよびpomgさ方向プロファイ
ルである。
第1図
rtcにLng Deptk
楽3図
第41+図
rtCに1rLfDQ1yLにFigure 1 shows 8i0. SIMS profile of Zn in the depth direction of a sample in which Zn was diffused into Ge through a single layer film. Figure 2 shows Z to Ge through PSO,5i022 layer
Depth profile of Zn and P obtained by SIMS of a sample subjected to n diffusion. FIG. 3 is a cross-sectional view of a selective diffusion mask composed of three layers of SiO, PSG, and Sin. FA LCh v> Te, 1 is ()e crystal, 2 is 5iO
JJ, 3 is PSG film, 4 is 8i0. The membrane 5 is a selective diffusion window. Figure 4 is 8i0. , P S G, S T of the sample in which Zn was diffused into Ge through the 3-layer 5in2 film.
Zn and pomg direction profiles according to is■S. Figure 1 rtc to Lng Deptk Raku 3 Figure 41 + Figure rtC to 1rLfDQ1yL
Claims (1)
結晶との界面Vc8i0.膜が存在する。すくなくとも
3111m以上の薄膜を用−九多層構造によって構成さ
れる事を特徴とする選択拡散用マスク。There is a surface layer 1 (8i0. film, a phosphorus glass film in the intermediate layer, and a Vc8i0. film at the interface with the semiconductor crystal. Selective diffusion characterized by having a thin film of at least 3111 m or more and having a multilayer structure. mask.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13381481A JPS5834914A (en) | 1981-08-25 | 1981-08-25 | Mask for selective diffusion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13381481A JPS5834914A (en) | 1981-08-25 | 1981-08-25 | Mask for selective diffusion |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5834914A true JPS5834914A (en) | 1983-03-01 |
Family
ID=15113657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13381481A Pending JPS5834914A (en) | 1981-08-25 | 1981-08-25 | Mask for selective diffusion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5834914A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5239371A (en) * | 1975-09-25 | 1977-03-26 | Hitachi Ltd | Method for selective diffusion |
JPS5256869A (en) * | 1975-11-05 | 1977-05-10 | Toshiba Corp | Production of semiconductor element |
-
1981
- 1981-08-25 JP JP13381481A patent/JPS5834914A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5239371A (en) * | 1975-09-25 | 1977-03-26 | Hitachi Ltd | Method for selective diffusion |
JPS5256869A (en) * | 1975-11-05 | 1977-05-10 | Toshiba Corp | Production of semiconductor element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4587138A (en) | MOS rear end processing | |
US4210993A (en) | Method for fabricating a field effect transistor | |
JPH01160055A (en) | Silicon carbide layer structure | |
US4620986A (en) | MOS rear end processing | |
AU595169B2 (en) | Method for manufacturing a semiconductor device | |
JPS5834914A (en) | Mask for selective diffusion | |
US4426234A (en) | Method of forming reproducible impurity zone of gallium or aluminum in a wafer by implanting through composite layers and diffusion annealing | |
JPH03179778A (en) | Insulating board for forming thin film semiconductor | |
KR100421300B1 (en) | Method for producing semiconductor component with low contact resistence to highly doped regions | |
JPS5931226B2 (en) | semiconductor equipment | |
JPS60126867A (en) | Manufacture of semiconductor device | |
JPS6052580B2 (en) | Manufacturing method for surface protective film in semiconductor devices | |
JPS6125209B2 (en) | ||
JPH01109772A (en) | Manufacture of semiconductor device | |
JPS5844867A (en) | Solid-state image pickup device and its manufacture | |
JP3295481B2 (en) | Method of forming aluminum dopant distribution | |
JPH01115162A (en) | Thin film transistor and manufacture thereof | |
JPS6185815A (en) | Method for formation of polycrystalline silicon film | |
JP3054614B2 (en) | Semiconductor device | |
JPH02116132A (en) | Protective film for wiring of integrated circuit | |
JPS5890783A (en) | Semiconductor device | |
JPH0562970A (en) | Semiconductor device | |
JPS605526A (en) | Manufacture of semiconductor device | |
JPH02111019A (en) | Heat treatment | |
JPS5915499B2 (en) | Semiconductor device and its manufacturing method |