[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5830128A - Waffer chuck device - Google Patents

Waffer chuck device

Info

Publication number
JPS5830128A
JPS5830128A JP56127788A JP12778881A JPS5830128A JP S5830128 A JPS5830128 A JP S5830128A JP 56127788 A JP56127788 A JP 56127788A JP 12778881 A JP12778881 A JP 12778881A JP S5830128 A JPS5830128 A JP S5830128A
Authority
JP
Japan
Prior art keywords
wafer
chuck
substrate
points
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56127788A
Other languages
Japanese (ja)
Other versions
JPH0454369B2 (en
Inventor
Yukio Kenbo
行雄 見坊
Nobuyuki Akiyama
秋山 伸幸
Yasuo Nakagawa
中川 泰夫
Susumu Aiuchi
進 相内
Mineo Nomoto
峰生 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56127788A priority Critical patent/JPS5830128A/en
Publication of JPS5830128A publication Critical patent/JPS5830128A/en
Publication of JPH0454369B2 publication Critical patent/JPH0454369B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To retain the substrate surface at a desired position with a high precision by means wherein three points are detected on the surface of the substrate on a chuck securely supported on three support studs, two of said support studs being moved up and down separately, whereby the relative height of the studs is controlled according to the levels of the substrate surface. CONSTITUTION:A substrate 2 is adhered to a chuck 1 and its surface has three points detected to give X-Y coordinates from which fine motion DELTAZ1 to DELTAZ3 of a fine adjustment mechanism 21 is obtained by a primary controller 25. In order to make the wafer surface 9 coincident with the image-forming surface 3 of the mask pattern, the deviation DELTAz should be coincident on the coordinates of the three fine adjustments 21. Assuming that fine adjustment 21 takes place when the fine motion DELTAZ1 to DELTAZ3 is fed to a piezo-controller 23, the substrate surface comes into coincidence with the pattern surface 3. This is repeated until the coincidence is attained or predetermined times. With this constitution, matching precision becomes less than + or -0.5mum and the substrate is free from damage because of non-contact operation, and quick operation is possible.

Description

【発明の詳細な説明】 本発明は半導体集積回路等を形成するウェハ等の板材を
高精fK保持するウェハのチャック装置に関する奄ので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wafer chuck device for holding a plate material such as a wafer forming a semiconductor integrated circuit or the like with high precision fK.

ウェハチャックは半導体装置等に多く用すらnる。Wafer chucks are often used in semiconductor devices and the like.

第1図は投影式了ライナに使用している例である。Figure 1 shows an example of use in a projection type liner.

1はウェハチャック、2はウェハ、4は投影光学式、5
はマスク% 6はスライドテーブル、8は7ライナベー
スである。まt7は露光光を示す、ウェハチャック1は
ウェハ2t−吸着し、マスクI(ターンの結偉面5に合
わせてウェハ2を固定する。従来の球面座方式のウェハ
チャック1ではこの固定する精度が悪くパターンのウェ
ハへの焼付がうまくゆかない、すなわち、ウェハ2の表
面と結像面3の合わせ精度は2μlが11m1t’であ
る。しかし、半導体集積回路ツバ膚−ン幅が5μ−から
2μm以下になるにりn、#像面5とクエへ2の面を±
1μl内に合わせる必要がでてきており1球面座方式〈
かゎるチャ雫りが必要となってきた。
1 is a wafer chuck, 2 is a wafer, 4 is a projection optical type, 5
is mask% 6 is slide table, 8 is 7 liner base. The wafer chuck 1 attracts the wafer 2t and fixes the wafer 2 in line with the convergence surface 5 of the mask I (turn).The conventional spherical seat type wafer chuck 1 has a high precision in this fixing. In other words, the alignment accuracy between the surface of the wafer 2 and the imaging plane 3 is 11 m1t' for 2 μl.However, when the width of the semiconductor integrated circuit collar is 5 μm to 2 μm, The following becomes n, # image plane 5 and surface 2 to ±
It became necessary to adjust the amount within 1 μl, so the single spherical seat method was used.
It has become necessary to have a cooling drip.

第2図に従来の球面座方式のウェハチャックを示す、従
来のウェハチャックはウェハ2を吸着するウェハチャダ
ク面10と、チャック用真空管路11、球面座121球
面座固定用真空管路15、ウェハ面上方にセダトさfL
tつきあて棒14及びウェハチャリグのよ下機構15か
らなる。
FIG. 2 shows a conventional spherical seat type wafer chuck. The conventional wafer chuck has a wafer chuck surface 10 that attracts the wafer 2, a vacuum conduit 11 for the chuck, a spherical seat 121, a vacuum conduit 15 for fixing the spherical seat, and an upper part of the wafer surface. sedato fL
It consists of a holding rod 14 and a wafer rig lowering mechanism 15.

第5図に球面鰻重式のウェハチャダグの動作を示す、(
a)は上下機構15に19ウエハチヤツク1【下げ、ウ
ェハ2tのせてウェハチャヅク用の真空刀18にエクチ
ャダクした状態である。ここではウニ八属10は傾いて
おり、マスクパターン結像面3から離nている。この時
球面座用真空19は働いていなく、球面座j2Fi7リ
ーである0次にlblの1うに上下機構15に工9ウェ
ハチャヴクを上げてつきあて棒14にウェハ2の周辺部
をつきあてる。つきあて棒f4Fiクエへ局辺の3点に
配置さ九ておハつきあて棒14の先端を結ぶ面はあらか
じめマスクパターン結像面5に平行ニナっている。この
ため上下機構15とあらかじめ決めらfまた与圧17で
上げ続けると1球面座S2によってウェハ面9がマスク
パターン結像面15と平行にな−)た所で止まる。上下
機構15が停止したら(o)のようにそのまま球面座1
21i−球面座用真空19を働かせて固定する。最後K
 (d)のように上下機構15によりウェハチャック1
を下げる。下げる量は、つきあて棒14の先端とマスク
バ4−ン結像面5との距離16であり、Toらかしめ決
めておく0以上でウェハ面9とマスクパターン結像面5
は±2Am2点の精度で合致したことになる。
Figure 5 shows the operation of the spherical eel stack type wafer chadag (
A) shows a state in which 19 wafer chucks 1 are lowered onto the vertical mechanism 15, 2 tons of wafers are placed on the wafer chucks, and the wafers are exposed to the vacuum knife 18 for wafer chucks. Here, the sea urchin genus 10 is tilted and is away from the mask pattern imaging plane 3. At this time, the vacuum 19 for the spherical seat is not working, and the wafer 2 is moved up and down by the vertical mechanism 15 of the 0th order lbl, which is the spherical seat j2Fi7, and the periphery of the wafer 2 is brought into contact with the abutting rod 14. The contact rods f4Fi are arranged at three points on the side of the curve, and the plane connecting the tips of the contact rods 14 is parallel to the mask pattern imaging plane 5 in advance. For this reason, if it is continued to be raised by the vertical mechanism 15, the predetermined pressure 17, and the predetermined pressure 17, it will stop when the wafer surface 9 becomes parallel to the mask pattern imaging surface 15 due to the single spherical seat S2. When the vertical mechanism 15 stops, move the spherical seat 1 as shown in (o).
21i - Apply the vacuum 19 for the spherical seat to fix it. Last K
As shown in (d), the wafer chuck 1 is
lower. The amount of lowering is the distance 16 between the tip of the abutting rod 14 and the mask pattern image forming surface 5, and the distance between the wafer surface 9 and the mask pattern image forming surface 5 is 0 or more.
This means that they match with an accuracy of ±2 Am 2 points.

以上の動作はウェハ1枚毎に行なう、これはウェハ2の
個々の厚さむらや、ウェハチャダグへの吸着むらにより
生ずるウェハ面9のタエへチャック面10からの距離の
バックdP(±5μ−〜±10μI)を修正する几めで
ある。
The above operation is performed for each wafer. This is due to the back dP (±5μ-~ This is a method to correct the difference (±10μI).

以上のLうな方式では次のような欠点がある。The above L-type method has the following drawbacks.

第1Fi先に述べたように、ウェハ面9とパターン結像
面が合わないときの点である。これは平行出しと高さ合
わせの2者に問題がある。mち平行出しは第1としてウ
ェハチャック用の真9管路11の剛性により球面座12
がう壕(働かな−ことくわ9%第2として球面座12會
固定する時真空力により動くことKあり、第3としてつ
きあての再現性がfkTAことにあり、第4として上下
機構15でつきあて時に与圧をかける時の剛性不足によ
るたわみ等の問題がある。高さ合わせは上下機構15の
再現性がないこと、上記つきあての再現性がなhこと、
上下機構15でつきあて時に与圧倉かける時の剛性不正
による友わみ等の問題がある。
As mentioned earlier, the first Fi is a point when the wafer surface 9 and the pattern imaging surface do not match. This has two problems: parallel alignment and height alignment. First, the parallel alignment of m is achieved by using the spherical seat 12 due to the rigidity of the true 9 conduit 11 for the wafer chuck.
The second reason is that the spherical seat 12 moves due to vacuum force when fixed, the third reason is that the reproducibility of the contact is fkTA, and the fourth reason is that the vertical mechanism 15 There are problems such as deflection due to lack of rigidity when pressurizing is applied during abutment.Height adjustment is not reproducible in the vertical mechanism 15, and the above-mentioned abutment is not reproducible.
There are problems such as compatibility due to improper rigidity when the pressurized tank is applied when the vertical mechanism 15 butts.

第2は、ウェハ面9に接触すると込う欠点である。こf
iはつきあて棒14先端の汚れ、逆にウェハ面?への汚
A、ウェ八2の破損等を招く。
The second problem is that it comes into contact with the wafer surface 9. Kof
Is i the dirt on the tip of the abutting rod 14, or conversely the wafer surface? This may cause stains on the wafer A and damage to the wafer 82.

本発明の目的は、上記した従来技術の欠点をなくシ、高
精度にウニ八属をマスクパターン面に合わせるウニへの
チェダクatt−提供するKある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a method for aligning eight sea urchin genera with a mask pattern surface with high precision.

即ち本発明は3点のビポ曽トにウェハチャダグを載置し
、ビボ呼トを上下微動させることKL9ウェ八面へ属意
の面に合わせることにある。ビボダトの上下微動はピエ
ゾ素子等にエフ行なう、ウェハ面の位置決めにはウェハ
面を検出し、こnv上下動にフィードパ雫りする。
That is, the present invention is to place a wafer chadag on the three points of the vibrator and slightly move the vibrator up and down to align it with the eight surfaces of the KL9 wafer. The fine vertical movement of the vivodator is performed by a piezo element, etc., and the wafer surface is detected for positioning of the wafer surface, and a feed pulse is applied to this nv vertical movement.

以下本発明を図に示す5j!施例にもとづいて具体的に
説明する。
The present invention is illustrated below in 5j! This will be explained in detail based on examples.

第41OK本発明の一実施例1示す。、ベース20上に
3ケ所円周上に配置したピエゾ微動上下4#檎(以下微
動機構21と称す)、該微動機構21に周囲全支持され
九りエハチャ豐グ1.該ウェハチャヴク1をベース20
に引きつけるバネ22.ウェハチャック用真空管路11
1ピエゾコント。−ラ25.ウェへ属9位ft−検出す
る円周上に配置さn7t5個の静電容量型検出器24及
び該検出器24の検出器から各微動機構21の微動rK
を演算し、ビエゾコントーラ25を動かすメインコント
σ−225からなる。
41st OK Example 1 of the present invention is shown. , Piezo fine movement upper and lower 4# (hereinafter referred to as the fine movement mechanism 21) arranged on the base 20 at three places on the circumference, the entire circumference of which is supported by the fine movement mechanism 21. Based on the wafer chavuk 1 20
Spring that attracts 22. Vacuum pipe line 11 for wafer chuck
1 piezo control. -La 25. 9th place ft - 5 capacitance type detectors 24 arranged on the circumference to be detected and the fine movement rK of each fine movement mechanism 21 from the detectors 24
It consists of a main control σ-225 which calculates and moves the Viezo controller 25.

動作手順は以下の如くである。まずウェハ2tチャヴク
上に載せ吸着する。この時のウェハ面9を検出器24に
より検出し、そnぞれm、aKl、Z@とする。ここで
第4図のようにX、Y座標を決めメインコントローラ2
5で各微動機構21の微動量Δz、8△z1.Δ2.を
求める。以下に計算方法を示す、各検出点でのIF(X
、、Ylmg、)、 CX1.Y、avl)。
The operating procedure is as follows. First, the wafer is placed on a 2t wafer and adsorbed. The wafer surface 9 at this time is detected by the detector 24, and is designated as m, aKl, and Z@, respectively. Here, determine the X and Y coordinates as shown in Figure 4 and use the main controller 2.
5, the fine movement amount Δz of each fine movement mechanism 21, 8△z1. Δ2. seek. The calculation method is shown below. IF (X
,,Ylmg,), CX1. Y, avl).

(X、、Y、g、) f面の一般式 %式%(1) に代入し、各係数を求める。ウェハ面は次式の如くなる
(X,, Y, g,) Substitute into the f-plane general formula % formula % (1) to find each coefficient. The wafer surface is as shown in the following equation.

z、= A、 X+B、 Y+C,(2)一方、マスク
パターン結像面3はあらかじめ下記の如く決まって論る
とする。
z, = A, X+B, Y+C, (2) On the other hand, it is assumed that the mask pattern imaging plane 3 is determined in advance as follows.

E @=A1 X+B@ Y+C@    (3)よっ
て、ウェハ面9とパターン結像面5との差をΔ2とすれ
ば Δz−H−E、−(AM−A、)X+(Bll−B、)
Y+cH−CW(4) ウェハ面91tパタ一ン結倫面5に一致させるVCは3
つの微動機構21の座標で一致させれば良く。
E @=A1 X+B@ Y+C@ (3) Therefore, if the difference between the wafer surface 9 and the pattern imaging surface 5 is Δ2, Δz−H−E, −(AM−A,)X+(Bll−B, )
Y+cH-CW(4) VC to match wafer surface 91t pattern 1 connection surface 5 is 3
It is sufficient if the coordinates of the two fine movement mechanisms 21 match.

各座標でのΔ2が微動機構21の微動量となる。Δ2 at each coordinate is the amount of fine movement of the fine movement mechanism 21.

すなわち、各微動機構210座標k (IC,I YC
,) a(x、、、 Yal)−CXcs、Ych) 
とすればΔz1.ΔE1.Δz1は(4)弐に代入し求
まる。
That is, each fine movement mechanism 210 coordinate k (IC, I YC
,) a(x,,,Yal)-CXcs,Ych)
Then Δz1. ΔE1. Δz1 is found by substituting into (4) 2.

Δ!!+−(Ar(w)XCH+(BrB、)Y)1→
C1l”’Cw     、(5)bxH−(AH(、
)Xg 1+CB(B、)Y(1z+cH−C,(6)
tsz 4(k(k、) X6 %Bkl’−By)Y
C−−(、(7)以上の値會ピエゾコントローラ2sK
与え、%微動機構21t−動かせばウニ凸面9はパター
ン結曹面5に一致する。検出の誤差や、微動の誤差があ
る時は、再度ウェハ面9を検出し、一致していなければ
、一致するまで、あるbはあらかじめ決めておいた回数
だけ上記動作を繰り返せば良い。
Δ! ! +-(Ar(w)XCH+(BrB,)Y)1→
C1l"'Cw, (5)bxH-(AH(,
)Xg 1+CB(B,)Y(1z+cH-C, (6)
tsz 4(k(k,) X6 %Bkl'-By)Y
C--(, (7) or higher value piezo controller 2sK
If the fine movement mechanism 21t is moved, the sea urchin convex surface 9 will match the pattern condensation surface 5. If there is a detection error or a slight movement error, the wafer surface 9 is detected again, and if they do not match, the above operation may be repeated for a certain b a predetermined number of times until they match.

微動機構は3ケ所供動く必要はなく、2ケ所のみ個々に
微動するようにしてもよい、この場合は第5因のように
上下動機構12が別に必要となるがチャックく対する構
剛性は1ケ所の支柱が(支)定されることにエフ向上す
る。又この場合、微動量は式(4)でCM−C1の、*
1−上下動構12が調節し、(All  *w)x+<
 sH−Bw ) Y  t−11動機構が調節する。
It is not necessary for the fine movement mechanism to move in three places, and it may be possible to make fine movement in only two places individually. In this case, as in the fifth factor, a separate vertical movement mechanism 12 is required, but the structural rigidity for the chuck is 1. Ef is improved because the pillars in these places are (support) fixed. Also, in this case, the amount of microtremor is expressed as CM-C1's * in equation (4).
1- Vertical movement mechanism 12 adjusts, (All *w)x+<
sH-Bw) Y t-11 movement mechanism adjusts.

ウェハ面の検出は静電容量方式でなくても電気−=rイ
クロ、超音波センサ、光センサ、エアマイクロ等検出時
にウェハ姿勢に影響せずプロセスに悪影響かない限り何
でも良い、又、検出子の数は1つ全走査しても良いし、
いくつでも良い、悪は直線上にない5点でウェハ面を検
出してウニへ属會決定できれば良す。
The detection of the wafer surface does not need to be a capacitance method; any method such as electric micro, ultrasonic sensor, optical sensor, air micro, etc. may be used as long as it does not affect the wafer posture during detection and does not adversely affect the process. You can fully scan one number,
Any number is fine, as long as it can detect the wafer surface at five points that are not on a straight line and determine whether it belongs to a sea urchin.

ピエゾ嵩子のかわりKff、体応用の微動機構、モータ
による微動機構等が考えられる。
Instead of the piezo bulge, a Kff, a body-applied fine movement mechanism, a motor-based fine movement mechanism, etc. may be used.

ウェハ面は式(1)で求まるが4点以上のデータから平
均面を求めた方がより正確である。
The wafer surface can be determined using equation (1), but it is more accurate to calculate the average surface from data from four or more points.

第6図は本発明による別の実施例を示す図である。第4
図に加え、チャック底部と、ベース20上の板バネ支持
リング410間を5つの板バネ40で連結し、ウェハ千
ヤプクの水平方向の剛性ヶ向上させたものである。上下
方向の姿勢変化は板バネ40が上下方向剛性と水平軸回
りのひねり剛性が低いので十分性なえる。板バネ40の
配fILは上下方向の姿勢変化か可能なように、上下方
向剛性と水平軸回りのひねり剛性が低く、かつ水平方向
剛性が高ければどこでも良い、又、板バネでなくと′%
1.切込みの入った鉄材や1円板バネ等、何でも良い。
FIG. 6 is a diagram showing another embodiment according to the present invention. Fourth
In addition to the figure, five leaf springs 40 are used to connect the bottom of the chuck and a leaf spring support ring 410 on the base 20 to improve the horizontal rigidity of the wafer. Changes in posture in the vertical direction are not sufficient because the leaf spring 40 has low vertical rigidity and low torsional rigidity around the horizontal axis. The arrangement fIL of the leaf spring 40 can be anywhere as long as the vertical stiffness and torsional stiffness around the horizontal axis are low and the horizontal stiffness is high so that the posture can be changed in the vertical direction.
1. Anything is fine, such as a steel material with a notch or a one-disc leaf spring.

以上説明しtように本発明に工れば1次のような作用効
果が得られる。
If the present invention is implemented as explained above, the following effects can be obtained.

(1)  従来のウニ凸面とマククパターン合せ精度が
数倍向上し、±(L5Jfl以下になり、微細)(ター
ン焼付が可能となる。
(1) The accuracy of matching the convex surface of the sea urchin and the makku pattern has been improved several times compared to the conventional method, and ±(L5Jfl or less, fine) (turn printing is possible).

(2)ウェハ面に接触しないでもウェハ面合せができ、
ウェハを破損することがなく1歩留向上がはかれる。
(2) Wafer surface alignment can be performed without contacting the wafer surface.
The yield can be improved by one level without damaging the wafer.

(3)動作が早くなる。(3) Operation becomes faster.

(4)上下機構と、平行合わせ機構を一つにできるので
コンパクトになる。
(4) The vertical mechanism and parallel alignment mechanism can be combined into one, making it more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のウニへチャヴクを投影式アライナに使
用しi例を示す図、第2図は従来のウエハチャヴクの構
造【示す図、第3図−)〜鯰)は1f来のウニへチャダ
クの動作を示す図、第4図(a)は本発明のウニへのチ
ャダク装置の一実施例を示す図。 第4図(Bは第A!!5(a)のA−メ矢視図、第5図
は第4図と異なる他の一実施例を示す図、第6図(al
は更に第45!5と異なる他の一実施例1示す部分断面
図、第6図(b)は第69葎)のB−yl矢視断面■で
ある。 1・・・ウニへチャック、  ?−・ウニへ、20・・
・ペース% 21黴動機構、22・・・バネ、2B・・
・ピエゾ;ントローラ、24・・・静電容量検出器、2
5・・・メインコントローラ、Sa−・・ti!1足支
柱% 40・・・板バネ。 代理人弁理士 薄 1)利 *(yj)C“、−、−一
1 ケ l 図 り 211!1 才 4 図 (L′) グ 5I!I 芽 乙 図 (’) (b′>
Figure 1 is a diagram showing an example of using a conventional wafer chavuku in a projection aligner. Figure 2 is a diagram showing the structure of a conventional wafer chavuku. FIG. 4(a) is a diagram showing the operation of the chadak, and FIG. 4(a) is a diagram showing an embodiment of the chadak device for sea urchins of the present invention. Fig. 4 (B is a view taken along the arrow A of Fig. 5(a), Fig. 5 is a diagram showing another embodiment different from Fig. 4, Fig. 6 (al
6 is a partial sectional view showing another embodiment 1 different from No. 45!5, and FIG. 1... Chuck to the sea urchin, ? -・To the sea urchin, 20・・
・Pace% 21 Motion mechanism, 22...Spring, 2B...
・Piezo controller, 24...Capacitance detector, 2
5... Main controller, Sa-...ti! 1 leg prop% 40...plate spring. Representative Patent Attorney Usuki 1) Li *(yj)C", -, -11 ke l 211!1 years old 4 Figure (L') Gu 5I!I Me Otsu Figure (') (b'>

Claims (1)

【特許請求の範囲】 1、 ペース上の直線上になh少くとも5点く配置され
、且つェへチャヅクを少くとも3点上に載置できるよう
な支持支柱と、ウェハチャックをよ紀支持支柱に固定す
るための固着手段と、ウェハチャック上のクエへ属の位
置を少なくと1厘線上にない5ケ所で検出する検出手段
と、上記支持支柱のうち少なくとも2本kinkK上下
させる上下機構と、上記検出手段から検出されるウニ八
属の位置くもとづいて所望のウニ八属の形状にすべく、
上記5本の支持支柱の相対的高さ全制御する制御手段と
を備えて、ウニへチャダグ上のウニ八属を所望形状にす
ることを特徴とするウェハのチャック装置。 λ 上記上下機構は、上記支持支柱が全部側々に上下す
るように構成したことt−%黴とする特許請求の範囲第
11[記載のウェハの装置。 五 上記上下機構はピエゾ素子にて構成されたことを特
徴とする特徴請求の範囲第1項またFi第2項記載のウ
ェハのチャック装置。 歳 上記ウェハチャックとベース間を上下微動方向剛性
及び水平軸回りのひねり剛性が低く1水平方向の剛性の
高い構造材で連結すること1−**徴とする特許請求の
範囲第1項tたは第2項記載のクエへのチャック装置。
[Claims] 1. Support columns arranged at at least 5 points on a straight line on the pace and capable of placing the wafer chuck on at least 3 points, and supporting the wafer chuck horizontally. A fixing means for fixing to the supporting columns, a detecting means for detecting the position of the wafer on the wafer chuck at at least five locations not on one line, and a vertical mechanism for raising and lowering at least two of the supporting columns. , in order to create the desired shape of the eight sea urchin genera based on the position of the eight sea urchin genera detected by the detection means,
A wafer chucking device characterized by comprising: control means for fully controlling the relative heights of the five support struts, and for shaping the eight species of sea urchins on the sea urchin to a desired shape. λ The wafer apparatus according to claim 11, wherein the up-and-down mechanism is configured such that all of the support columns move up and down sideways. 5. The wafer chucking device as set forth in claim 1 or 2, wherein the up-and-down mechanism is comprised of a piezo element. The scope of claim 1 t is characterized in that the wafer chuck and the base are connected by a structural member that has low rigidity in the vertical fine movement direction and torsional rigidity around the horizontal axis, and 1 has high rigidity in the horizontal direction. is the chuck device for the hook described in item 2.
JP56127788A 1981-08-17 1981-08-17 Waffer chuck device Granted JPS5830128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56127788A JPS5830128A (en) 1981-08-17 1981-08-17 Waffer chuck device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56127788A JPS5830128A (en) 1981-08-17 1981-08-17 Waffer chuck device

Publications (2)

Publication Number Publication Date
JPS5830128A true JPS5830128A (en) 1983-02-22
JPH0454369B2 JPH0454369B2 (en) 1992-08-31

Family

ID=14968689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56127788A Granted JPS5830128A (en) 1981-08-17 1981-08-17 Waffer chuck device

Country Status (1)

Country Link
JP (1) JPS5830128A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169046U (en) * 1983-04-26 1984-11-12 シャープ株式会社 adsorption device
US5410259A (en) * 1992-06-01 1995-04-25 Tokyo Electron Yamanashi Limited Probing device setting a probe card parallel
US5806193A (en) * 1995-11-09 1998-09-15 Nikon Corporation Tilt and movement apparatus using flexure and air cylinder
KR100574919B1 (en) * 1999-06-16 2006-04-28 삼성전자주식회사 Disc site assembly of ion implanter used for manufacturing semiconductor device &calibration method of lifting wafer thereby
WO2011111327A1 (en) * 2010-03-12 2011-09-15 パナソニック株式会社 Alignment method and flat panel display manufacture method
CN111730430A (en) * 2020-07-30 2020-10-02 华海清科(北京)科技有限公司 Grinding apparatus with adjustable suction cup turntable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255472A (en) * 1975-10-31 1977-05-06 Thomson Csf Mask photo repeater
JPS5319901A (en) * 1976-07-28 1978-02-23 Mobil Oil Method of prospecting by earthquake
JPS5373078A (en) * 1976-12-13 1978-06-29 Nippon Telegr & Teleph Corp <Ntt> Fine adjustment mechanism of electromagnetic driving type
JPS5613726A (en) * 1979-07-14 1981-02-10 Nippon Kogaku Kk <Nikon> Gap setter in proximity-aligner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255472A (en) * 1975-10-31 1977-05-06 Thomson Csf Mask photo repeater
JPS5319901A (en) * 1976-07-28 1978-02-23 Mobil Oil Method of prospecting by earthquake
JPS5373078A (en) * 1976-12-13 1978-06-29 Nippon Telegr & Teleph Corp <Ntt> Fine adjustment mechanism of electromagnetic driving type
JPS5613726A (en) * 1979-07-14 1981-02-10 Nippon Kogaku Kk <Nikon> Gap setter in proximity-aligner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169046U (en) * 1983-04-26 1984-11-12 シャープ株式会社 adsorption device
US5410259A (en) * 1992-06-01 1995-04-25 Tokyo Electron Yamanashi Limited Probing device setting a probe card parallel
US5806193A (en) * 1995-11-09 1998-09-15 Nikon Corporation Tilt and movement apparatus using flexure and air cylinder
KR100574919B1 (en) * 1999-06-16 2006-04-28 삼성전자주식회사 Disc site assembly of ion implanter used for manufacturing semiconductor device &calibration method of lifting wafer thereby
WO2011111327A1 (en) * 2010-03-12 2011-09-15 パナソニック株式会社 Alignment method and flat panel display manufacture method
JP5029786B2 (en) * 2010-03-12 2012-09-19 パナソニック株式会社 Alignment method and flat panel display manufacturing method
US8318392B2 (en) 2010-03-12 2012-11-27 Panasonic Corporation Alignment method and method for manufacturing flat panel display
CN111730430A (en) * 2020-07-30 2020-10-02 华海清科(北京)科技有限公司 Grinding apparatus with adjustable suction cup turntable

Also Published As

Publication number Publication date
JPH0454369B2 (en) 1992-08-31

Similar Documents

Publication Publication Date Title
JP4171159B2 (en) Off-axis leveling of lithographic projection equipment
US6313567B1 (en) Lithography chuck having piezoelectric elements, and method
US3729966A (en) Apparatus for contouring the surface of thin elements
JP2011517094A (en) Apparatus and method for semiconductor wafer alignment
TWI797662B (en) Tool architecture for wafer geometry measurement in semiconductor industry
JPS5830128A (en) Waffer chuck device
US12072176B2 (en) Measuring apparatus and method of wafer geometry
KR20220092161A (en) Apparatus for processing a substrate
US4234254A (en) Unit for measuring planeness
JPH08264428A (en) Projection aligner
TWI397496B (en) A supporting system and a method for supporting an object
JPS62279629A (en) Exposure equipment
JP2016122702A (en) Normal temperature bonding device
CN114530400A (en) Method for the distributed distance compensation between a handling device and two workpieces
JP2830614B2 (en) Pattern position measuring method and apparatus
JPH0244365B2 (en)
JPS60154617A (en) Non-contact height parallelism apparatus
TW202028772A (en) Probe self-correction system and method thereof
US20040008352A1 (en) Precision size measuring apparatus
JP3369975B2 (en) Robot calibration method and device
JPH01136332A (en) Electron beam lithography method
JPS6013301B2 (en) mask alignment device
JPS6063928A (en) Contact exposure device
JPS60154618A (en) Mask-wafer gap setting method
JPH01220440A (en) Method and apparatus for controlling flatness of wafer