JPS5828770B2 - surface acoustic wave device - Google Patents
surface acoustic wave deviceInfo
- Publication number
- JPS5828770B2 JPS5828770B2 JP13372076A JP13372076A JPS5828770B2 JP S5828770 B2 JPS5828770 B2 JP S5828770B2 JP 13372076 A JP13372076 A JP 13372076A JP 13372076 A JP13372076 A JP 13372076A JP S5828770 B2 JPS5828770 B2 JP S5828770B2
- Authority
- JP
- Japan
- Prior art keywords
- acoustic wave
- surface acoustic
- frequency
- thickness
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
【発明の詳細な説明】 本発明は弾性表面波装置に関する。[Detailed description of the invention] The present invention relates to a surface acoustic wave device.
弾性表面波装置の応用としてテレビ受像機のPIFフィ
ルタ回路に適用することは周知である。It is well known that surface acoustic wave devices are applied to PIF filter circuits of television receivers.
弾性表面波装置をテレビジョン受像機中の映像中間周波
(PIF)のフィルタ回路に適用することはよく知られ
ている。It is well known to apply surface acoustic wave devices to picture intermediate frequency (PIF) filter circuits in television receivers.
この場合、弾性表面波装置の圧電体基板として一般にセ
ラミック又はLiNb0aの板がまづ、検討された。In this case, ceramic or LiNb0a plates were generally considered as piezoelectric substrates for surface acoustic wave devices.
しかし、セラミックは製造時の歩留りが悪く工業的に不
適当であり、又LiNbO3板は温度特性が悪くテレビ
ジョン受像機のPIFフィルタとしては不適当である。However, ceramics have poor manufacturing yields and are unsuitable for industrial use, and LiNbO3 plates have poor temperature characteristics and are unsuitable for use as PIF filters for television receivers.
そこで本発明者はLiTaO3板を用いることを開発し
た。Therefore, the present inventor developed the use of a LiTaO3 plate.
このL s T a Os板は従来コストが高く、適切
なカットが発見されておらずL IN b Q B板と
同様実用されていなかったが、本発明者は、弾性表面波
の伝播方向をL i T a 03結晶のY軸に対して
67.8度乃至142度の範囲に設定することにより温
度特性及びバルクスプリアス特性が極めて良好な弾性表
面波素子の得られることを見出した。Conventionally, this L s T a Os board was expensive and no suitable cut had been found, so it was not put into practical use like the L IN b Q B board, but the inventor of the present invention changed the propagation direction of the surface acoustic wave to L It has been found that by setting the temperature in the range of 67.8 degrees to 142 degrees with respect to the Y axis of the i Ta 03 crystal, a surface acoustic wave device with extremely good temperature characteristics and bulk spurious characteristics can be obtained.
しかし、この場合も基板形状が適切でないと弾性表面波
装置としてはスプリアス特性が良くなく、歩留りが悪く
て実用化の障害となることが分かった。However, in this case as well, it has been found that if the substrate shape is not appropriate, the surface acoustic wave device will have poor spurious characteristics, resulting in poor yield and hindering its practical use.
例えば、圧電体基板としてXカットのL i T aQ
B板でY軸から112°の方向に表面波を伝播されるよ
うにしたテレビジョン受像機用PIF表面波フィルタを
製造して、これの周波数(MHz)対相対振幅応答出力
特性を測定してみると、第1図のようになる。For example, as a piezoelectric substrate, an X-cut LiTaQ
We manufactured a PIF surface wave filter for television receivers in which surface waves were propagated in a direction of 112 degrees from the Y axis using plate B, and measured its frequency (MHz) vs. relative amplitude response output characteristics. If you look at it, it will look like Figure 1.
曲線Aは相対応答出力値(dB)が1目盛10dBの時
のPIFフィルタの通過帯域の周波数特性曲線である。Curve A is a frequency characteristic curve of the pass band of the PIF filter when the relative response output value (dB) is 10 dB per division.
この場合は見掛は上あまり大きなリップルが現われてい
ないように見えるが、感度をio倍に上げてl目盛1d
Bにして測定してみると、曲線Bに示したように、同じ
通過帯域内で56MHから57 MHzに亘って比較的
大きなリップルが生じていることが明らかとなった。In this case, it doesn't seem like a very large ripple appears, but if you increase the sensitivity by io times, the l scale is 1d.
When measurements were made using curve B, it became clear that a relatively large ripple occurred within the same pass band from 56 MHz to 57 MHz, as shown in curve B.
この第1図の周波数特性を持つフィルタについてネット
ワークアナライザを用いて反射特性を測定すると第2図
に示す通りである。When the reflection characteristics of the filter having the frequency characteristics shown in FIG. 1 are measured using a network analyzer, the results are as shown in FIG.
第2図から分るように表面波の基本波、2次高調波の励
振以外に6.108 MHz%18.823 MHz、
31.376MHz、 43.959MHz、 56
.489MHz等の複数の周波数の位置で強い共振が起
っていることが分る。As can be seen from Figure 2, in addition to the fundamental wave of the surface wave and the excitation of the second harmonic, 6.108 MHz%18.823 MHz,
31.376MHz, 43.959MHz, 56
.. It can be seen that strong resonance occurs at multiple frequency positions such as 489 MHz.
この共振現象がPIFフィルタの通過帯域内で生じると
、この共振の振動に表面波励振エネルギーが吸収されて
、結果としてPIFフィルタの通過帯域内のり゛ノプル
となって現われてくるものと思われる。When this resonance phenomenon occurs within the passband of the PIF filter, the surface wave excitation energy is absorbed by this resonance vibration, and as a result it appears as a rhinople within the passband of the PIF filter.
また、この共振周波数が大きな減衰量を必要とするトラ
ップ周波数に一致すると、必要とする減衰量が得られな
くなる。Furthermore, if this resonant frequency matches a trap frequency that requires a large amount of attenuation, the required amount of attenuation cannot be obtained.
この発明は、上記点に鑑みなされたもので第1図第2図
の考察に基づいて、上記共振現象による表面波励振エネ
ルギーの吸収を未然に防止することにより、リップル、
即ちスプリアス成分を減少させた弾性表面波装置を提供
することを目的とするものである。The present invention was made in view of the above points, and based on the consideration of FIGS. 1 and 2, by preventing absorption of surface wave excitation energy due to the resonance phenomenon, ripples
That is, the object is to provide a surface acoustic wave device with reduced spurious components.
この発明によれば、圧電体としてXカットL iT a
Q 3基板を用い、その基板の厚さdが次式を満足す
るように構成することによりスプリアス特性が改善され
た弾性表面波装置を提供するものである。According to this invention, as a piezoelectric body, an X-cut L iTa
The present invention provides a surface acoustic wave device with improved spurious characteristics by using a Q3 substrate and configuring the substrate so that the thickness d satisfies the following equation.
実施例の説明に入るまえに、まずこの発明の原理を解析
して説明する。Before entering into the description of the embodiments, the principle of this invention will first be analyzed and explained.
第2図に示したようなスプリアスの振動モードを知るた
めに、インターディジタルトランスジューサの励振を次
の3通りの方法で行った。In order to find out the spurious vibration mode shown in FIG. 2, the interdigital transducer was excited using the following three methods.
(4)第3図Aに示したように、インターディジタルト
ランスジューサ31の一方の電極32を、LiTaO3
チップ30をオールドしているパ゛ノケージの金属ベー
ス33に接続して接地し、これと他方の電極34との間
に励振電圧を印加する。(4) As shown in FIG. 3A, one electrode 32 of the interdigital transducer 31 is connected to LiTaO3.
The chip 30 is connected to the metal base 33 of the old piano cage and grounded, and an excitation voltage is applied between this and the other electrode 34.
の)第3図に示したように、インターディジタルトラン
スジューサ31の一方の電極34をどこへも接続しない
で浮き電極とし、他方の電極32およびパ゛ノケージの
金属ベース33との間に励振電圧を印加する。As shown in FIG. 3, one electrode 34 of the interdigital transducer 31 is made a floating electrode without being connected to anything, and an excitation voltage is applied between the other electrode 32 and the metal base 33 of the pinocage. Apply.
0 第3図Cに示したように、インターディジタルトラ
ンスジューサ31の双方の電極32 、34を並列接続
し、並列接続端の一方と金属ベース33との間に励振電
圧を印加する。0 As shown in FIG. 3C, both electrodes 32 and 34 of the interdigital transducer 31 are connected in parallel, and an excitation voltage is applied between one of the parallel connection ends and the metal base 33.
(4)、 (B) 、 (O夫々の場合の電界分布の様
子も楔形的に第3図(4)、 (B) 、 (C)中に
示されている。(4), (B), (O) The electric field distribution in each case is also shown wedge-shaped in FIG. 3 (4), (B), and (C).
矢印が電気力線の方向を示している。Arrows indicate the direction of the electric field lines.
各励振法A、B、Cでの反射特性の実測例を第4図に示
す。FIG. 4 shows examples of actual measurements of reflection characteristics using each of the excitation methods A, B, and C.
この測定結果から次のことが言える。1、励振法Aのと
きのみ表面波励振が行なわれる。The following can be said from this measurement result. 1. Surface wave excitation is performed only in excitation method A.
2、すべての励振法でスプリアスの共振周波数は同一で
ある。2. The resonant frequency of spurious is the same for all excitation methods.
3、奇数次高調波の励振が強い。3. Strong excitation of odd harmonics.
4、スプリアス励振強度はA<B<Cの関係にある。4. Spurious excitation intensity has the relationship A<B<C.
以上のことから、スプリアスの励振は基板のX軸方向の
電界によると考えられる。From the above, it is considered that spurious excitation is caused by the electric field in the X-axis direction of the substrate.
このことを更に確かめるために圧電体チップを金属ベー
ス33から離してみたところ、予想通りスプリアス応答
が極端に減少した。In order to further confirm this, when the piezoelectric chip was separated from the metal base 33, the spurious response was extremely reduced as expected.
次に圧電体チップの厚さdおよびインターディジタルト
ランスジューサの電極の形状を変えて共振周波数との対
応関係を調べた実験の結果を表1〜表5および第5図に
示す。Next, Tables 1 to 5 and FIG. 5 show the results of an experiment in which the relationship between the thickness d of the piezoelectric chip and the shape of the electrodes of the interdigital transducer and the resonance frequency was examined.
ここで、電極の形状は電極製造時に用いられるマスクの
名称として示しである。Here, the shape of the electrode is shown as the name of the mask used when manufacturing the electrode.
表1はマスクとしてIMT−25B−3288を用いた
厚さd ”” 0.34011mノサンプルIの場合の
測定結果で、frn(MHz)はn次の共振周波数、n
は次数を示しである。Table 1 shows the measurement results for sample I with a thickness of 0.34011 m using IMT-25B-3288 as a mask, where frn (MHz) is the n-th resonance frequency, n
indicates the order.
表2は同じくマスクとしてI MT−25B−3288
を用いた厚さd=0.3401のサンプルHの場合の測
定結果を示す。Table 2 also shows I MT-25B-3288 as a mask.
The measurement results are shown for sample H with thickness d=0.3401.
表3はマスクとしてIMT−25B−3288を用いた
厚さd=0.323驕のサンプル■の場合の測定結果を
示す。Table 3 shows the measurement results for sample (2) with a thickness of d=0.323 using IMT-25B-3288 as a mask.
表4はマスクとしてI MT−301A−3291を用
いた厚さd=0.4587’mのサンプル■の場合の測
定結果を示す。Table 4 shows the measurement results for sample (1) with thickness d=0.4587'm using IMT-301A-3291 as a mask.
表5はマスクとしてI MT−301A−3291を用
いたd二0.290MのサンプルVについての測定結果
を示す。Table 5 shows the measurement results for sample V of d2 0.290M using I MT-301A-3291 as a mask.
これらの表1〜表5から分るようにfrnXd/nの値
は約2.13と略一定の値を示している。As can be seen from Tables 1 to 5, the value of frnXd/n is about 2.13, which is a substantially constant value.
このことはfrnXdとnとの関係が第5図に示したよ
うに略直線となり、その傾きfrnXd/nが2゜13
になったことからも確かめられる。This means that the relationship between frnXd and n is approximately a straight line as shown in Figure 5, and the slope frnXd/n is 2°13
This can be confirmed from the fact that
このようにfrnXd/nの値が略一定値を示すことは
、これらのスプリアス共振振動がいわゆる厚み振動であ
ると考えられる(、 n−1、n=3 、 n=5 、
n=7の場合の厚み振動の変位分布を図示すると夫々
第6図A、B、C,Dの如くなる。The fact that the value of frnXd/n is approximately constant in this way suggests that these spurious resonance vibrations are so-called thickness vibrations (, n-1, n=3, n=5,
The displacement distribution of thickness vibration in the case of n=7 is shown in FIGS. 6A, B, C, and D, respectively.
XカットのLITa03基板の厚み振動については、厚
みすべり振動の結合係数が44優と太きい。Regarding the thickness vibration of the X-cut LITa03 board, the coupling coefficient of thickness shear vibration is as large as 44.
そしてその共振周波数定数は1.906 Ml−(z−
111にであるとされている。And its resonance frequency constant is 1.906 Ml-(z-
111.
前記の反射最小点を共振周波数とみなした場合、この発
明における周波数は表1〜表5あるいは第5図から2.
13 MHz−71mとなった。When the above-mentioned reflection minimum point is regarded as the resonant frequency, the frequencies in this invention are as shown in Tables 1 to 5 or 2.2 from FIG.
It became 13 MHz-71m.
このように一般に用いられている周波数定数1.906
MHz −7Nkと本発明の周波数定数2.13 M
Hz −驕との違いの原因は明らかではないが、本発明
の対象としているスプリアス共振モードは厚みすべり振
動であると見なすのが妥当であろう。In this way, the commonly used frequency constant is 1.906
MHz -7Nk and the frequency constant of the present invention is 2.13 M
Although the cause of the difference from Hz-V is not clear, it is reasonable to consider that the spurious resonance mode targeted by the present invention is thickness shear vibration.
このようにして得られた周波数定数(2,13MHz
−Wh )を用いて圧電基板の厚みdと共振周波数fr
nとの関係を求めた結果を第7図に示した。The frequency constant obtained in this way (2,13MHz
-Wh ), the thickness d of the piezoelectric substrate and the resonant frequency fr
The results of determining the relationship with n are shown in FIG.
以上説明したようにX −c u tのLiTaQ3圧
電体基板のスプリアス振動はX軸方向の厚みすべり振動
であることが分った。As explained above, it was found that the spurious vibration of the LiTaQ3 piezoelectric substrate of the X-cut is thickness shear vibration in the X-axis direction.
従ってこの振動が表面波フィルタの特性に影響しないよ
うに、共振がフィルタの通過帯域内に入らないように基
板の厚みdを選べはよいことになる。Therefore, it is advisable to select the thickness d of the substrate so that this vibration does not affect the characteristics of the surface wave filter and the resonance does not fall within the passband of the filter.
即ち、第8図は日本のカラーテレビジョン受像機用のP
IFフィルタに本発明を適用した場合のPIFフィルタ
の通過帯域と厚さdとの関係を示す。That is, Figure 8 shows the P for Japanese color television receivers.
The relationship between the passband and thickness d of a PIF filter when the present invention is applied to an IF filter is shown.
PIFフィルタの通過帯域は例えば54 MHz(最低
通過周波数ft)から60MHz(最高通過周波数fu
)までの6MHzであるから、第8図中にfz、fuで
示す2本の直線と共振周波数特性曲線(n=1 、3
、5 、・・・)との交点範囲Wを除く点線側線領域P
内に厚みdを選定することによって、スプリアスを未然
に除去できる。The pass band of the PIF filter is, for example, from 54 MHz (lowest pass frequency ft) to 60 MHz (highest pass frequency fu).
), the two straight lines indicated by fz and fu in Fig. 8 and the resonant frequency characteristic curve (n = 1, 3
, 5,...) Dotted line side line area P excluding the intersection range W
By selecting the thickness d within the range, spurious noise can be eliminated.
換言すれば、X −cu tL i T a03圧電体
基板の厚さdを但し、n−1,3,5,7,・・・の奇
数である。In other words, the thickness d of the X-cutLiTa03 piezoelectric substrate is an odd number of n-1, 3, 5, 7, . . . .
の範囲に選べばよいことになる。It is sufficient to choose within the range of .
上記のこの発明の原理に基いて作られたカラーテレビジ
ョン受隊機用PIF表面波フィルタ圧電体基板としては
厚さd=0.330躯のX−cutL r T aQ3
圧電体板を用い、その一表面上にPIFフィルタ特性及
びフィルタの周波数帯域を形成するように構成された入
カドランスジューサそしてフィルタの周波数帯域より広
域の平坦な周波数特性に構成された出カドランスジュー
サが所定距離において設けられている。A PIF surface wave filter piezoelectric substrate for a color television receiver made based on the principle of the present invention described above is an X-cut L r TaQ3 with a thickness d=0.330.
An input transducer configured to form a PIF filter characteristic and a filter frequency band on one surface using a piezoelectric plate, and an output transducer configured to have a flat frequency characteristic wider than the filter frequency band. A juicer is provided at a predetermined distance.
ここで入・出カドランスジューサ間を結ぶ圧電体板表面
を伝播する表面波伝播方向は、Y軸に対して例えば11
2°の方向に設定されている。Here, the surface wave propagation direction propagating on the surface of the piezoelectric plate connecting the input and output transducers is, for example, 11
It is set in the direction of 2°.
このように構成すると第9図に示すような周波数特性が
得られる。With this configuration, frequency characteristics as shown in FIG. 9 can be obtained.
第9図はPIFフィルタの減衰量−周波数特性を示し、
54MH2〜60MH2の6−MHzの通過帯域内で良
好にスプリアスが抑圧されていることが分る。Figure 9 shows the attenuation-frequency characteristics of the PIF filter,
It can be seen that spurious is well suppressed within the 6-MHz passband from 54 MH2 to 60 MH2.
尚、X−カッtT、1Tao3板の表面波伝播方向をY
軸から67度乃至142度の範囲内に選べば良好な温度
特性が得られることは例えば特願昭51−29889号
にすでに記されている。In addition, the surface wave propagation direction of X-cut T, 1Tao3 plate is Y
For example, it is already stated in Japanese Patent Application No. 51-29889 that good temperature characteristics can be obtained if the temperature is selected within the range of 67 degrees to 142 degrees from the axis.
第1図は従来のL iT a03基板を用いたPIFフ
ィルタの周波数特性曲線図、第2図は第1図のネットワ
ークアナライザの反則特性曲線図、第3図は本発明装置
の原理を説明するための電界分布図、第4図は第3図の
反射特性曲線図、第5図は第3図の共振周波数及び厚み
の積に対する次数nとの関係を示す特性図、第6図は第
3図の厚み振動の変位分布図、第1図は本発明装置のL
i TaO2板の厚さに対する共振周波数の関係を示
す特性図、第8図は第7図のPIFフィルタに適用した
実施例の特性図、第9図は第8図の周波数特性曲線図で
ある。
P:スプリアス発生領域、W:スプリアス非発生領域。Figure 1 is a frequency characteristic curve diagram of a PIF filter using a conventional LiT a03 substrate, Figure 2 is a reverse characteristic curve diagram of the network analyzer shown in Figure 1, and Figure 3 is for explaining the principle of the device of the present invention. 4 is a reflection characteristic curve diagram of Figure 3, Figure 5 is a characteristic diagram showing the relationship between the order n and the product of the resonance frequency and thickness of Figure 3, and Figure 6 is a diagram of the reflection characteristic curve of Figure 3. Figure 1 shows the displacement distribution diagram of the thickness vibration of the device of the present invention.
i A characteristic diagram showing the relationship between the resonance frequency and the thickness of the TaO2 plate, FIG. 8 is a characteristic diagram of an embodiment applied to the PIF filter of FIG. 7, and FIG. 9 is a frequency characteristic curve diagram of FIG. 8. P: Spurious generation area, W: Spurious non-occurrence area.
Claims (1)
板上に設けられた入力および出力電極とを具備してなる
ことを特徴とする弾性表面波装置。 n :1,3.5・・−・・・・・・奇数fL:フィ
ルタ通過帯域の最低周波数(MHz )fu:フィルタ
通過帯域の最高周波数(■h)d : LiTaO3
板の厚さく 1m )2 前記LiTa0a板の弾性表
面波の伝播方向はY軸から67.8度乃至142度の範
囲である特許請求の範囲第1項記載の弾性表面波装置。[Claims] 1. An X-cut LiTaO3 plate whose thickness d satisfies the following formula, and the LiTa0a
A surface acoustic wave device comprising input and output electrodes provided on a plate. n: 1, 3.5...Odd number fL: Lowest frequency of filter passband (MHz) fu: Highest frequency of filter passband (■h) d: LiTaO3
The surface acoustic wave device according to claim 1, wherein the surface acoustic wave propagation direction of the LiTa0a plate is in the range of 67.8 degrees to 142 degrees from the Y axis.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13372076A JPS5828770B2 (en) | 1976-11-09 | 1976-11-09 | surface acoustic wave device |
CA290,391A CA1089544A (en) | 1976-11-09 | 1977-11-08 | Elastic surface wave device |
GB46614/77A GB1594339A (en) | 1976-11-09 | 1977-11-09 | Elastic surface wave device |
FR7733779A FR2370387A1 (en) | 1976-11-09 | 1977-11-09 | ELASTIC SURFACE WAVE DEVICE |
DE2760154A DE2760154C2 (en) | 1976-11-09 | 1977-11-09 | Surface acoustic wave device |
DE2750144A DE2750144C2 (en) | 1976-11-09 | 1977-11-09 | Device based on surface acoustic waves |
US05/849,945 US4163201A (en) | 1976-11-09 | 1977-11-09 | Elastic surface wave device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13372076A JPS5828770B2 (en) | 1976-11-09 | 1976-11-09 | surface acoustic wave device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5362964A JPS5362964A (en) | 1978-06-05 |
JPS5828770B2 true JPS5828770B2 (en) | 1983-06-17 |
Family
ID=15111318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13372076A Expired JPS5828770B2 (en) | 1976-11-09 | 1976-11-09 | surface acoustic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5828770B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62275Y2 (en) * | 1979-02-19 | 1987-01-07 | ||
JPS62276Y2 (en) * | 1979-03-19 | 1987-01-07 | ||
JPS57119507A (en) * | 1981-01-19 | 1982-07-26 | Toshiba Corp | Surface acoustic wave device |
US12132464B2 (en) | 2018-06-15 | 2024-10-29 | Murata Manufacturing Co., Ltd. | Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers |
US10868510B2 (en) * | 2018-06-15 | 2020-12-15 | Resonant Inc. | Transversely-excited film bulk acoustic resonator with half-lambda dielectric layer |
-
1976
- 1976-11-09 JP JP13372076A patent/JPS5828770B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5362964A (en) | 1978-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Solal et al. | Transverse modes suppression and loss reduction for buried electrodes SAW devices | |
US5847486A (en) | Love-wave device including a thin film of TA or W | |
US6346864B1 (en) | Saw resonator filter and duplexer utilizing SH waves, substrate edge reflection, and sub-interdigital transducer portions | |
JPS5935204B2 (en) | ultrasound device | |
WO2023246515A1 (en) | Structure of longitudinal leaky surface acoustic wave resonator, and filter | |
GB1594339A (en) | Elastic surface wave device | |
WO2019082901A1 (en) | Composite substrate and acoustic wave device using same | |
EP0982856B1 (en) | Surface acoustic wave resonator and transversal type surface acoustic wave filter | |
JPS5828770B2 (en) | surface acoustic wave device | |
US3987377A (en) | Elastic surface wave propagation device | |
WO2000067374A1 (en) | Transverse double mode saw filter | |
JP7519902B2 (en) | Transducer structure for source suppression in SAW filter devices - Patents.com | |
US5877661A (en) | Surface acoustic wave filter with optimally sized gaps between transducers | |
US6335584B1 (en) | Edge reflection type surface acoustic wave device | |
JPS58156220A (en) | Thin film piezoelectric filter | |
JPH1070436A (en) | Surface acoustic wave resonator filter | |
US6847154B2 (en) | Surface acoustic wave device and communication device | |
JP3393945B2 (en) | Vertically coupled dual mode SAW filter | |
JPH08204502A (en) | Longitudinal composite quadruple mode saw filter | |
JP2640936B2 (en) | Piezoelectric resonator for overtone oscillation using higher-order mode vibration | |
JPS60140918A (en) | Surface acoustic wave resonator | |
JPS5839105A (en) | Compensating method for frequency-temperature characteristic of surface acoustic wave resonator | |
JPH0993072A (en) | Surface acoustic wave filter | |
JPS5937723A (en) | Surface acoustic wave resonator type filter device | |
JP2967432B2 (en) | Surface acoustic wave filter |