JPS582307A - Production of ethylene polymer through solution polymerization process - Google Patents
Production of ethylene polymer through solution polymerization processInfo
- Publication number
- JPS582307A JPS582307A JP10054781A JP10054781A JPS582307A JP S582307 A JPS582307 A JP S582307A JP 10054781 A JP10054781 A JP 10054781A JP 10054781 A JP10054781 A JP 10054781A JP S582307 A JPS582307 A JP S582307A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- phase
- solvent
- polymerization
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、エチレンを溶液重合し、得られる重合体溶液
を相分離により濃縮する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for solution polymerizing ethylene and concentrating the resulting polymer solution by phase separation.
エチレンを配位重合触媒を用い溶液重合する方法は知ら
れている。通常、炭化水素溶媒の存在下で、生成重合体
が溶解する温度以上、たとえば120〜250℃で重□
合される。得られた重合体を加熱した後、減圧して溶媒
と未反応単量体をフラッシュ蒸発させ、重合体溶液を濃
縮することもまた公知である。また、脂肪族炭化水素を
用いて高温で重合すると、重合体溶液が2相を形成し、
濃厚相と希薄相に分離し、得られる重合体が不均質にな
りやすいことは、特開昭55−157606によシ公知
でおる。相分離現象は公知であるものの、各相の濃度に
関する知見は報告されていない。A method of solution polymerizing ethylene using a coordination polymerization catalyst is known. Usually, polymerization is carried out in the presence of a hydrocarbon solvent at a temperature higher than the temperature at which the resulting polymer dissolves, for example 120 to 250°C.
will be combined. It is also known to heat the resulting polymer and then apply vacuum to flash evaporate the solvent and unreacted monomer and concentrate the polymer solution. In addition, when polymerizing with aliphatic hydrocarbons at high temperatures, the polymer solution forms two phases,
It is known from JP-A-55-157606 that the polymer tends to separate into a concentrated phase and a dilute phase, resulting in a non-uniform polymer. Although the phase separation phenomenon is known, knowledge regarding the concentration of each phase has not been reported.
本発明者らは、との相分離現象を重合体の濃縮、分離に
利用し、しかも均質な重合体が得られる方法について鋭
意検討を続けた結果、本発明に到達した。The present inventors have continued to study intensively on a method that utilizes the phase separation phenomenon for concentrating and separating polymers, and that can also obtain homogeneous polymers, and as a result, they have arrived at the present invention.
すなわち、本発明は、配位重合触媒を用い、エチレン単
独またはエチレンおよびエチレンと共重合しうる炭化水
素単量体を、脂肪□族炭化水素を少なくとも50重量%
含む炭化水素溶媒中、生成重合体が該溶媒に均一に溶解
する重合条件で重合し、得られる重合体溶液を加熱し、
重合体濃度の高い濃厚相と重合体濃度の低い希薄相の2
相に相分離し、さらに濃厚相より溶媒および未反応単量
体を除去して重合体を得ることを特徴とする結晶性エチ
レン重合体の製造法である。That is, the present invention uses a coordination polymerization catalyst to contain at least 50% by weight of ethylene alone or ethylene and a hydrocarbon monomer copolymerizable with ethylene, including at least 50% by weight of aliphatic group hydrocarbons.
Polymerizing in a hydrocarbon solvent containing polymerization conditions such that the produced polymer is uniformly dissolved in the solvent, heating the resulting polymer solution,
Two phases: a concentrated phase with a high polymer concentration and a dilute phase with a low polymer concentration.
This is a method for producing a crystalline ethylene polymer, which is characterized by phase separation into phases and further removing the solvent and unreacted monomers from the concentrated phase to obtain a polymer.
本発明に使用される単量体は、エチレンおよびエチレン
と共重合可能な炭化水素、たとえばα−オレフィンおよ
びジエンであり、プロピレン、ブテン−1、ペンテン−
1、ヘキセン−1,4−メチルペンテン−1、オクテン
−1、デセン−1,1,4−ヘキ?ジエン、1,7−オ
クタジエン、エチリデンノルボルネン、ビシクロ−(2
,2,1) −2,5−へブタン、1,4−ブタジェン
等が含まれる。エチレンと2種以上の共重合単量体を重
合させてもよい。The monomers used in the invention are ethylene and hydrocarbons copolymerizable with ethylene, such as alpha-olefins and dienes, such as propylene, butene-1, pentene-1,
1, hexene-1,4-methylpentene-1, octene-1, decene-1,1,4-hexene? diene, 1,7-octadiene, ethylidenenorbornene, bicyclo-(2
, 2, 1) -2,5-hebutane, 1,4-butadiene, etc. Ethylene and two or more comonomers may be polymerized.
生成重合体のエチレン含有量は80重量%で、結晶性の
ものでその平均分子量はi、o o o〜i o o
o、o o oである。The resulting polymer has an ethylene content of 80% by weight, is crystalline, and has an average molecular weight of i, o o o to i o o
o, o o o.
本発明に使用される配位重合触媒としては、公知の全て
の触媒が使用される。すなわち、第■〜■族の遷移金属
化合物と第■〜量族の有機金属化合物の組合せからなる
、いわゆるチーグラー触媒や、シリカ、アルミナまたは
シリカ・アルミナを担体として酸化クロムをはじめとし
て、好ましくは近年開発されつつある触媒除去不要の高
活性触媒、たとえば特開昭53−40696に記載の触
媒や、特開昭56−28206に記載の120〜350
°Cの高温でも高活性を示す有機マグネシウム、無機ハ
ロゲン化合物、チタン化合物およびバナジウム化合物か
ら合成される触媒も好適に使用できる。As the coordination polymerization catalyst used in the present invention, all known catalysts can be used. In other words, the so-called Ziegler catalyst consisting of a combination of a transition metal compound of groups Ⅰ to ■ and an organometallic compound of groups Highly active catalysts that do not require catalyst removal are being developed, such as the catalyst described in JP-A No. 53-40696, and catalysts 120-350 described in JP-A No. 56-28206.
Catalysts synthesized from organic magnesium, inorganic halogen compounds, titanium compounds, and vanadium compounds that exhibit high activity even at high temperatures of °C can also be suitably used.
本発明に使用される溶媒として杜、脂肪族炭化水素を少
なくとも50重量%含む溶媒であり、好ましくは残シが
脂環式炭化水素である0溶媒のうち、脂肪族炭化水素溶
媒は脂環式炭化水素に比べ、次のような種々の長所を有
し、工業的価値が高いことが判明した。まず第一に、脂
肪族炭化水素を使用すると、重合体の溶液粘度が脂環式
炭化水素に比べはるかに低く、一般に前者は後者の40
〜70%である。溶液重合においては、 5−
粘度が低いことは極めて大きな長所である。粘度が高い
と、重合器所要動力が大きくなり、また単量体、触媒、
溶媒の混合が不十分となり、また重合器ジャケットから
の除熱が困難となる等積々の困難を伴う。溶液粘度をあ
る一定値以下に抑えるためには、脂環式炭化水素溶媒を
使用した場合は、重合体濃度を脂肪族炭化水素溶媒より
も低くしなければならない。これは多量の溶媒を使用す
ることになり、溶媒のロスや溶媒精製コストの点で不利
である。The solvent used in the present invention is a solvent containing at least 50% by weight of an aliphatic hydrocarbon, and preferably the remainder is an alicyclic hydrocarbon. It has been found that it has various advantages over hydrocarbons, such as the following, and is of high industrial value. First of all, the use of aliphatic hydrocarbons results in a much lower solution viscosity of the polymer than that of cycloaliphatic hydrocarbons;
~70%. In solution polymerization, 5- Low viscosity is a very big advantage. If the viscosity is high, the power required for the polymerization vessel will increase, and the monomer, catalyst,
This is accompanied by accumulating difficulties such as insufficient mixing of the solvent and difficulty in removing heat from the polymerization vessel jacket. In order to keep the solution viscosity below a certain value, when an alicyclic hydrocarbon solvent is used, the polymer concentration must be lower than that of an aliphatic hydrocarbon solvent. This requires the use of a large amount of solvent, which is disadvantageous in terms of solvent loss and solvent purification costs.
脂肪族炭化水素溶媒の特長の第二は、脂環式炭化水素に
比べ比熱が大きく、蒸発潜熱が小さく、また沸点が低い
ことである。比熱が大きいことは、重合熱による温度上
昇が小さいことを意味している。一般に配位重合触媒は
高温になるほど失活しやすいことから、重合温度が高い
ほど高活性化が難しくなる。したがって、重合温度の上
がりが少なく、比較的低い温度で重合できることは、触
媒量が少なくて済み、触媒除去工程不要の高活性触媒化
が容易となることを意味する。蒸発潜熱が小 6−
さく、また沸点が低いことは、重合体溶液から溶媒を分
離、回収したり、また回収溶媒を精製する上で、スチー
ム等の消費量が少なくて済み、また重合体中の残存溶媒
を除去しやすいという長所となる。The second feature of aliphatic hydrocarbon solvents is that they have a higher specific heat, lower latent heat of vaporization, and lower boiling point than alicyclic hydrocarbons. A large specific heat means that the temperature rise due to polymerization heat is small. In general, coordination polymerization catalysts are more likely to be deactivated as the temperature increases, so the higher the polymerization temperature, the more difficult it is to achieve high activation. Therefore, the fact that polymerization can be carried out at a relatively low temperature with little increase in polymerization temperature means that a small amount of catalyst is required and it is easy to obtain a highly active catalyst without the need for a catalyst removal step. The low latent heat of vaporization and low boiling point mean that the amount of steam, etc. required for separating and recovering the solvent from the polymer solution and refining the recovered solvent is small, and This has the advantage that residual solvent can be easily removed.
脂肪族炭化水素溶媒の特長の第三は、脂肪族炭化水素お
よびその混合物が石油の一留分として、より安価に得ら
れることである。The third feature of aliphatic hydrocarbon solvents is that aliphatic hydrocarbons and mixtures thereof can be obtained at lower cost as a fraction of petroleum.
使用する溶媒中の脂肪族炭化水素の含有量が50%を下
相ると、上記の特長が発揮されないばかりでなく、相分
離温度が高く、臨界温度に近接し分離が難しい。If the content of aliphatic hydrocarbon in the solvent used is less than 50% in the lower phase, not only will the above-mentioned features not be exhibited, but the phase separation temperature will be high and close to the critical temperature, making separation difficult.
本発明に使用できる炭化水素溶媒としては、たとえば、
ブタン、イソブタン、ペンタン、ヘキサン、ヘプタン、
オクタン、イソオクタン、ドデカン、ウンデカン等脂肪
族炭化水素、シクロペンタン、メチルシクロペンタン、
シクロヘキサン等の脂環式炭化水素が単独または2種以
上の混合物として使用され、また石油留分の軽質ナフサ
や混合ヘキサンが使用される。このうち、石油の一留分
として工業的に大址に使用されている混合ヘキサンが好
適に使用される。混合ヘキサンの組成は、精留の条件に
よシ変動するが、通常、n−ヘキサン25〜70%、メ
チルシクロペンタン5〜30%、2−メチルペンタンお
よび3−メチルペンタン15〜60%、その他のC1〜
C7の炭化水素が1〜5%である。Examples of hydrocarbon solvents that can be used in the present invention include:
Butane, isobutane, pentane, hexane, heptane,
Aliphatic hydrocarbons such as octane, isooctane, dodecane, undecane, cyclopentane, methylcyclopentane,
Alicyclic hydrocarbons such as cyclohexane are used alone or as a mixture of two or more, and light naphtha or mixed hexane, which is a petroleum fraction, is used. Among these, mixed hexane, which is industrially used in large quantities as a fraction of petroleum, is preferably used. The composition of mixed hexane varies depending on the conditions of rectification, but usually contains 25-70% n-hexane, 5-30% methylcyclopentane, 15-60% 2-methylpentane and 3-methylpentane, and others. C1~
C7 hydrocarbons are 1-5%.
重合温度は重合体溶液が均一に溶媒に溶解する温度でな
ければならなく、温度は100 ”C以上、250“C
以下でなければならない。100°Cより低いと、しば
しば重合体が固化沈降しやすい。また特開昭55−15
7606等より公知のように、脂肪族炭化水素溶媒を使
用した場合、いったん均一に溶解した重合体溶液をさら
に加熱すると、溶液が2相の溶液に分離し、上相は希薄
相、下相は濃厚相となることが知られている。この2相
に分離する温度(以後、沈殿温度と呼ぶ)は、重合体の
単量体組成、分子蓋、分子量分布および溶媒や未反応単
量体のm@、混合溶媒の場合は組成、重合体濃度、系の
圧力によって変わり、−概に温度を決めることはできな
いが、250”Cより高いと相分離が激しく使用できな
い。The polymerization temperature must be such that the polymer solution is uniformly dissolved in the solvent, and the temperature must be 100"C or higher and 250"C or higher.
Must be less than or equal to If the temperature is lower than 100°C, the polymer often tends to solidify and settle. Also, JP-A-55-15
7606, when an aliphatic hydrocarbon solvent is used, once a homogeneously dissolved polymer solution is further heated, the solution separates into a two-phase solution, the upper phase being a dilute phase and the lower phase being a dilute solution. It is known to be a dense phase. The temperature at which these two phases separate (hereinafter referred to as the precipitation temperature) is determined by the monomer composition of the polymer, the molecular cap, the molecular weight distribution, the m@ of the solvent and unreacted monomers, and the composition and weight of the polymer in the case of a mixed solvent. It varies depending on the combined concentration and the pressure of the system, and although the temperature cannot be determined generally, if it is higher than 250"C, phase separation will be severe and it cannot be used.
特定の重合体の特定溶媒中、特定圧力下における上記沈
殿温度は、ガラスオートクレーブやガラス・サイト・グ
ラス付の鉄製オートクレーブによる光透過率試験あるい
は目視試験により、また鉄製オートクレーブに放射線を
照射し密度の不連続線を検知することにより測定できる
。沈殿温度を知ることにより、本発明の均一重合体を得
るだめの重合温度範囲が決定される。The above precipitation temperature of a specific polymer in a specific solvent under a specific pressure can be determined by a light transmittance test or visual test using a glass autoclave or an iron autoclave equipped with a glass sight glass, or by irradiating the iron autoclave with radiation to determine the density. It can be measured by detecting discontinuous lines. Knowing the precipitation temperature determines the polymerization temperature range for obtaining the homogeneous polymer of the present invention.
脂環式炭化水素の沈殿点は、脂肪族炭化水素より高いの
で、溶媒の沈殿点を上けるためには、脂環式炭化水素の
比率を上げるとよい。また一般に炭素数が高いほど、沈
殿温度は高いので、炭素数の多い炭化水素を使用するこ
とも一つの方法である。また一般に重合圧力が高い方が
沈殿温度が高いので、沈殿温度を上けるため、系の平衡
圧力よりも高い圧力をかけることも有効である。Since the precipitation point of alicyclic hydrocarbons is higher than that of aliphatic hydrocarbons, in order to raise the precipitation point of the solvent, it is preferable to increase the ratio of alicyclic hydrocarbons. Furthermore, since generally the higher the number of carbon atoms, the higher the precipitation temperature, one method is to use a hydrocarbon with a large number of carbon atoms. Furthermore, since generally the precipitation temperature is higher when the polymerization pressure is higher, it is also effective to apply a pressure higher than the equilibrium pressure of the system in order to increase the precipitation temperature.
溶液中の重合体の濃度は、重合体の分子量によってきま
るが、通常5〜30重量%である。The concentration of the polymer in the solution depends on the molecular weight of the polymer, but is usually 5 to 30% by weight.
9−
かくして得られた重合体溶液は、加熱されて2相に分離
され、下部の濃厚相と下部の希薄相となる。下相はさら
に溶媒や未反応単量体を除去する工程を経て、重合体が
分離される。上相からは溶媒と未反応単量体が回収され
る。9- The polymer solution thus obtained is heated and separated into two phases, a lower concentrated phase and a lower diluted phase. The lower phase is further subjected to a step of removing the solvent and unreacted monomers, and the polymer is separated. The solvent and unreacted monomer are recovered from the upper phase.
重合体溶液を加熱する方法としては、シェルアンドチュ
ーブ型熱交換器や2重管型熱交換器等各種熱交換器を使
用することが可能であるが、好ましくは重合に使用した
溶媒をあらかじめ重合体溶液温度以上に加熱し、これを
所定量、重合溶液と混合し、溶液の温度を沈降温度以上
にする方法が好ましい。というのは、熱交換器内で相分
離を生じると、伝熱面に濃厚液が沈着し、伝熱効率が低
下し、また熱交換器内濃厚液でつまってしまう等のトラ
ブルが生じるためである。Various heat exchangers such as shell and tube heat exchangers and double tube heat exchangers can be used to heat the polymer solution, but it is preferable to heat the solvent used for polymerization in advance. A preferred method is to heat the combined solution to a temperature or higher, mix it with a predetermined amount of the polymerization solution, and bring the temperature of the solution to a precipitation temperature or higher. This is because if phase separation occurs within the heat exchanger, concentrated liquid will deposit on the heat transfer surface, reducing heat transfer efficiency and causing problems such as the heat exchanger becoming clogged with concentrated liquid. .
相分離により重合体を濃縮する直前に、純溶媒で重合体
溶液を希釈することは一見不利に見えるが、濃厚相の濃
度が供給重合体溶液の濃度を下げてもあまり変わらない
という相分離現象の特徴から、それほどの不利とはなら
ず、粘度の高い重合 10−
体溶液の加熱という効率の悪い工程を省くことができる
メリットの方が大きいと思われる。Diluting the polymer solution with a pure solvent immediately before concentrating the polymer by phase separation may seem disadvantageous at first glance, but the phase separation phenomenon shows that the concentration of the concentrated phase does not change much even if the concentration of the supplied polymer solution is reduced. Considering these characteristics, it is thought that this is not such a disadvantage, and that the advantage of being able to omit the inefficient step of heating a highly viscous polymer solution is considered to be greater.
溶媒で希釈後の重合体溶液の濃度としては2〜20重量
%、好ましくは5〜15重量%であり、その相分離温度
としては150〜300 ”Cである。The concentration of the polymer solution after dilution with a solvent is 2 to 20% by weight, preferably 5 to 15% by weight, and its phase separation temperature is 150 to 300''C.
希釈用溶媒の温度と供給量は、相分離温度、重合溶液の
温度、排出量より適宜設定される。The temperature and supply amount of the diluting solvent are appropriately set based on the phase separation temperature, the temperature of the polymerization solution, and the discharge amount.
沈殿温度以上に加熱された重合体溶液は、比重の差によ
り時間とともに上下に分離する。分離に要する時間は通
常5分〜2時間で、系内の熱対流をできるだけ少なくし
、また、できるだけ沈殿温度より高い温度まで加熱する
ことにより、相分離に要する時間を短縮することが可能
である。A polymer solution heated above the precipitation temperature separates into upper and lower parts over time due to the difference in specific gravity. The time required for phase separation is usually 5 minutes to 2 hours, and it is possible to shorten the time required for phase separation by minimizing heat convection within the system and heating to a temperature as high as possible above the precipitation temperature. .
相分離させる好ましい方法としては、長さ/直径(′L
4A))が3〜10、好ましくは4〜8のタテ型の相分
離槽で、2相の境界線を放射線を用いたレベル計等で検
知し、上相と下相の排出口バルブの開度で、該境界線を
一定位置に保つことが可能な相分離槽を用い、該境界線
位置に重合体溶液を供給する方法である。A preferred method for phase separation is the length/diameter ('L
In a vertical phase separation tank with 4A)) of 3 to 10, preferably 4 to 8, the boundary line between the two phases is detected with a level meter using radiation, and the outlet valves of the upper and lower phases are opened. This is a method of supplying a polymer solution to the boundary line position using a phase separation tank that can maintain the boundary line at a constant position.
相分離槽内の重合体溶液の滞留時間は好ましくは5分〜
1時間、さらに好ましくは10〜40分である。境界線
の位置は槽の高さのほぼ中央が好ましい。The residence time of the polymer solution in the phase separation tank is preferably 5 minutes to
It is 1 hour, more preferably 10 to 40 minutes. Preferably, the boundary line is located approximately at the center of the tank height.
相分離条件により様々であるが、濃厚相の重合体濃度と
しては30重量%以上、希薄相は10%以下となる。濃
厚相が30重量%以下であったり、希薄相が10%を超
えると分離の効率が悪い。好ましくは濃厚相濃度40〜
80%、希薄相濃度5%以下となるような相分離条件を
選ぶとよい。Although it varies depending on the phase separation conditions, the polymer concentration in the concentrated phase is 30% by weight or more, and the concentration in the dilute phase is 10% or less. If the concentration of the concentrated phase is less than 30% by weight or the amount of the dilute phase exceeds 10%, the separation efficiency will be poor. Preferably concentrated phase concentration 40~
It is preferable to select phase separation conditions such that the dilute phase concentration is 80% or less and the dilute phase concentration is 5% or less.
重合体が濃縮された濃厚相は、連続的に抜き出された後
、さらに溶媒、未反応単量体を除去する工程、たとえば
フラッシング工程、ベント型押出器による工程等を経て
重合体が分離される。After the concentrated phase containing the polymer is continuously extracted, the polymer is separated through a process to remove the solvent and unreacted monomers, such as a flushing process and a process using a vented extruder. Ru.
希薄相は、たとえばフラッシング工程を経て、一部は気
体として、残りは液体として回収される。A portion of the dilute phase is recovered as a gas and the remainder as a liquid, for example through a flashing process.
液体は加熱して再び重合溶液と混合し、循環使用しても
よい。また相亦離工程の前後で、p過によシ触媒を除去
したり、フラッシングにより未反応単量体を除いてもよ
い。The liquid may be heated, mixed with the polymerization solution again, and recycled. Furthermore, before and after the separation step, the p-filtration catalyst may be removed or unreacted monomers may be removed by flushing.
本発明により、工業的に種々のメリットを有する脂肪族
炭化水素を50%以上含む溶媒を用い、均一なポリエチ
レン系重合体を製造し、これ全効率的に濃縮することが
可能となり、その工業的意義は極めて大きいと言わなけ
れば々らない。The present invention makes it possible to produce a homogeneous polyethylene polymer using a solvent containing 50% or more of aliphatic hydrocarbons, which has various industrial advantages, and to concentrate it efficiently. I have to say that this is extremely significant.
本発明の実施例を以下に示すが、本発明は、この実施例
によって何ら制限をうけるものではない。Examples of the present invention are shown below, but the present invention is not limited in any way by these examples.
実施例1
601の攪拌器付オートクレーブを用い、170’C,
50気圧の液封条件下で、エチレンを連続重合した。詳
細々条件は次のとおりである。Example 1 Using a 601 autoclave with a stirrer, 170'C,
Ethylene was continuously polymerized under liquid ring conditions of 50 atm. The detailed conditions are as follows.
(1)溶媒i混合ヘキサン(組成n−ヘキサン58重量
%、メチルシクロペンタン20重量%、・3−メチルペ
ンタン14itjL%、2−メチルペンタン6重量%、
その他C7〜C6炭化水素2%)(2)供給量
エチレン 7.0 Kg/hr
溶 媒 30.0 KVhr触媒注1)
■成分 0.2’mmot/hr@l “13 mm
oLlhr
13−
水 素 0.002 mmoL/hr平
均滞留時間 約1時間
(3)重合器出口組成
エチレン1. OKV′hr
溶 媒 3 ’ 0. OKmhr重合
体 6.0 Kg/hr
(計) ’ 3’7.0 Kg/hr(
4)重合体の性質
メルトインデックス注2)4.0
密 度注3)” 0.965
フィッシュアイ な し
注1)触媒は特開昭56−28206にしたがって、次
のように合成した。(1) Solvent i mixed hexane (composition: 58% by weight of n-hexane, 20% by weight of methylcyclopentane, 14% by weight of 3-methylpentane, 6% by weight of 2-methylpentane,
Other C7-C6 hydrocarbons 2%) (2) Supply amount ethylene 7.0 Kg/hr Solvent 30.0 KVhr Catalyst Note 1)
■Component 0.2'mmot/hr@l "13 mm
oLlhr 13- Hydrogen 0.002 mmoL/hr Average residence time approximately 1 hour (3) Polymerization vessel outlet composition Ethylene 1. OKV'hr Solvent 3' 0. OKmhr polymer 6.0 Kg/hr (total) '3'7.0 Kg/hr (
4) Polymer properties Melt index Note 2) 4.0 Density Note 3)" 0.965 Fisheye None Note 1) The catalyst was synthesized as follows in accordance with JP-A-56-28206.
■炭化水素溶媒可溶性有機マグネシウム化合物(1)の
合成
窒素置換済みの200tオートクレーブにマグネシウム
粉末5に9を加えた。n−ブチルクロリド20.81と
ヘプタン60tの混合液のうち、2゜tをオートクレー
ブに導入した。オートクレーブを加熱し、還流下攪拌を
行ない、反応嬢スタート 14−
した後、還流下2時間で残りのn−ブチルクロリドを滴
下し、終了後さらに1時間攪拌した。これに、klCl
t (On−CtHo) 12 motを含むヘプタ7
201を加え、70°C,2時間反応を行なうことによ
り、有機マグネシウム化合物溶液を得た。分析の結果、
との錯体の組成は、AtMg7.s (n−C,HQ)
la9’ (On−C4Hg)g、。(1) Synthesis of hydrocarbon solvent soluble organomagnesium compound (1) Magnesium powder 5 and 9 were added to a 200 t autoclave which had been purged with nitrogen. Of the mixed solution of 20.81 tons of n-butyl chloride and 60 tons of heptane, 2°t was introduced into the autoclave. After heating the autoclave and stirring under reflux to start the reaction, the remaining n-butyl chloride was added dropwise over 2 hours under reflux, and after completion of the reaction, stirring was continued for 1 hour. In addition, klCl
t (On-CtHo) 12 Hepta 7 containing mot
201 was added and the reaction was carried out at 70°C for 2 hours to obtain an organomagnesium compound solution. As a result of the analysis,
The composition of the complex with AtMg7. s (n-C, HQ)
la9' (On-C4Hg)g,.
であり、有機金属濃度は0.86 mollLであった
。The organic metal concentration was 0.86 molL.
なお、AlCl2 (On −C4H9)は、アルミニ
ウム粉末、AtC4、n−C,%OHをヘプタン中、モ
ル比1:2:3で反応を行ない合成した。Note that AlCl2 (On -C4H9) was synthesized by reacting aluminum powder, AtC4, n-C, %OH in heptane at a molar ratio of 1:2:3.
■触媒成分囚の合成
滴下シリンダーと水冷還流冷却器とを取付けた容量25
. OLのオートクレーブの内部の酸素と水分を窒素置
換によって除去し、窒素雰囲気下、トリクロルシラン0
.1 mollLのへブタン溶液2.Otおよびヘプタ
ン3.O4を仕込み70℃に昇温した。■Capacity 25 equipped with catalyst component synthesis dropping cylinder and water-cooled reflux condenser
.. Oxygen and moisture inside the OL autoclave were removed by nitrogen substitution, and trichlorosilane 0 was removed under a nitrogen atmosphere.
.. 1 molL of hebutane solution2. Ot and heptane3. O4 was charged and the temperature was raised to 70°C.
次に、上記成分(i)0.233tとへブタン2.Ot
を滴下シリンダーに仕込んだ。70′Cで攪拌下に1時
間かけて滴下し、さらにこの温度で1時間反応させた。Next, 0.233 t of the above component (i) and 2.0 t of hebutane were added. Ot
was charged into the dropping cylinder. The mixture was added dropwise over 1 hour while stirring at 70'C, and the reaction was further allowed to proceed at this temperature for 1 hour.
反応液は白色の懸濁液となった。この白色懸濁液に、四
塩化チタン3.49と三塩化バナジル3.1gを含有す
るヘプタン2.77tを導入し、70°Cで1時間反応
を行なった。得られた溶液を触媒成分囚とする。The reaction solution became a white suspension. To this white suspension, 2.77 t of heptane containing 3.49 titanium tetrachloride and 3.1 g of vanadyl trichloride was introduced, and the reaction was carried out at 70°C for 1 hour. The resulting solution is used as a catalyst component.
圓触媒成分卸として、トリイソブチルアルミニウムを使
用した。Triisobutylaluminum was used as the round catalyst component.
前記(2)の触媒成分囚の供給量は、触媒成分回申のチ
タン化合物とバナジウム化合物の合計のモル数で、また
触媒成分凹の供給量は、アルミニウム化合物のモル数で
示した。The amount of the catalyst component supplied in the above (2) is expressed as the total number of moles of the titanium compound and vanadium compound in the catalyst component list, and the amount of the catalyst component fed is expressed as the number of moles of the aluminum compound.
注2) メルトインデックスはASTMD−1238に
より、温度190°C1荷重2.16 Kgノ条件下’
t’測定したものである。Note 2) Melt index is determined according to ASTM D-1238 under conditions of temperature 190°C, load 2.16 kg.
t' was measured.
注3)密度はASTM D−1,505の方法により測
定したものである。Note 3) Density was measured by the method of ASTM D-1,505.
第1図に示されるように、重合器1より排出された重合
液8は、220 ”Cの高温触媒9とスタティック・ミ
キサー5で混合された後、長さ/直径(L/D) −6
の201の相分離槽2に連続的に供給し、相分離させた
。上相より希薄相をライン7より取り出し、下相より濃
厚相をライン6に取り出した。相分離槽2は断熱拐を用
い、系内の温度が一定になるように保持した。また相分
離境界線は、γ線レベル計で検知シ、コントロールパル
プ12および13で境界線が一定位置に保たれるようコ
ントロールした。As shown in FIG. 1, the polymerization liquid 8 discharged from the polymerization vessel 1 is mixed with a high temperature catalyst 9 of 220"C in a static mixer 5, and then the length/diameter (L/D) -6
The mixture was continuously supplied to the phase separation tank 2 of No. 201 for phase separation. A dilute phase from the upper phase was taken out through line 7, and a concentrated phase from the lower phase was taken out through line 6. The phase separation tank 2 used an adiabatic system to keep the temperature in the system constant. The phase separation boundary line was detected using a gamma ray level meter, and was controlled using control pulps 12 and 13 to maintain the boundary line at a constant position.
希薄相の溶媒はフラッシュタンク3でフラッシュさせ、
蒸気10は精製系に導くか、または冷却、凝縮後、重合
器に戻される。冷却器14よりスチームを発生すること
も可能であった。いずれの場合も、溶媒蒸気のもつ高い
エンタルピーは利用できた。フラッシュタンクの温度は
165 ”C一定にコントロールした。The dilute phase solvent is flushed in flash tank 3,
The vapor 10 is either led to a purification system or returned to the polymerization vessel after cooling and condensation. It was also possible to generate steam from the cooler 14. In both cases, the high enthalpy of the solvent vapor could be utilized. The temperature of the flash tank was controlled at a constant 165"C.
フラッシュタンク中の液体溶媒11は、ポンプ15で一
定量熱交換器4に送られ、220 ”Cまで加熱された
後、重合体溶液8と混合される。A certain amount of the liquid solvent 11 in the flash tank is sent to the heat exchanger 4 by a pump 15, heated to 220''C, and then mixed with the polymer solution 8.
濃厚相6はフラッシュタンクで溶媒を除去した後、取り
出し真空乾燥して重合体を得た。After removing the solvent from the concentrated phase 6 in a flash tank, it was taken out and dried under vacuum to obtain a polymer.
各ラインにおける温度、重合体濃度、流量は次のとおり
である。The temperature, polymer concentration, and flow rate in each line are as follows.
17−
図面の番号 温度 濃度 流量
(C)@量X)(Kv/hr)
重合器用 (8) 17016.3 37高温溶
媒 (9) 220 0.3 37スタテイツク・
ミキサー(5) 195 8.3 74
希薄相 (7) 195 0.264濃厚相 (
6) 19560.010以上のように、重合体溶液
を加熱することなく相分離を利用することにより、60
重量%の高濃度重合体溶液を得ることができた。また熱
交換器4で溶媒を加熱するために消費されるエネルギー
は、フラッシュタンク3の溶媒蒸気のエンタルピーとし
て、大部分が転換されるので、熱交換器14によってス
チームを発生させるような方法で、そのエネルギーの大
部分は回収される。このことから、本発明の方法はエネ
ルギー消費の少ない重合体の分離方法と言える。17- Drawing number Temperature Concentration Flow rate (C) @Amount
Mixer (5) 195 8.3 74
Dilute phase (7) 195 0.264 Dense phase (
6) As in 19560.010 and above, by utilizing phase separation without heating the polymer solution, 60
A polymer solution with a high concentration of % by weight could be obtained. Also, since most of the energy consumed to heat the solvent in the heat exchanger 4 is converted into enthalpy of the solvent vapor in the flash tank 3, in such a way that steam is generated by the heat exchanger 14, Most of that energy is recovered. From this, the method of the present invention can be said to be a method for separating polymers with low energy consumption.
また最終的に得られる重合体は、フィッシュアイを含ま
ず、透明性のすぐれたものであった。重合体中の遷移金
属は5 ppm以下と少なく、触媒除 18−
去を必要としなかった。Furthermore, the finally obtained polymer did not contain fish eyes and had excellent transparency. The transition metal content in the polymer was as low as 5 ppm or less, and catalyst removal was not required.
実施例2
エチレン7、0 Kf/′11rと溶媒30.0 Kg
/lIrを重合器に供給するかわりに、エチレン7、0
Kg/′hr 、ブテン−15Kvhr 、溶媒25
K9Arを供給する以外は、実施例1と同様な条件で
重合と濃厚相の分離を行った。濃厚相の重合体濃度は5
5重量%、得られた重合体のMIは4.5、密度0.9
20、フィッシュアイは認められなかった。Example 2 Ethylene 7,0 Kf/'11r and solvent 30.0 Kg
Instead of supplying /lIr to the polymerization reactor, ethylene 7,0
Kg/'hr, butene-15Kvhr, solvent 25
Polymerization and separation of the concentrated phase were carried out under the same conditions as in Example 1 except that K9Ar was supplied. The polymer concentration in the dense phase is 5
5% by weight, MI of the obtained polymer is 4.5, density 0.9
20. No fish eyes were observed.
なお、実施例1.2とも重合時には相分離は発生しなか
った。Incidentally, in both Examples 1 and 2, no phase separation occurred during polymerization.
図面は本発明のエチレン重合体の製造法における重合お
よび相分離工程の1例を示す説明図である0
19−The drawing is an explanatory diagram showing an example of the polymerization and phase separation steps in the method for producing an ethylene polymer of the present invention.
Claims (1)
およびエチレンと共重合しうる炭化水素単量体を、脂肪
族炭化水素を少なくとも50重量%含む炭化水素溶媒中
、生成重合体が該溶媒に均一に溶解する重合条件で重合
し、得られる重合体溶液を加熱し、重合体濃度の高い濃
厚相と重合体濃度の低い希薄相の2相に相分離し、さら
に濃厚相より溶媒および未反応単量体を除去して重合体
を得ることを特徴とする結晶性エチレン重合体の製造法
。 2、溶媒が脂肪族炭化水素を少なくとも50重量%含み
、残りが脂環式炭化水素である特許請求の範囲第1項記
載の結晶性エチレン重合体の製造法0 3、重合温度が100〜250℃である特許請求の範囲
第1項まだは第2項記載の結晶性エチレン重合体の製造
法。 4 重合体溶液に該重合体溶液よりも高温の該溶媒を混
合することにより、重合体溶液の加熱を行なう特許請求
の範囲第1項ないし第3項記載の結晶性エチレン重合体
の製造法。 5、加熱された重合体溶液を、レベル計と排出パルプに
より濃厚相と希薄相の境界線が一定に保たれるようにし
た相分離槽の該境界線位置に供給し、相分離槽の下部よ
り濃厚相を、同時に上部より希薄相を連続的に取り出す
特許請求の範囲第1項ないし第4項記載の結晶性エチレ
ン重合体の製造法。 6、濃厚相の重合体濃度が30重量%以上であり、希薄
相の濃度が10%以下である特許請求の範囲第1項ない
し第5項記載の結晶性エチレン重合体の製造法。[Claims] 1. Using a coordination polymerization catalyst, ethylene alone or ethylene and a hydrocarbon monomer copolymerizable with ethylene are added to a hydrocarbon solvent containing at least 50% by weight of aliphatic hydrocarbons. Polymerization is carried out under polymerization conditions such that the polymer is uniformly dissolved in the solvent, and the resulting polymer solution is heated to separate into two phases: a concentrated phase with a high polymer concentration and a dilute phase with a low polymer concentration. A method for producing a crystalline ethylene polymer, which comprises obtaining a polymer by removing a solvent and unreacted monomers. 2. The method for producing a crystalline ethylene polymer according to claim 1, wherein the solvent contains at least 50% by weight of an aliphatic hydrocarbon, and the remainder is an alicyclic hydrocarbon. 3. The polymerization temperature is 100-250%. The method for producing a crystalline ethylene polymer according to claim 1 or claim 2, wherein the temperature is .degree. 4. The method for producing a crystalline ethylene polymer according to claims 1 to 3, wherein the polymer solution is heated by mixing the solvent at a higher temperature than the polymer solution. 5. Supply the heated polymer solution to the boundary line position of the phase separation tank where the boundary line between the concentrated phase and the dilute phase is kept constant using a level meter and discharge pulp, and then 5. A method for producing a crystalline ethylene polymer according to claims 1 to 4, in which a more concentrated phase is simultaneously taken out continuously and a diluted phase is taken out from above. 6. The method for producing a crystalline ethylene polymer according to claims 1 to 5, wherein the concentration of the polymer in the dense phase is 30% by weight or more and the concentration in the dilute phase is 10% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10054781A JPS582307A (en) | 1981-06-30 | 1981-06-30 | Production of ethylene polymer through solution polymerization process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10054781A JPS582307A (en) | 1981-06-30 | 1981-06-30 | Production of ethylene polymer through solution polymerization process |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS582307A true JPS582307A (en) | 1983-01-07 |
Family
ID=14276966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10054781A Pending JPS582307A (en) | 1981-06-30 | 1981-06-30 | Production of ethylene polymer through solution polymerization process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS582307A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0261219A (en) * | 1989-01-12 | 1990-03-01 | Buruman Kk | Strut intersection joining metal fittings |
WO2012088235A2 (en) | 2010-12-21 | 2012-06-28 | Dow Global Technologies Llc | Olefin-based polymers and dispersion polymerizations |
JP2021075595A (en) * | 2019-11-06 | 2021-05-20 | 三井化学株式会社 | Method for producing olefinic resin |
-
1981
- 1981-06-30 JP JP10054781A patent/JPS582307A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0261219A (en) * | 1989-01-12 | 1990-03-01 | Buruman Kk | Strut intersection joining metal fittings |
WO2012088235A2 (en) | 2010-12-21 | 2012-06-28 | Dow Global Technologies Llc | Olefin-based polymers and dispersion polymerizations |
US9388254B2 (en) | 2010-12-21 | 2016-07-12 | Dow Global Technologies Llc | Olefin-based polymers and dispersion polymerizations |
EP3091038A1 (en) | 2010-12-21 | 2016-11-09 | Dow Global Technologies LLC | Olefin-based polymers and dispersion polymerizations |
JP2021075595A (en) * | 2019-11-06 | 2021-05-20 | 三井化学株式会社 | Method for producing olefinic resin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU726554B2 (en) | Process and apparatus for preparing propylene homopolymers and copolymers | |
KR101689052B1 (en) | Process for the preparation of a multimodal polyolefin polymer with improved hydrogen removal | |
EP0040992A1 (en) | Process for multi-step gas-phase polymerization of olefins | |
JP2002504955A (en) | Method for producing polypropylene alloy | |
NO178307B (en) | Process and apparatus for gas phase polymerization of alpha-olefins | |
US4433121A (en) | Polymerization process | |
AU731769B2 (en) | Process for making propylene homo or copolymers | |
BR112013004840B1 (en) | process for the preparation of a polyolefinic polymer and method for the control of hydrocarbon content with 14 to 300 carbon atoms in a polyolefinic polymer | |
CN113260642B (en) | Process for preparing polyethylene | |
US3347955A (en) | Process for making block polymers of olefins | |
CN112839965B (en) | Process for preparing multimodal polyolefins | |
JPS582307A (en) | Production of ethylene polymer through solution polymerization process | |
EP3802628B1 (en) | Process for preparation of multimodal polyolefin | |
US3781253A (en) | Process for the preparation of ethylene polymer or copolymer | |
US3475517A (en) | Process for making block polymers of olefins | |
JPH07286004A (en) | Continuous production of polyolefin | |
JPS6057441B2 (en) | Gas phase polymerization method of olefin | |
NO157063B (en) | PROCEDURE FOR PREPARING THE ETHYLEN-PROPYLENE-BLOCK COPY. | |
JPH062777B2 (en) | Method for continuous vapor phase polymerization of propylene | |
US3055879A (en) | Recovery of olefin polymers from solution | |
JPH0310648B2 (en) | ||
JPH06801B2 (en) | Polymerization method | |
JPH01118504A (en) | Drying of catalyst component for olefin polymerization | |
BR112021021436B1 (en) | PROCESS FOR PREPARING AN ETHYLENE POLYMER | |
JPH0332561B2 (en) |