[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58206844A - Device for controlling supply of fuel for internal- combustion engine - Google Patents

Device for controlling supply of fuel for internal- combustion engine

Info

Publication number
JPS58206844A
JPS58206844A JP8893182A JP8893182A JPS58206844A JP S58206844 A JPS58206844 A JP S58206844A JP 8893182 A JP8893182 A JP 8893182A JP 8893182 A JP8893182 A JP 8893182A JP S58206844 A JPS58206844 A JP S58206844A
Authority
JP
Japan
Prior art keywords
fuel
piston valve
acceleration
negative pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8893182A
Other languages
Japanese (ja)
Inventor
Kenzo Shioi
塩井 謙三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP8893182A priority Critical patent/JPS58206844A/en
Publication of JPS58206844A publication Critical patent/JPS58206844A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/12Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves
    • F02M7/14Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle
    • F02M7/16Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis
    • F02M7/17Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis by a pneumatically adjustable piston-like element, e.g. constant depression carburettors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent excessive dilution of a gaseous mixture during the acceleration and improve the acceleration function of the titled device by detecting the position of a piston valve of a suction air throttling device and carrying out an optimum fuel increase in quantity during the accleration of the engine in accordance with the detection result. CONSTITUTION:A variable Venturi type carbureter is designed so that the negative pressure at the downstream of a piston valve 5 undergoes change in accordance with the air flow quantity within a suction air path 18 varying according to the opening degree of a butterfly valve 11. This varying negative pressure is introduced into a negative pressure chamber 19 via a communicating path 17, whereby the piston valve 5 makes an up and down movement, and the opening area of a needle jet 3 is made variable. In this case, measuring members 21 and 22 which are made variable in their relative positions, are provided in the piston valve 5 and a stationary member, and position sensors (not shown) each of which consists of a differential transformer and the like are provided in the same members 21 and 22. The acceleration quantity increasing degree of the fuel is calculated from the outputs from these position sensors to control the fuel supply system.

Description

【発明の詳細な説明】 この発明は内燃機関の燃料供給制御装置に関し、特に空
気吸入路内に設置し次吸入空気絞り装置のピストンバル
ブの位置を噴出して加速時の燃料供給を制御しようとす
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel supply control device for an internal combustion engine, and particularly to a fuel supply control device for an internal combustion engine, which is installed in an air intake passage and controls the fuel supply during acceleration by adjusting the position of a piston valve of a next intake air throttle device. It is something to do.

従来の内燃−関においては、気化器を使用する型のもの
においても、叉吸気路中に燃料を噴射するものにおいて
も、定常運転域の燃料流量81I整(例えば三元触媒通
用の定めの0.フィードバック制御等)に重心がおかれ
るとか、色々な構出手段の作動の遅れとか、櫨々の理由
により加速時の過渡応答が充分とはいえず、この発明は
D口速時、ピストンバルブの位置を検出して機関回転速
度の燃料の増fを最適に行なうことができるようにした
ものである。
In conventional internal combustion engines, whether the type uses a carburetor or the type in which fuel is injected into the intake passage, the fuel flow rate in the steady operating range is 81I (for example, the standard 0 for three-way catalysts). For various reasons, such as the center of gravity being placed in the center of gravity (feedback control, etc.) and delays in the operation of various configuration means, the transient response during acceleration is not sufficient. By detecting the position of the engine, it is possible to optimally increase the fuel supply to the engine rotational speed.

図について説明すれば、第1図は第1の実施態様として
の電子制御気化器の側断面図であって、機関の運転パラ
メータ(スロットル開度、吸気管内圧、機関回転速度、
機関温度、気圧、温度、湿度などの大気条件等)に応じ
燃料供給を亀子制御する可変ベンチュリー気化器であっ
て、吸気路18中を矢印Fの如く空気を吸いこむもので
、1はフロート室ノ二一ドルバルプ、2はバルブシート
、6は二一ドルジエノト、4はストレートニードル、5
はピストンバルブ、6はダイアフラム、7はリターンス
プリング、8はパイロットスクリュー、9はパイロット
アウトンット、10はバイパスアウトレット、11vi
バタフライバルブ、12はフロート、16はフロートア
ーム、14i/iパイロツトジエツト、15はルノイド
用メインジェット、16はンレノイドバルブ、17はピ
ストンパルプ中の連通路、18は吸気路、19は負圧室
、20は大気室を夫々示している。
To explain the figures, FIG. 1 is a side sectional view of an electronically controlled carburetor as a first embodiment, and shows engine operating parameters (throttle opening, intake pipe internal pressure, engine rotation speed,
This is a variable venturi carburetor that controls the fuel supply according to atmospheric conditions such as engine temperature, pressure, temperature, humidity, etc.), and sucks air into the intake passage 18 as shown by arrow F. 1 is a float chamber. 21 dollar valve, 2 is valve seat, 6 is 21 dollar valve, 4 is straight needle, 5
is a piston valve, 6 is a diaphragm, 7 is a return spring, 8 is a pilot screw, 9 is a pilot outlet, 10 is a bypass outlet, 11vi
Butterfly valve, 12 is a float, 16 is a float arm, 14 i/i pilot jet, 15 is a main jet for lenoid, 16 is a lenoid valve, 17 is a communication path in the piston pulp, 18 is an intake path, 19 is a negative pressure chamber , 20 indicate atmospheric chambers, respectively.

バタフライバルブ11の開度の変化により吸気路18内
の空気atが変化し、ピストンパルプ5の下方の負圧が
変化する。この負圧は連通路17により負圧室19と通
じていて、大気圧室20中の大気との差圧がダイアフラ
ム6に作動し、負圧の変化に伴い、リターンスプリング
の作動と相まって、ピストンバルブ5が上下する。
Due to the change in the opening degree of the butterfly valve 11, the air at in the intake passage 18 changes, and the negative pressure below the piston pulp 5 changes. This negative pressure is communicated with a negative pressure chamber 19 through a communication passage 17, and the differential pressure with the atmosphere in the atmospheric pressure chamber 20 acts on the diaphragm 6, and as the negative pressure changes, combined with the operation of the return spring, the piston Valve 5 moves up and down.

この発明では図示の部材21と22に位置センサー−1
gけ、ピストンパルプの位置を噴出し、燃料の加速増量
程度を算出するものである。位置センサーはアナログセ
ンサー(差動トランス、容量型変位計等)でもよいが、
デジタルコノピユータで処理しやすい様にデジタルセン
サーを基本とする。利用できるものは (1)  フォトトランジスタ等の光1スイッチ!H)
  ホール素子等の磁気スイッチ0ti1  マイクロ
スイッチ等の接点スイッチもしくは (1v)  ノズル負圧ケ圧力センサーで検出し、ピス
トンバルブ位rItを間接的に矧る手段 などがある。
In this invention, the illustrated members 21 and 22 are provided with a position sensor 1.
This method calculates the degree of fuel acceleration increase based on the position of the piston pulp. The position sensor may be an analog sensor (differential transformer, capacitive displacement meter, etc.), but
It is based on digital sensors so that it can be easily processed by digital computer computers. What can be used is (1) 1 optical switch such as a phototransistor! H)
There are means for indirectly adjusting the piston valve position rIt by detecting it with a magnetic switch such as a Hall element, a contact switch such as a microswitch, or a (1v) nozzle negative pressure pressure sensor.

第2図(alはよこ軸に時間も、たて剖にピストンバル
ブ位置Sをとつt図、(′b)はよこ軸に時間tまたて
川にスロットル開度H′fとつt図であって、まず一定
のスロットル開度で定速定行している状FvJヲDとす
れば、そのときのピストンバルブ位置はAとなる。今ア
クセルをふみこんでEの恒遁でスロットル開度をFの位
置まで高めnば、加速の瞬間負圧は増大し、ピストンバ
ルブ位置はCに示すように一時的に急上昇し、ついで、
順次新しい立置Bにまで収斂する。この発明では前述の
如く適切な位置に設けたデジタルスイッチでピストンバ
ルブ上昇通過を検出し、通過数によって加速増を程度を
算出するものである。
Figure 2 (Al is a t-diagram with time on the horizontal axis and piston valve position S on the vertical axis, ('b) is a t-diagram with time t on the horizontal axis and throttle opening H'f on the river. So, first of all, if we assume FvJwoD that we are traveling at a constant speed with a constant throttle opening, then the piston valve position will be A.Now, when we press the accelerator, we will change the throttle opening at a constant speed of E. When the pressure is increased to position F, the instantaneous negative pressure during acceleration increases, the piston valve position temporarily rises rapidly as shown in C, and then,
It will gradually converge to the new standing location B. In this invention, as described above, the digital switch provided at an appropriate position detects the upward passage of the piston valve, and the degree of acceleration increase is calculated based on the number of passages.

第6図はこの発明の第2の実施態様を示す図であって、
吸気路中に燃料を噴射する型式のものである。図におい
て60は吸気路、61はピストンパルプ、32はスロッ
トルバルブ、6ろは7然科噴射弁、34は杆、65はダ
イアフラム、66はリターンスプリング、67は演知体
、68はピックアップ部、41は負圧の4通路、42は
負圧室、46は大気圧室ヲ夫々している。このピストン
パルプが上下する作用は2遍1図の場合と同1兼である
FIG. 6 is a diagram showing a second embodiment of the invention,
This is a type that injects fuel into the intake passage. In the figure, 60 is an intake path, 61 is a piston pulp, 32 is a throttle valve, 6 is a natural injection valve, 34 is a rod, 65 is a diaphragm, 66 is a return spring, 67 is a performance body, 68 is a pickup part, 41 is a negative pressure passage, 42 is a negative pressure chamber, and 46 is an atmospheric pressure chamber. The action of moving the piston pulp up and down is the same as in the case of Figure 1.

(尚このピストンとこの位置を横細する手段とをさめて
加速センサー5゛0と呼ぶことがある。)制御部にデジ
タルコンピュータを甲いるならば、基本的にデジタルセ
ンサー(フォトトランジスタ等の光電スイッチあるいは
ホール素子等の磁気スイッチなど)を連数個使用する。
(Incidentally, this piston and the means for horizontally narrowing this position may be collectively referred to as an acceleration sensor 5゛0.) If a digital computer is used in the control section, it is basically a digital sensor (a photoelectric sensor such as a phototransistor). Switches or magnetic switches such as Hall elements) are used in series.

第4図はセンサーの一例の拡大説明図であって、噴四体
67は多数の歯69.・・・を有し、ピックアップ部3
8のピックアップ40で歯の位置を検出するものである
FIG. 4 is an enlarged explanatory diagram of an example of the sensor, and the ejector body 67 has many teeth 69. ..., the pickup section 3
The tooth position is detected by the pickup 40 of No. 8.

従来の多くの電子制御燃料1射システムでは低速から、
急加速時に一瞬混合気はうすぐなり、スムーズなトルク
上昇が得られない。その原因としては (1)  エンジン1回転に1回向時1貫射するという
・司欠項射に原因がある遅れ。
In many conventional electronically controlled single fuel injection systems, from low speed,
When accelerating suddenly, the air-fuel mixture becomes dizzy for a moment, making it impossible to obtain a smooth increase in torque. The reasons for this are: (1) Delay caused by missing term injection, where one injection is made in one rotation per engine revolution.

(11)吸入空気啼の・英矧遅れ(A/D変換のタイミ
ング、センサーの応答遅!1.) (iii)  演算装置における演Xα理時間による遅
れ等が考えら几、佃)については、Wi視できる4′n
であるが、まず(1)について、説明する。11g5図
はそつ説明図であって1.膚にクランク角をとり、諷1
&2,7≦6.べ4のシリンダかめるとして説明する。
(11) Delays in intake air (A/D conversion timing, sensor response delays! 1.) (iii) Delays due to processing time in arithmetic units, etc. can be considered; Wi-visible 4'n
However, (1) will be explained first. Figure 11g5 is an explanatory diagram showing 1. Take the crank angle to the skin, and say 1
&2,7≦6. The explanation will be based on the case of a four-cylinder cylinder.

J、、 J、、 J、は660°の間浦での燃料噴射□
立置である。そして、、11線で示すG点の位置で71
11速を始め友とする。’rll ’r21 T3 *
 ’r、 l T5・・・・は各シリンダの点火立置で
あり、K、 l K! r K3 rK4.に、・・・
・、ハ各シリンダの吸入バルブの開いている期・川を示
している。
J,, J,, J, is fuel injection at Maura of 660°□
It is standing. Then, at the position of point G shown by line 11, 71
Become a friend, starting with the 11th speed. 'rll 'r21 T3 *
'r, l T5... is the ignition position of each cylinder, K, l K! rK3 rK4. To...
・, C indicates the opening period of each cylinder's intake valve.

G点で加速を始め之としても噴射状態が変TフるのはJ
、からであるが、その時はに3の区間では、すでに吸1
の末期であり一局倉しい正常燃焼となるのは截人T4か
らである。そnまでの点火TI + T2tT、では混
せ気稀薄のための異常燃境全する可能性がめる。すなわ
ち最大2回転の応答遅nがある。
Even if you start accelerating at point G, the injection state changes.
, but at that time, in the section 3, the suction 1 has already been reached.
This is the final stage of the process, and it is from Kirito T4 onwards that normal combustion occurs for a while. If the ignition is TI + T2tT up to that time, there is a possibility that an abnormal combustion condition will occur due to the lean air mixture. That is, there is a response delay n of two rotations at maximum.

機関回転数が1ooo r、、p、m、であルば120
マイクロ秒の遅れがある。この遅ル対策としては現在で
は同期噴射以外に、非同期に噴射した9、ま之は谷気筒
毎、独立に噴射するいわゆるシークエンシャルインジエ
クションを採用している。しかしシークエンシャルイン
ジエクションでは容気11#mに、独立のインジェクタ
ー駆動回路等を要するため、コスト高となっている。つ
いで(II)について説明すれば、吸入空気t%出には
エアーフローセンサー、圧力センサー等域子的センサー
が使用さnるが、一般的には20〜50マイクロ秒程度
の応答遅れがある。まtlそのアナログデータのA/D
変換を行なう必要がめる。理想的には常に1&新の空気
量データが欲しいが、常にA/D変換をすると、演Jl
装置の他の演算処理が遅れてしまうので、実際にはめる
時間をおいて、定期的にサンプルされるか、または機関
回転同期でテンプルさ1ている。
If the engine speed is 1ooo r,, p, m, 120
There is a microsecond delay. As a countermeasure against this delay, currently, in addition to synchronous injection, so-called sequential injection is used, in which each cylinder injects asynchronously and independently injects each cylinder. However, the sequential injection requires an independent injector drive circuit, etc. for the air pump 11#m, resulting in high costs. Next, to explain (II), a variable sensor such as an air flow sensor or a pressure sensor is used to output t% of intake air, but generally there is a response delay of about 20 to 50 microseconds. A/D of analog data
Determines the need to perform a conversion. Ideally, you always want 1 & new air volume data, but if you always do A/D conversion,
Since other arithmetic processing of the device will be delayed, samples are taken periodically after a period of time when they are actually applied, or the samples are sampled in synchronization with engine rotation.

例えば機関回転同期でかつ1回転に1回A/D変換する
と、最大1回転の遅れ−ち機関回転数1000r、 p
、 mとして60マイクロ秒の遅れがある。すなわち[
センサーの応答遅fL、]と「A−/ D 4i換タイ
ミングのズレ」で合計最大110マイクロ秒ノ遅れ(機
関回転では1000 r、 p、 mのとき2回転程度
の!i)となる。このように、佑局加速開始から最大4
回転、+均で2回転の間極端に混合気が稀薄となってい
た。この発明はこの欠点を前述の如く、ピストンバルブ
の位!liKよって、噴射tを制御し、混合気が稀薄に
なるのを防止したものである。
For example, if the engine rotation is synchronized and A/D conversion is performed once per rotation, there will be a maximum delay of one rotation - engine rotation speed 1000 r, p
, m, there is a delay of 60 microseconds. That is, [
The response delay fL of the sensor] and the ``difference in the A-/D 4i conversion timing'' result in a total maximum delay of 110 microseconds (approximately 2 revolutions when the engine rotation is 1000 r, p, m). In this way, from the start of Yu station acceleration, up to 4
The air-fuel mixture was extremely lean during two revolutions at + and even rotation. This invention solves this drawback as much as the piston valve as mentioned above! liK controls the injection t to prevent the air-fuel mixture from becoming lean.

第6図は加速センサーの基本的な原理の説明図でろって
、(勾は時間Tとスロットル開度Hとの関係、す)は時
間Tとピストンバルブ位置Sとの関係、(C)は時間T
とベンチュリ負圧pとの!il係を夫々示し、スロット
ル開度は最初りの位置にあり、加速時点Eで開度は開き
新しい状態Fとなる。ピストンパルプ位置は最初Aの位
置にあり、加速的に0点で急上昇し、ついで次第に新し
い位置Bに収斂してゆく、急加速であるほど点線で示す
如く0点の山は高くなる。即ちLlのときよりり、の時
の万が急加速である。次にぺ/チュリ貞圧についてぼ、
最初の入から加速時に0点で急上昇し、次第に8に収斂
する。刀口速が大きいほど点線で示す如く山が犬きく、
關くなる。即ち△゛f1の時よりΔf2の時の方が息刀
口速である。所定の負圧ΔP、の1直によって圧力スイ
ッチ金オン、オフし、圧力スイッチのオンの時間を・英
知することにより加速センサーとして、更用することも
で′きる。
Figure 6 is an explanatory diagram of the basic principle of the acceleration sensor. (Slope is the relationship between time T and throttle opening H, S) is the relationship between time T and piston valve position S, and (C) is time T
and venturi negative pressure p! The throttle opening is at the initial position, and at the acceleration time point E, the opening opens to a new state F. The piston pulp position is initially at position A, rapidly rises at the 0 point as it accelerates, and then gradually converges to a new position B. The sharper the acceleration, the higher the peak at the 0 point, as shown by the dotted line. In other words, the acceleration at 100 is more rapid than at L1. Next, let's talk about Bae/Churi Chaiatsu.
From the first turn on, it rapidly rises to 0 points during acceleration, and gradually converges to 8 points. The higher the speed of the sword, the sharper the mountain becomes, as shown by the dotted line.
become concerned. In other words, the mouth speed is higher at Δf2 than at Δf1. It can also be used as an acceleration sensor by turning the pressure switch on and off in response to one turn of a predetermined negative pressure ΔP, and by knowing the on-time of the pressure switch.

第7!図はスロットルのIIIきと加速センサー出力等
の関係を示す説明図であって、図はすべて横軸にクラン
ク!AGAがとってあり、たて軸に(a)にはスロット
ル開度H,Φ)に:は実吸入空気tQ、(c)には吸入
空気測定1M、(d)にはインジェクターパルス巾り、
(e)にはピストンバルブ4:装置S、(f)には加速
センサー出力Pが夫々とっである。Φ)と(c)e比較
すると、(b)において、実吸入空気量Qはカロ速点G
から直に増加してゆくが、(C)において、測定穢Mが
増加しだすのは@述の如く、20〜110マイクロ秒連
れている。(d)と(f)に示す如く、加速センサーの
出力パルス数に応じ、噴射増量IWを決定する。例えば
急り口達時はパルス数が多(ハので壇量妾は大きく、緩
加速時にパルス数が少ないので、増肴度は小さい。その
後終結条件が禰たされるまでは、基本的Uζは一定比率
で壇f賞合は′tc賃されてゆく。
Seventh! The figure is an explanatory diagram showing the relationship between throttle position III and acceleration sensor output, etc., and all figures are shown on the horizontal axis as crank! AGA is taken, on the vertical axis (a) is the throttle opening H, Φ) is the actual intake air tQ, (c) is the intake air measurement 1M, (d) is the injector pulse width,
(e) shows the piston valve 4: device S, and (f) shows the acceleration sensor output P, respectively. Comparing Φ) and (c)e, in (b), the actual intake air amount Q is at the Karo speed point G
However, in (C), the measured impurity M begins to increase after 20 to 110 microseconds, as mentioned above. As shown in (d) and (f), the injection amount increase IW is determined according to the number of output pulses of the acceleration sensor. For example, the number of pulses is large during a sudden acceleration, and the number of pulses is small during slow acceleration, so the degree of increase is small.After that, until the termination condition is met, the basic Uζ is The prize money will be paid at a fixed rate.

(C)において増量分は7針詠を施した部分で示さn1
竜初はN、Fで示す7日く、非同期的に1回(又1よ2
回)噴射し、ついでfl、Fで示す妬く同期的に増量す
る。
In (C), the increased amount is shown by the part where 7 stitches were applied n1
Ryu's first is once asynchronously (also 1 and 2) every 7 days indicated by N and F.
times) and then increase the amount synchronously as shown by fl and F.

第8図は、第2の実施態様の図式的な説明qであって、
機関70にインテークバルブ51を介して吸気路60か
ら混合気を吸入する。62はスロットル等、33はイン
ジェクターである。空気はクリーナー55からサージタ
ンク54を経て吸入される。50ばこの発明の/Jll
速センサーである。
FIG. 8 is a schematic illustration q of the second embodiment,
The air-fuel mixture is sucked into the engine 70 from the intake passage 60 via the intake valve 51. 62 is a throttle etc., and 33 is an injector. Air is drawn from the cleaner 55 through the surge tank 54. 50 tobacco invention/Jll
It is a speed sensor.

燃料は燃料タンク60、燃料コツクロ1、フィルター6
2、燃料ポンプ66を経てインジェクタ=63に送らn
る。周栄剰燃料はレギュレーター64、リターン通路6
5を弁してタンク60に還流させる。加速センサ50か
らの信号そコントロールユニットに入れ、そこからのべ
言号はリレー田f’rFして燃料ポンプ66とイン・/
エフター53のハルス巾k 7gl <Hスル。向コン
トロールユニット+lコは大気圧AP、アイドルスイッ
チからの信号SゝM1イグニッション1仄(圧IV、圧
力センサー52からの圧力P1ポテンショメーターによ
るスロットルバルブ32の開度S1温度喫矧器56から
の信号t4を人力するものである。
Fuel: 60 fuel tanks, 1 fuel tank, 6 filters
2. Sends to injector = 63 via fuel pump 66 n
Ru. The excess fuel is provided by the regulator 64 and the return passage 6.
5 to allow the flow to flow back into the tank 60. The signal from the acceleration sensor 50 is input to the control unit, and the signal from there is sent to the relay field f'rF and connected to the fuel pump 66.
Efter 53 Hals width k 7gl <H sul. Direction control unit +l is atmospheric pressure AP, signal S゜M1 from idle switch, ignition 1 (pressure IV, pressure P1 from pressure sensor 52, opening degree S1 of throttle valve 32 by potentiometer, signal t4 from temperature detector 56) This is done manually.

【図面の簡単な説明】[Brief explanation of drawings]

鳴1図は1子刑@気化器の側断面図、第2図(a)す)
は夫々ピストンバルブ位置、スロットル開度の変化の説
明図、第3図はこの発明の第2の実弛態礫の説明図、鷹
4図は加速センサーの拡大説明図、第5図は4気受機関
の点火時期の説明図、第6図(a) 、 (b) 、 
(C)!d、夫々スロットル開度、ピストンバルブ位置
、ベンチュリー負圧の変化の説明図、第7J(a)、(
b)、 (C)、(d)、(el)、(f)fl天々、
1.0 ットに開度、実吸入空気量、吸入9気測定量、
インジェクターパルス巾、ピストンバルブ位置、加速セ
ンサー出力のクランク角度に対にる変化の説明図、第8
図はこの発明の第2の実施態様の図式的な説明図を夫々
示す。 王な符号の説明 5・・・ピストンバルブ、21.22・・・!11j定
部1寸、31・・・ピストンバルブ、53・・・燃料−
R射升、67・−・模矧体、68・・・ピックアップ部
、40・・・ピックアップ、50・・・乃口速センナ−
0 代理人W−埋士(8107) 1E々不/′#隆(li
d・3名)第  211 第  3  図 1114   図 1115   図
Figure 1 is a side sectional view of the carburetor, Figure 2 (a))
are explanatory diagrams of changes in piston valve position and throttle opening, respectively, Fig. 3 is an explanatory diagram of the second actual relaxation state of this invention, Fig. 4 is an enlarged explanatory diagram of the acceleration sensor, and Fig. 5 is an explanatory diagram of the second actual relaxation state of this invention. Explanatory diagram of the ignition timing of the receiving engine, Figure 6 (a), (b),
(C)! d, explanatory diagram of changes in throttle opening, piston valve position, and venturi negative pressure, respectively, No. 7J(a), (
b), (C), (d), (el), (f) fl Tenten,
1.0 t, opening degree, actual intake air amount, measured amount of intake air,
Explanatory diagram of changes in injector pulse width, piston valve position, and acceleration sensor output with respect to crank angle, No. 8
The figures each show a schematic illustration of a second embodiment of the invention. Explanation of the basic code 5... Piston valve, 21.22...! 11j constant part 1 dimension, 31...piston valve, 53...fuel-
R shooting machine, 67...Mock body, 68...Pickup section, 40...Pickup, 50...Noguchi Speed Senna-
0 Agent W-Buji (8107) 1Esaf/'#Takashi (li
d・3 people) No. 211 No. 3 Figure 1114 Figure 1115 Figure

Claims (1)

【特許請求の範囲】[Claims] 内燃機関の空気吸入路中に設置さnる吸入空気絞り装置
のピストンパルプの位置′t−検出して、機関顎速時の
燃料供給の制御を行なうことを特徴とする内燃機関の燃
料供給制御装置。
Fuel supply control for an internal combustion engine, characterized in that the position of a piston pulp of an intake air throttle device installed in an air intake path of the internal combustion engine is detected to control the fuel supply at engine jaw speed. Device.
JP8893182A 1982-05-27 1982-05-27 Device for controlling supply of fuel for internal- combustion engine Pending JPS58206844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8893182A JPS58206844A (en) 1982-05-27 1982-05-27 Device for controlling supply of fuel for internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8893182A JPS58206844A (en) 1982-05-27 1982-05-27 Device for controlling supply of fuel for internal- combustion engine

Publications (1)

Publication Number Publication Date
JPS58206844A true JPS58206844A (en) 1983-12-02

Family

ID=13956636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8893182A Pending JPS58206844A (en) 1982-05-27 1982-05-27 Device for controlling supply of fuel for internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS58206844A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190947U (en) * 1984-05-30 1985-12-18 スズキ株式会社 Throttle opening detection device
JPS63138455U (en) * 1987-03-04 1988-09-12
JPH0242166A (en) * 1988-08-01 1990-02-13 Honda Motor Co Ltd Fuel control device for carburetor
CN105552755A (en) * 2012-06-25 2016-05-04 郑州思辩科技有限公司 Apparatus for maintaining radiating tubes and butterfly valves of transformer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50738U (en) * 1973-05-01 1975-01-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50738U (en) * 1973-05-01 1975-01-07

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190947U (en) * 1984-05-30 1985-12-18 スズキ株式会社 Throttle opening detection device
JPS63138455U (en) * 1987-03-04 1988-09-12
JPH0242166A (en) * 1988-08-01 1990-02-13 Honda Motor Co Ltd Fuel control device for carburetor
CN105552755A (en) * 2012-06-25 2016-05-04 郑州思辩科技有限公司 Apparatus for maintaining radiating tubes and butterfly valves of transformer

Similar Documents

Publication Publication Date Title
JPS58206844A (en) Device for controlling supply of fuel for internal- combustion engine
JPS59131724A (en) Variable volume surge tank
US4938198A (en) Internal combustion engine
JPH045441A (en) Fuel injection type two-cycle engine
JPS6441637A (en) Air-fuel ratio control device for internal combustion engine
JPS643245A (en) Air/fuel ratio control device for internal combustion engine
EP0085114A1 (en) Fuel supply device for internal combustion engine
US2863435A (en) Fuel supply systems for engines
JPS5672239A (en) Air-fuel ratio controller for fuel injection type internal combustion engine with supercharger
JPS60116840A (en) Controller of fuel injection quantity and timing of multicylinder internal-combustion engine
JPS59153932A (en) Electronic control fuel injector
JPS5598658A (en) Fuel injection method for multi-cylindered internal combustion engine of fuel injection type
JPS5546060A (en) Electronic fuel injection device for internal combustion engine
JPS62267547A (en) Fuel injection amount control method for diesel engine
JP2588919B2 (en) Acceleration correction method for electronically controlled fuel injection device of engine
JPH0559976A (en) Electronically controlled fuel injection device
JPS63230944A (en) Exhaust gas recirculation control system for diesel engine
JPS59213931A (en) Electronic control fuel injector for internal-combustion engine
RU2195570C2 (en) Internal combustion engine fuel injection system
JPH0660584B2 (en) Fuel injector for multi-cylinder engine
JP2960941B2 (en) Engine fuel control device
JPH0754585Y2 (en) Fuel pressure regulator for internal combustion engine
JPS59158336A (en) Electronic fuel injection device
JPH0586935A (en) Fuel injection quantity controller of engine
JPS6380028A (en) Fuel injection quantity controller