JPS58180459A - Method for producing nitrobenzene - Google Patents
Method for producing nitrobenzeneInfo
- Publication number
- JPS58180459A JPS58180459A JP57063326A JP6332682A JPS58180459A JP S58180459 A JPS58180459 A JP S58180459A JP 57063326 A JP57063326 A JP 57063326A JP 6332682 A JP6332682 A JP 6332682A JP S58180459 A JPS58180459 A JP S58180459A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- benzene
- reaction
- gas phase
- sulfuric acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims abstract description 119
- 239000003054 catalyst Substances 0.000 claims abstract description 51
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 43
- 238000006396 nitration reaction Methods 0.000 claims abstract description 37
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 13
- 230000000802 nitrating effect Effects 0.000 claims abstract description 13
- 239000000741 silica gel Substances 0.000 claims abstract description 11
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 11
- 239000002253 acid Substances 0.000 claims abstract description 10
- 239000007787 solid Substances 0.000 claims abstract description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000003085 diluting agent Substances 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 238000001354 calcination Methods 0.000 claims abstract description 4
- 239000011261 inert gas Substances 0.000 claims abstract description 3
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 39
- 239000007789 gas Substances 0.000 claims description 37
- 238000010304 firing Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000005909 Kieselgur Substances 0.000 claims description 2
- 230000003197 catalytic effect Effects 0.000 abstract description 9
- 239000000047 product Substances 0.000 abstract description 3
- WDCYWAQPCXBPJA-UHFFFAOYSA-N 1,3-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC([N+]([O-])=O)=C1 WDCYWAQPCXBPJA-UHFFFAOYSA-N 0.000 abstract description 2
- 239000006227 byproduct Substances 0.000 abstract description 2
- 239000012808 vapor phase Substances 0.000 abstract 3
- 239000012071 phase Substances 0.000 description 27
- 230000000694 effects Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000003317 industrial substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- BFCFYVKQTRLZHA-UHFFFAOYSA-N 1-chloro-2-nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1Cl BFCFYVKQTRLZHA-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 239000012494 Quartz wool Substances 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000008246 gaseous mixture Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- -1 aromatic cation radical Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- ROPDWRCJTIRLTR-UHFFFAOYSA-L calcium metaphosphate Chemical compound [Ca+2].[O-]P(=O)=O.[O-]P(=O)=O ROPDWRCJTIRLTR-UHFFFAOYSA-L 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000005171 halobenzenes Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はベンゼンの気相ニトロ化方法に関するものであ
り、更に詳しくは、ベンゼンをNO!またはN2O4を
使用して気相二l・口上する方法に於て、硫酸を固体状
担体に含浸、焼成した固型化酸を触媒とする事を特徴と
するニトロベンゼンの気相合成法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for gas-phase nitration of benzene, and more particularly, to a method for converting benzene into NO! Or, it relates to a gas phase synthesis method for nitrobenzene, which is characterized in that a solid carrier is impregnated with sulfuric acid and a solidified acid obtained by sintering is used as a catalyst, in which N2O4 is used in the gas phase. be.
ニトロベンゼンはアニリンの原料として、又有機工業薬
品中間体として大量に使用されており重要な基幹工業薬
品である。ニトロベンゼンの製造法は、1834年E、
Mitscherlich ニヨ−+ではじめてベ
ンゼンのニトロ化が行われて以来、今日まで原理的には
変わっていない。Nitrobenzene is used in large quantities as a raw material for aniline and as an intermediate for organic industrial chemicals, and is an important key industrial chemical. The method for producing nitrobenzene was first introduced in 1834.
Since the first nitration of benzene was carried out at the Mitscherlich Nyo-+, the principle has not changed to this day.
すなわち硝酸と濃硫酸の混合物である混酸を用いて液相
でニトロ化する方法である。この方法は初期のバッチ法
から現在の連続法へと製法の進歩はあったものの、廃硫
酸や廃水処理と云う液相法であるが故の問題点は解決さ
れていない。That is, this is a method of nitration in a liquid phase using a mixed acid that is a mixture of nitric acid and concentrated sulfuric acid. Although this process has progressed from the initial batch process to the current continuous process, the problems associated with the liquid phase process of waste sulfuric acid and wastewater treatment remain unsolved.
一方、NOxを用いる気相二1・口止方法は、プロセス
の簡易さや廃硫酸が出ない事、史には濃硝酸より安価な
窒素酸化物を使える事などの利点が予想されるために検
討はされて来たが、残念ながら度広収率なり触媒活性の
点で液相法に及ばず、現在迄のところ工業化されるには
至っティない。今迄知られているベンゼンの気相ニトロ
化法に関する記載は次の2件があるのみである。On the other hand, the gas phase sealing method using NOx is being considered because it is expected to have advantages such as the simplicity of the process, no waste sulfuric acid, and the ability to use nitrogen oxides, which are cheaper than concentrated nitric acid. However, unfortunately, it is not as good as the liquid phase method in terms of high yield and catalytic activity, and so far it has not been commercialized. Until now, there are only the following two descriptions of the gas phase nitration method for benzene.
l)米国特許第2,109,8788及び〃インダスト
リー・アンド・エンジニャリングケミストリ−June
、 1986 、662ページ’ R:1.tへ:z
セ>のN01Iによる気相ニトロ化をシリカゲルを触媒
にして行う旨の記載がある。その記述によると、シリカ
ゲルは特に高表面積のものが高活性であるが、その場合
でも反応温度は810℃の高温で、かつNo!/ベンゼ
ン・モル比=2なる条件下、ベンゼンのWtisv (
z産室間速度)= 0.0206〜(1,165Ks+
/に9−触媒・hrトイう極めて遅いフィード速度で、
空時収率−0,0145〜0.0518Kz/Kt ・
触媒・hr程度の低い成績に止まっ−Cいる。l) U.S. Patent No. 2,109,8788 and Industry and Engineering Chemistry-June
, 1986, p. 662' R:1. to t:z
There is a description that the gas phase nitration of <Se> with N01I is carried out using silica gel as a catalyst. According to the description, silica gel with a particularly high surface area is highly active, but even in that case, the reaction temperature is as high as 810°C, and No. /benzene molar ratio = 2, Wtisv of benzene (
z delivery room speed) = 0.0206~(1,165Ks+
/ to 9-catalyst hr toy at extremely slow feed rate,
Space-time yield -0,0145 to 0.0518 Kz/Kt ・
Catalyst/HR performance is low.-C.
なお、同文献の記述ではシリカゲルにのみ触媒活性があ
り、ボーキサイトや活性アルミナ及びTi□+−軽石な
どはベンゼンの気相ニトロ化には無効だとされている。According to the description in the same document, only silica gel has catalytic activity, and bauxite, activated alumina, Ti□+-pumice, etc. are said to be ineffective for gas phase nitration of benzene.
又反応は次式に従っていると推定されている。It is also estimated that the reaction follows the following equation.
2)英国特許第586.782号にはベンゼンのHNO
a又はNO2による気相ニトロ化を、リン酸塩又は固体
吸収剤に担持したリン酸の焼成物を触媒にして行う旨の
記載がある。その実施例に、よるとメタリン酸カルシウ
ムを触媒とし、ベンゼンのKNOsによる二1・口止で
ニトロベンゼンを得ているが、翁08/ベンゼン・モル
比=0.864 、mK= 175℃、WH8V’=
0.1761’l//l−M[・hrなる条件下、ニト
ロベンゼンの空時収率−0,074Ky/l・触媒・h
r程度の低い成績に止まっている。2) British Patent No. 586.782 describes benzene HNO
There is a description that gas phase nitration using a or NO2 is carried out using a phosphoric acid salt or a calcined product of phosphoric acid supported on a solid absorbent as a catalyst. According to that example, nitrobenzene was obtained by using calcium metaphosphate as a catalyst and choking benzene with KNOs, but the molar ratio of 08/benzene = 0.864, mK = 175°C, WH8V' =
Space-time yield of nitrobenzene under conditions of 0.1761'l//l-M[・hr -0,074Ky/l・catalyst・h
The result has been as low as r.
なお同文献にはN(h+による気相ニトロ化の具体例は
ない。Note that this document does not include any specific example of gas phase nitration using N(h+).
一方、クロルベンゼンのニトロ化に於て生成するニトロ
クロルベンゼンの異性体比(パラ/オルト比)を制御し
ようという目的で気相ニトロ化が検討されている。特開
昭54−9552する分子ふるい触媒(ゼオライト触媒
)の存在下にクロルベンゼンをNOxで気相ニトロ化す
ると、(5)
広い範囲でパラ/オルト比が制御されたニトロクロルベ
ンゼンが得られる旨の記載がある。この場合具体的ゼオ
ライ]・触媒の例示としては[ゼオロン−900J、「
AW−500シーブ」、「ゼオロン800 j、「18
Xモレキユラーシーブ」が載っている。反応成績として
は例えば[ゼオロン900−1−IJを触媒として使用
した場合、反応1i度200℃、NOs/クロルベンゼ
ン・モル比=2.87なる条件下、クロルヘン−V ン
(D M/’EfSV = 0.289 Kf/ t・
触媒−hr なるフィード速度(但し80倍の窒素ガス
で希釈)で、空時収率(STY ) = o、 098
Kf/l−触媒−brの成績であるが米だ不十分な活
性である。On the other hand, gas phase nitration has been studied for the purpose of controlling the isomer ratio (para/ortho ratio) of nitrochlorobenzene produced during nitration of chlorobenzene. When chlorobenzene is gas-phase nitrated with NOx in the presence of a molecular sieve catalyst (zeolite catalyst) according to JP-A-54-9552, (5) nitrochlorobenzene with a para/ortho ratio controlled over a wide range can be obtained. There is a description of. In this case, examples of specific zeolites and catalysts include [Zeolon-900J,
AW-500 Sheave”, “Zeoron 800 j”, “18
"X Molecular Sieve" is listed. As for the reaction results, for example, [When Zeolon 900-1-IJ is used as a catalyst, reaction temperature is 200°C, NOs/chlorobenzene molar ratio = 2.87, chlorhene-V (DM/'EfSV = 0.289 Kf/t・
At a feed rate of catalyst -hr (but diluted with 80 times nitrogen gas), space-time yield (STY) = o, 098
Although the results of Kf/l-catalyst-br are insufficient for rice, the activity is insufficient.
なお同文献には前記ゼオライト触媒を用いてベンゼンの
気相ニトロ化を行なう旨の記述はない。Note that this document does not mention that gas phase nitration of benzene is performed using the zeolite catalyst.
更に同じように、へロベンゼンのニトロ化でP2O比を
制御する目的の一連の特許が知られている。即ち、特開
昭50−121284号、特開昭50−126626号
、特開昭50−(6)
126627号、特開昭51−6981号及び特開昭5
1−19784号である。これらはいスレモハロベンゼ
ンの気相ニトロ化に関するものであるが、その明細書の
記述内容及び実施例から判断すると、その発明の実施態
様は実質的に硝酸をニトロ化剤とする方法に限定される
ものである。上記特許明細書にはニトロ化剤としてNO
2も使われるとの記載も見られるか実施例にはそれを裏
付ける具体例がない1.また硝酸とNO2はNの酸化数
が各々5価と4価であり、明らかに化学種として異るも
のである。従って、硝酸をニトロ化剤とする実施態様と
NO2をニトロ化剤とする実施態様は異なる技術系であ
ると見なされるべきである。Furthermore, a series of patents are known which aim to control the P2O ratio in the nitration of helobenzene. That is, JP-A-50-121284, JP-A-50-126626, JP-A-50-(6) 126627, JP-A-51-6981, and JP-A-5.
No. 1-19784. Although these are related to the gas phase nitration of thremohalobenzene, judging from the contents of the specification and examples, the embodiments of the invention are substantially limited to methods using nitric acid as the nitration agent. It is something that The above patent specification mentions NO as a nitrating agent.
Is there also a statement that 2 is also used? There are no specific examples in the Examples to support this. Furthermore, the oxidation numbers of N in nitric acid and NO2 are pentavalent and tetravalent, respectively, and they are clearly different chemical species. Therefore, embodiments in which nitric acid is the nitrating agent and embodiments in which NO2 is the nitrating agent should be considered to be different systems of technology.
なおこれらはいずれも、ハロベンゼンのニトロ化に関す
る記述だけであり、本発明の対象であるベンセンのニト
ロ化によるニトロベンゼンの製法については何ら記述は
ない。Note that all of these are only descriptions regarding the nitration of halobenzene, and there is no description at all about the method for producing nitrobenzene by nitration of benzene, which is the object of the present invention.
所テニトロベンセンは冒頭に述べたように、基幹工業薬
品であり、その生産量はハロニトロベンゼンをはるかに
上回り、従って優れた新規プロセスが生まれた場合、そ
のメリットは美大なものが期待される。As mentioned at the beginning, tenitrobenzene is a key industrial chemical, and its production volume far exceeds that of halonitrobenzene. Therefore, if an excellent new process is developed, the benefits are expected to be enormous. .
本発明者らはベンゼンのNOxによる気相ニトロ化がプ
ロセスI:前述の如き種々の利点を有する可能性に鑑み
て、気相ニトロ化に活性な触媒の検索を鋭意進めた結果
本発明に到達したものである。In view of the possibility that gas phase nitration of benzene using NOx has the various advantages described above, the present inventors have arrived at the present invention as a result of diligently searching for a catalyst active in gas phase nitration. This is what I did.
ずなオ)ち本発明はベンゼンをNO2などのニトロ化剤
を使用して気相ニトロ化する方法に於て、硫酸を固体状
担体に含浸、焼成した固型化酸を触媒とする事を特徴と
するベンゼンの気相ニトロ化方法に関するものである。The present invention is a method for nitrating benzene in a gas phase using a nitrating agent such as NO2, in which a solidified acid obtained by impregnating a solid carrier with sulfuric acid and calcining the catalyst is used. The present invention relates to a characteristic gas phase nitration method of benzene.
本発明方法によれば、従来公知のベンゼンの気相二1・
口止方法で使われているシリカゲル触媒又はリン酸塩系
触媒に比して極めて高い触媒活性が得られると共に、ジ
ニトロベンゼンなどの副生物が殆んどない良好な反応選
択性が得られる。According to the method of the present invention, the gas phase of the conventionally known benzene 21.
Extremely high catalytic activity can be obtained compared to the silica gel catalyst or phosphate-based catalyst used in the blocking method, and good reaction selectivity with almost no by-products such as dinitrobenzene can be obtained.
ところで硝酸と硫酸の混練によろ液相ニトロ化に対して
は、−ド配(2)〜(4)式で示されろイオン機構で説
明されテイルが(Kirk −OthmerI Enc
yclopedia of Cbemical ’l’
echuolt)gy/r 2 nd、 Ed。By the way, the filtrate-liquid phase nitration by kneading nitric acid and sulfuric acid is explained by the ionic mechanism, which is expressed by the -domain equations (2) to (4), and the tail is (Kirk -OthmerI Enc
cyclopedia of Cbemical 'l'
ecuolt)gy/r 2nd, Ed.
Vol、 18 785〜788 頁)十
fiNOg +1128(、)< 、−士H2N’Os
十klF30a (2)気相ニトロ化に対して
は諸説があり、米tご疋よっていない。Vol, 18 785-788)
10klF30a (2) There are various theories regarding gas phase nitration, and there is no consensus among the US.
つまり前記引例文献790〜795頁によると、遊離基
機構で説明されているが(式(5)〜(7))
%式%(5)
(6)
(7)
)
〜7)芳香族カチオンラジカルとNO2間の反応機構を
推定しているしく式(8)〜(9)など)C6<・+c
6n6: (06H6)す・−(8)(C,H,)−’
;−十NO2−→0,1(、、NO2+ 0aHa −
(9)一方、Aus 1(108,Pらによルト(N
Internal、1onalJournal of
0hea+1cal Kin@tios // 1
978(IQ) 657〜667)カチ」ン機簿を推定
している。In other words, according to pages 790 to 795 of the cited document, it is explained by a free radical mechanism (formulas (5) to (7)) (% formula % (5) (6) (7) ) to 7) aromatic cation radical. Equations (8) to (9), etc.) estimating the reaction mechanism between
6n6: (06H6)su・-(8)(C,H,)-'
;-10NO2-→0,1(,,NO2+ 0aHa-
(9) On the other hand, Aus 1 (108, P et al.
Internal, 1onalJournal of
0hea+1cal Kin@tios // 1
978 (IQ) 657-667) Estimating the machine list.
この様な状況下での気相ニトロ化に活性な触媒の検索は
、作業仮説の設定すら難しく困難を極めjコ訳であるが
、本発明方法で使用する固型化硫酸触媒が高活性を発揮
したことは実に驚くべき発見である。Searching for a catalyst active in gas-phase nitration under such circumstances is extremely difficult, as even establishing a working hypothesis is difficult, but the solidified sulfuric acid catalyst used in the method of the present invention has high activity. What they achieved was a truly astonishing discovery.
本発明方法に於て使用する触媒について説明する。The catalyst used in the method of the present invention will be explained.
硫酸をシリカゲルに含浸、焼成して作った固型1b酸は
石油の接触クラッキングに対し触媒活性を有することは
知られ−Cおり(例えばM、WTa+nale //
Diso、 Faraday 8oa、 8270 (
1960) /’ )また、その#性度と酸強度が11
. A、 Ban5siによって測定されている( t
t J、Phyi+、 Ohem、 61 、970(
1957)す。It is known that solid 1b acid made by impregnating sulfuric acid into silica gel and firing it has catalytic activity for catalytic cracking of petroleum (e.g. M, WTa+nale//
Diso, Faraday 8oa, 8270 (
1960) /') Also, its #ness and acid strength are 11
.. A, as measured by Ban5si (t
t J, Phyi+, Ohem, 61, 970 (
1957)
後者の文献によると、固体硫酸は酸性度関数n。According to the latter literature, solid sulfuric acid has an acidity function n.
で表示して−5,6>l1iO> −8,2なる比較的
強い酸強度を有するとされている。本発明方法での気相
ニトロ化が、遊a&機構がイオン機構かについては前述
の様に定説はないが、結果的に本発明方法に於る固型化
酸が有効であった事実を考慮すると、カチオン機構で反
応が進んでいる可能性が大きい。It is said to have a relatively strong acid strength expressed as -5,6>l1iO>-8,2. As mentioned above, there is no established theory as to whether the free a & ionic mechanism of gas phase nitration in the method of the present invention is an ionic mechanism, but considering the fact that the solidified acid in the method of the present invention was effective as a result. Therefore, it is highly likely that the reaction is proceeding through a cationic mechanism.
本発明方法で使用する硫酸はできるだけ濃度の高いもの
、好ましくは濃硫酸が使われる。担体に含浸させる硫酸
の量は1〜50 wt%、好ましくは5〜80 wt%
である。The sulfuric acid used in the method of the present invention is one with as high a concentration as possible, preferably concentrated sulfuric acid. The amount of sulfuric acid impregnated into the carrier is 1 to 50 wt%, preferably 5 to 80 wt%.
It is.
硫酸を含浸させる固体状担体としては、シリカ0アルミ
ナ、シリカゲル、ケイソウ土またはアルミナなどである
。Examples of the solid carrier impregnated with sulfuric acid include silica-0-alumina, silica gel, diatomaceous earth, and alumina.
硫酸を含浸させた後の焼成処理は100℃〜400°C
1好ましくは150℃〜300℃の温度で数時間行われ
る。Firing treatment after impregnation with sulfuric acid is from 100℃ to 400℃
1 Preferably carried out at a temperature of 150°C to 300°C for several hours.
本発明方法に於るニトロ化剤としては、NO2、及びN
2O4があるが、特にNO2が好ましい。またNoは酸
素の共存下すみやかにNo 2に酸化されることは良く
知られているが、本発明方法に於ても、NOと02の混
合カスをフィードして反応系中で生成するNO2をニト
ロ化剤とする方法も採用される。 (11)
本発明に於る気相ニトロ化は反応温度100℃〜800
℃の温度を保ちつつ、固型化硫酸触媒床上に、ベンゼン
と二l・口上剤の気相混合物を連続的にフィードし、生
成するニトロベンゼンを前記気相混合物から分離するこ
とによって実施される。好ましくは前記気相ニトロ化反
応は希釈剤たる窒素などの不活性ガスの共存下で実施さ
れる。この場合の具体的反応の仕方を例示するならば次
の様になる。ベンゼンを予備加熱して気化させ、一定流
速の希釈用窒素ガスと混合後反応器中にフィードし、そ
して次いで加熱触媒床に接触する前にニトロ化剤(NO
2など)の気相流と混合後加熱触媒床に導き接触反応す
る。The nitrating agents in the method of the present invention include NO2 and N
Among them, NO2 is particularly preferred. Furthermore, it is well known that No is readily oxidized to No2 in the presence of oxygen, but in the method of the present invention, NO2 generated in the reaction system is A method using a nitrating agent is also adopted. (11) In the gas phase nitration in the present invention, the reaction temperature is 100°C to 800°C.
It is carried out by continuously feeding a gaseous mixture of benzene and a mouthwash over a bed of solidified sulfuric acid catalyst while maintaining the temperature at 0.degree. C., and separating the formed nitrobenzene from the gaseous mixture. Preferably, the gas phase nitration reaction is carried out in the presence of an inert gas such as nitrogen as a diluent. A specific example of how the reaction occurs in this case is as follows. Benzene is preheated and vaporized, fed into the reactor after mixing with a constant flow of diluent nitrogen gas, and then treated with a nitrating agent (NO) before contacting the heated catalyst bed.
After mixing with the gas phase flow of (2), etc., the mixture is introduced into a heated catalyst bed for a catalytic reaction.
本発明で好ましく使われるニトロ化剤はNO2であるが
、NO2のベンゼンに対するモル比は一般には0.1〜
8.0であり、さらに好ましくは08〜2.5のモル比
である。The nitrating agent preferably used in the present invention is NO2, and the molar ratio of NO2 to benzene is generally from 0.1 to
The molar ratio is 8.0, more preferably 08 to 2.5.
各反応成分及び希釈用窒素ガスは所定の組成(12)
比を保らつつ任意の空間速度で反応器中にフィードする
ことができる。Each reaction component and diluting nitrogen gas can be fed into the reactor at any space velocity while maintaining a predetermined composition (12) ratio.
本発明を更に詳細に説明するために、以下に具体的実施
例を載げるが、その中では2つの方法で触媒の活性を比
較検討している。1つの方法は通常の触媒活性試験に使
われる常圧固定床流通反応であり、もう1つはマイクロ
パルス反応である。第1の方法である常圧固定床流通反
応データはいわゆる定常活性を示すものとして特許、文
献等で触媒活性の証明手段に多用され問題はない。In order to explain the present invention in more detail, specific examples are listed below, in which the activity of the catalyst is compared and studied using two methods. One method is an atmospheric fixed bed flow reaction, which is commonly used in catalyst activity tests, and the other is a micropulse reaction. The first method, atmospheric pressure fixed bed flow reaction data, is often used in patents, literature, etc. as a means of proving catalytic activity, as it indicates so-called steady-state activity, and there is no problem.
我々が使った第2の方法であるマイクロパルス反応はマ
イクロリアクターとガスクロマトグラフを直結した形の
反応器であり、極めて簡易に触媒活性が測定し得るので
あるが、その測定値はいわゆる非定常活性を示すものと
云われている。マイクロパルス反応については村上ら(
#触媒vo1.2B (6) 488〜487頁(19
81年))及(J Walter T、 Re1chl
e (tt Cl1F&l”ECH,Nov、 198
1698〜702 # )が、触媒活性試験に於けるそ
の(18)
1“用件と使用上の留意点を記述している。それによれ
ば前述の様にマイクロパルス反応は非定常反応であり、
流通反応は定常反応であるから両者の結果は一致するこ
ともあれば一致しないこともあると記述されているが、
反応の詳細な比較は別にしても、ある触媒の活性が零で
あるか否かとか、2種の触媒間に活性の大巾な差異が有
るか否かとかいった大雑把な活性比較には十分便用に耐
える。現に各種の文献に於ても触媒活性の比較検討にマ
イクロパルス反応を使っている例が散見される(例えば
I第48回触媒討論会予稿果(ト)(1981年)19
4頁、220頁、286頁、272頁、278頁などI
)我々もその簡便さ故にマイクロパルス反応法を使った
訳であるが、適宜常圧流通法との比較データも採取した
。その結果、反応を限定した場合(本発明の場合はベン
ゼンのNO2による気相ニトロ化)マイクロパルス反応
で得られた触媒活性の大小の傾向は常圧流通反応での傾
向と一致することを確認している。The second method we used, the micropulse reaction, is a reactor in which a microreactor and a gas chromatograph are directly connected, and the catalytic activity can be measured extremely easily. It is said to indicate. Regarding the micropulse reaction, Murakami et al.
#Catalyst vol. 1.2B (6) pp. 488-487 (19
1981)) and (J Walter T, Re1chl
e (tt Cl1F&l”ECH, Nov, 198
1698-702 #) describes its (18) 1 "requirements and precautions for use in catalyst activity testing. According to it, as mentioned above, the micropulse reaction is an unsteady reaction,
It is stated that because the flow reaction is a stationary reaction, the results of the two may or may not match.
Aside from detailed comparisons of reactions, it is useful for rough activity comparisons such as whether the activity of a certain catalyst is zero or whether there is a large difference in activity between two types of catalysts. Sufficient for use. In fact, there are some examples of using micropulse reactions for comparative studies of catalytic activity in various literature (for example, I 48th Catalyst Symposium Preliminary Results (G) (1981), 19
4 pages, 220 pages, 286 pages, 272 pages, 278 pages, etc. I
) We also used the micropulse reaction method because of its simplicity, but we also collected data for comparison with the normal pressure flow method. As a result, it was confirmed that when the reaction is limited (in the case of the present invention, gas-phase nitration of benzene with NO2), the trend in the magnitude of catalyst activity obtained in the micropulse reaction is consistent with the trend in the normal pressure flow reaction. are doing.
(14)
以下の実施例は本発明の具体的実施形態の一部であり、
本発明はそれらに限定されるものではない。(14) The following examples are part of specific embodiments of the present invention,
The present invention is not limited thereto.
実施例中の転化率、収率、選択率の計算方法は次のとお
りである。The calculation methods for conversion rate, yield, and selectivity in Examples are as follows.
実施例1(その1)
シリカ・アルミナ(日揮化学製、N−681(L)、ア
ルミナ金員=18wt%)粉体20部に濃硫酸10部を
均一に含浸後、200℃で2hrs焼成した。Example 1 (Part 1) 20 parts of silica/alumina (manufactured by JGC Chemical, N-681 (L), alumina metal = 18 wt%) powder was uniformly impregnated with 10 parts of concentrated sulfuric acid, and then baked at 200°C for 2 hours. .
これを加圧成型後、砕いて24〜28メツシユの粒状触
媒とした。This was molded under pressure and crushed to obtain a granular catalyst of 24 to 28 meshes.
実施例1 (その2)(マイクロパルス反応による触媒
活性テスト)゛まずマイクロパルス反応方法について説
明する。反応装置は先に引用した村上らの文献(〃触媒
V(11,28(6) 488〜487頁(1981)
)に詳しく記述されている。内径4震、長さ200n
の石英ガラス製マイクロ反応管を電気炉中に納めカスク
ロマトグラフのインジェクション部の前段に取り付ける
。Example 1 (Part 2) (Catalytic activity test using micropulse reaction) First, the micropulse reaction method will be explained. The reaction apparatus is described in the literature of Murakami et al. (Catalyst V (11, 28 (6), pp. 488-487 (1981)) cited above.
) is described in detail. Inner diameter 4 earthquakes, length 200n
A quartz glass micro-reaction tube is placed in an electric furnace and attached to the front stage of the injection section of a gas chromatograph.
このマイクロ反応管中に石英ウールを詰めて気化部とし
た後、その下層に触媒を約50Tn9〜約200■程度
充填しキャリヤーガスとしての窒素又はヘリウムを一定
流量流しながら所定温度でまず触媒の予熱処理をする。After filling this micro-reaction tube with quartz wool to form a vaporization section, the lower layer is filled with a catalyst of about 50Tn9 to about 200Tn, and the catalyst is first preheated at a predetermined temperature while nitrogen or helium as a carrier gas is flowed at a constant flow rate. Heat treatment.
次いでベンゼンとN2O4の混合物を水冷下(ベンゼン
/N2O4混合物系の爆発範囲データはない。潜在的危
険性が考えられるため、混合物は極少鼠作り、水冷下取
り扱った。)マイクロシリンジで約05〜1μを採取し
、す早くマイクロ反応管の−L部から注入する。ベンゼ
ンとN 204の混合物はキャリアーガス(窒素又はヘ
リウム)と共に石英ウールの気化部を通り各々ベンゼン
蒸気とNO2ガスになった後触媒床に接触、反応する。Next, a mixture of benzene and N2O4 was cooled with water (there is no explosion range data for the benzene/N2O4 mixture system. Because of the potential danger, the mixture was prepared in a very small volume and handled under water cooling) using a microsyringe of about 0.5 to 1 μm. Collect the sample and immediately inject it from the -L part of the micro reaction tube. A mixture of benzene and N204 passes through a quartz wool vaporization section together with a carrier gas (nitrogen or helium) to become benzene vapor and NO2 gas, respectively, and then contacts the catalyst bed and reacts.
この反応混合物は直接ガスクロマトグラフに導かれ分析
される。This reaction mixture is directly introduced into a gas chromatograph and analyzed.
前記マイクロパルス反応器を使い以下の様に実験した。Experiments were carried out as follows using the micropulse reactor.
実施例1(その1)で合成した固型化硫酸触媒を50〜
マイクロ反応管に充填し、ヘリウムを48−7分の流速
で流しながら200℃で0.5時間予熱処理をしTこ。The solidified sulfuric acid catalyst synthesized in Example 1 (Part 1) was
Fill a micro reaction tube and preheat at 200°C for 0.5 hour while flowing helium at a flow rate of 48-7 minutes.
ベンゼンとN2O4の混合物(NO2/ベンゼン・モル
比=2.7)を水冷Fマイクロシリンジで0.5μを採
取し、す早くマイクロ反応管の−L部から注入しtコ。Collect 0.5μ of a mixture of benzene and N2O4 (NO2/benzene molar ratio = 2.7) with a water-cooled F microsyringe and quickly inject it from the -L section of the microreaction tube.
触媒床の温度(反応温度)は200℃である。ガスクロ
マトグラフの分析条件は以下の様にした。The temperature of the catalyst bed (reaction temperature) is 200°C. The analysis conditions for the gas chromatograph were as follows.
ガラスカラム 8ΩX 2 m
カラム充填剤=5%P EG 2 Q M/Unipo
rtHP (iQ〜80メツシュ
注入部温度=250℃
(17)
得られた結果は、ベンゼン転化率= 99.1%、ニト
ロベンセン選択率−97,8%であった。Glass column 8ΩX 2 m Column packing material = 5% PEG 2 Q M/Unipo
rtHP (iQ~80 mesh injection part temperature = 250°C (17) The obtained results were that the benzene conversion rate = 99.1% and the nitrobenzene selectivity -97.8%.
実施例2
NOm /ベン址ン・モル比を1.76.1.1.0.
55及び0.2とする他は実施例1と全く同一に反応6
を行なった。得られた結果を表−1に示す。Example 2 The NOm/benzene molar ratio was set to 1.76.1.1.0.
Reaction 6 was carried out in exactly the same manner as in Example 1 except that 55 and 0.2 were used.
I did this. The results obtained are shown in Table-1.
表 −1
実施例3
シリカゲル(測面化学製、S=720m”/g)90部
に濃硫酸10部を含浸後200℃で2krrs、 焼成
した。これを加圧成型後砕いて24〜48メソシユの粒
状触媒とした。これを(1g)
50 In?マイクロ反応管に充填し、実施例1(その
2)に準じて反応を行なった。N02/ベンゼンのモル
比=1.0である。得られた結果はベンゼン転化率−8
0,4%ニトロベンゼン選択率=98.6%であった。Table 1 Example 3 90 parts of silica gel (manufactured by Menso Kagaku, S = 720 m"/g) was impregnated with 10 parts of concentrated sulfuric acid and fired at 200°C for 2 krrs. After pressure molding, it was crushed to give 24 to 48 mesos. (1 g) of this was packed into a 50 In? micro reaction tube, and the reaction was carried out according to Example 1 (Part 2). The molar ratio of N02/benzene = 1.0. The result is a benzene conversion rate of −8
The selectivity for 0.4% nitrobenzene was 98.6%.
実施例4
シリカゲル(測温化学製、8−= 72 On?/9
)20部に濃硫酸10部を含浸後200℃で2)irs
、焼成した。これを加圧成型後枠いて24〜48メソシ
ユ粒状触媒とした。この触媒50〜をマイクロ反応管に
充填し実MfAeiIJ1(その2)に準じて反応を行
なった。但し反応温度は200℃、150℃及び100
℃と8点変えた。得られた結果を表−2に示す。Example 4 Silica gel (manufactured by Onsen Kagaku, 8-=72 On?/9
2) irs at 200℃ after impregnating 20 parts of ) with 10 parts of concentrated sulfuric acid.
, fired. This was molded under pressure and then molded into a granular catalyst having a size of 24 to 48 mesh. A micro reaction tube was filled with 50~ of this catalyst, and a reaction was carried out according to the actual MfAeiIJ1 (Part 2). However, the reaction temperature is 200℃, 150℃ and 100℃.
℃ and 8 points changed. The results obtained are shown in Table-2.
表 −2
比較例1
ベンゼン/N02からの気相ニトロ化に公知の触媒であ
るシリカゲル(0,8,1’、 2,109,878号
)を501ダ用い、かつ表−8に示す所定反応温度とす
る他は、実施例1(その2)に準じて反応を行なった。Table 2 Comparative Example 1 501 days of silica gel (0,8,1', No. 2,109,878), which is a known catalyst, was used for gas phase nitration of benzene/N02, and the specified reaction shown in Table 8 was carried out. The reaction was carried out according to Example 1 (Part 2) except for changing the temperature.
得られた結果を表−8に示す。The results obtained are shown in Table 8.
表 −8
比較例2
ベンゼン/NO2からの気相ニトロ化に公知の触媒であ
るリン酸系触媒(Briも、 P、 586,782号
)を50 rrq用いる他は実施例1(その2)と同一
に反応を行なった。得られた結果を表−4に示す。Table 8 Comparative Example 2 Same as Example 1 (Part 2) except that 50 rrq of phosphoric acid catalyst (Bri, P, No. 586,782), which is a known catalyst for gas phase nitration from benzene/NO2, was used. The reaction was carried out identically. The results obtained are shown in Table-4.
表 −4
実施例5
通常の常圧固定床流通反応装置を用い以下のように実験
した。長さ32傭、内径1crnの石英ガラス反応管中
に実施例1(その1)で調製した固型化硫酸触媒(24
〜48メソシユ)を2g(8,8印)充填し、N2気流
下200℃で2時間予熱処理をした。マイクロフィーダ
ーによってベンゼンを熔融アルミナ充填式(21)
止器iこフィードして気化する。一方、氷冷したマイク
ロフィーダーによってN2O4をフィードし気化したN
Oxを希釈用のN2キャリヤーで希釈しベンゼン蒸気と
混合する。Table 4 Example 5 Experiments were conducted as follows using a normal atmospheric pressure fixed bed flow reactor. The solidified sulfuric acid catalyst prepared in Example 1 (Part 1) (24 cm
2 g (marks 8,8) of 48 mSO3) were filled and preheated at 200° C. for 2 hours under a N2 stream. Benzene is fed into a molten alumina filling system (21) using a microfeeder and vaporized. On the other hand, N2O4 was fed by an ice-cooled microfeeder and the N2O4 was vaporized.
The Ox is diluted with a diluent N2 carrier and mixed with benzene vapor.
原料混合ガスは反応管に導かれ、所定温度に保たれた触
媒床で接触反応する。反応混合物ガスは反応管を出た後
水冷トラップされ、排ガスはアルカリ水で中和された後
パージされた。トラップ物はガスクロマトグラフによっ
て分析された。各反応条件に於ける反応結果を表−5に
示す。但し、表中の略記号は下記のとおりである。The raw material mixed gas is introduced into a reaction tube and undergoes a catalytic reaction on a catalyst bed maintained at a predetermined temperature. After leaving the reaction tube, the reaction mixture gas was trapped in water cooling, and the exhaust gas was neutralized with alkaline water and then purged. The trapped material was analyzed by gas chromatography. Table 5 shows the reaction results under each reaction condition. However, the abbreviations in the table are as follows.
8■:ガス空間速度(hr )
8’l’Y :空時収率(K9/z −0at −hr
、 )(22)8■: Gas space velocity (hr) 8'l'Y: Space-time yield (K9/z -0at -hr
, )(22)
Claims (1)
気相ニトロ化する方法に於いて、硫酸を固体状担体に含
浸、焼成した固型化酸を触媒として反応させることを特
徴とするベンゼンの気相ニトロ化方法。 (2)固体状担体が、シリカ・アルミナ、シリカゲル、
ケイソウ土またはアルミナである特許請求の範囲第1項
記載の方法。 (8)硫酸の含浸量が担体の5〜50 wt%の範囲で
ある特許請求の範囲第1または2項記載の方法。 (4)焼成を100〜400℃の温度範囲で行う特許請
求の範囲第1.2または8項記載の方法。 (5)気相ニトロ化反応を100〜800℃の範囲の温
度で実施する特許請求の範囲fJ1.2.8または4項
記載の方法。 (6) 気相ニトロ化反応に於て、ベンゼン1モル当
り 0.1〜8モルのニトロ化剤が使用される特許請求
の範囲第1.2.8.4または5項記載の方法。 (7) K相ニトロ化反応を窒素などの不活性ガスを
希釈剤として行う特許請求の範囲第1.2S、4.5J
たは6項記載の方法。 (8)前言気相ニトロ化反応によって得られる生成物が
ニトロベンゼンである特許請求の範囲第1.2.8.4
.5.6または7項記載の方法。[Claims] (1) A method for nitrating benzene in a gas phase using NO2 or N2O4, characterized in that the reaction is carried out using a solidified acid obtained by impregnating a solid carrier with sulfuric acid and calcining it as a catalyst. A method for gas phase nitration of benzene. (2) The solid carrier is silica/alumina, silica gel,
The method of claim 1, wherein the material is diatomaceous earth or alumina. (8) The method according to claim 1 or 2, wherein the amount of sulfuric acid impregnated is in the range of 5 to 50 wt% of the carrier. (4) The method according to claim 1.2 or 8, wherein the firing is carried out at a temperature range of 100 to 400°C. (5) The method according to claim fJ1.2.8 or 4, wherein the gas phase nitration reaction is carried out at a temperature in the range of 100 to 800°C. (6) The method according to claim 1.2.8.4 or 5, wherein 0.1 to 8 mol of nitration agent is used per 1 mol of benzene in the gas phase nitration reaction. (7) Claims 1.2S and 4.5J in which the K-phase nitration reaction is carried out using an inert gas such as nitrogen as a diluent.
or the method described in Section 6. (8) Claim 1.2.8.4, wherein the product obtained by the gas phase nitration reaction is nitrobenzene.
.. 5. The method described in 6 or 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57063326A JPS58180459A (en) | 1982-04-15 | 1982-04-15 | Method for producing nitrobenzene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57063326A JPS58180459A (en) | 1982-04-15 | 1982-04-15 | Method for producing nitrobenzene |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58180459A true JPS58180459A (en) | 1983-10-21 |
Family
ID=13226014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57063326A Pending JPS58180459A (en) | 1982-04-15 | 1982-04-15 | Method for producing nitrobenzene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58180459A (en) |
-
1982
- 1982-04-15 JP JP57063326A patent/JPS58180459A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2961128B2 (en) | Method for producing phenol and its derivatives | |
JPH0422897B2 (en) | ||
US4415744A (en) | Vapor phase nitration of aromatic compounds | |
US4107220A (en) | Gas phase nitration of chlorobenzene | |
JP2008069156A (en) | Method for producing aromatic or heteroaromatic nitrile, and supported catalyst for use in the method | |
JPS6312450B2 (en) | ||
KR20160004281A (en) | Method for producing nitroalkanes in a microstructured reactor | |
EP2490999B1 (en) | Isothermal reactor for hydrocarbon nitration | |
US4426543A (en) | Vapor phase nitration of aromatic hydrocarbons | |
US4418230A (en) | Method for gaseous phase nitration of aromatics | |
US4347389A (en) | Vapor phase nitration of aromatic compounds | |
JP2001163835A (en) | Method for producing dinitronaphthalene isomeric mixture with increased ratio of 1,5-dinitronaphthalene | |
JPS58180459A (en) | Method for producing nitrobenzene | |
CN103408429B (en) | Method for nitration synthesis of nitrobenzene under catalysis of strong acid-type ZSM-5 molecular sieve | |
JPH0525550B2 (en) | ||
JPH0253100B2 (en) | ||
JPH04273858A (en) | Preparation of 3-methylpyridine from 2-methylglutaronitrile | |
JPS6229556A (en) | Gas phase nitration method of benzene | |
JPH0533097B2 (en) | ||
US20030166980A1 (en) | Process for the nitration of xylene isomers using zeolite beta catalyst | |
US3711552A (en) | Process for the manufacture of n,n-bis-(2-chloroethyl)-2-nitro-4-alkylaniline | |
Azadi et al. | N-Methyl-2-chloropyridinium iodide/NaNO2/Wet SiO2: Neutral reagent system for the nitration of activated aromatic compounds under very mild conditions | |
JPS58183644A (en) | Gas phase nitration method | |
JPS58185543A (en) | Method for catalytic nitration of benzene | |
JPS5877830A (en) | Preparation of iodobenzene |