[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6229556A - Vapor-phase nitration of benzene - Google Patents

Vapor-phase nitration of benzene

Info

Publication number
JPS6229556A
JPS6229556A JP60167972A JP16797285A JPS6229556A JP S6229556 A JPS6229556 A JP S6229556A JP 60167972 A JP60167972 A JP 60167972A JP 16797285 A JP16797285 A JP 16797285A JP S6229556 A JPS6229556 A JP S6229556A
Authority
JP
Japan
Prior art keywords
benzene
nitration
catalyst
nitrating
niobium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60167972A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
洋 佐藤
Kenichi Hirose
賢一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP60167972A priority Critical patent/JPS6229556A/en
Publication of JPS6229556A publication Critical patent/JPS6229556A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain nitrobenzene useful as a raw material for aniline and synthetic intermediate for organic industrial chemicals in good yield with almost no formation of by-products, by nitrating benzene with a nitrating agent in the vapor phase in the presence of a niobium oxide catalyst. CONSTITUTION:Benzene is nitrated with NO2 or N2O4 as a nitrating agent in the presence of a niobium oxide catalyst, preferably in the presence of an inert gas, e.g. nitrogen, which is a diluent in the vapor phase at 80-250 deg.C. The amount of the nitrating agent based on the benzene is as follows; 0.1-3.0, preferably 0.2-2.0 molar ratio of NO2 to the benzene and 0.05-1.5, preferably 0.05-1.0 molar ratio of the N2O4 used to the benzene. The niobium oxide is readily obtained by heat-treating niobium hydroxide, etc.

Description

【発明の詳細な説明】 本発明はベンゼンの気相ニトロ化方法に関し、詳しくは
ベンゼンをNO2またはN2O4を用いて気相ニトロ化
する方法に於て、触媒として酸化ニオブを用いることを
特徴とするベンゼンの気相ニトロ化方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for nitrating benzene in a gas phase, and more specifically, the method for nitrating benzene in a gas phase using NO2 or N2O4 is characterized by using niobium oxide as a catalyst. This invention relates to a method for gas phase nitration of benzene.

ベンゼンのニトロ化により得られるニトロベンゼンはア
ニリンの原料として、また有機工業薬品中間体として大
量に使用されており、化学工業における重要な基幹工業
薬品である。ニトロベンゼンの製造法は、1884年E
、Mitscherlichによってはじめてベンゼン
のニトロ化が行なわれて以来今日まで原理的には変わっ
ていない。
Nitrobenzene obtained by nitration of benzene is used in large quantities as a raw material for aniline and as an intermediate for organic industrial chemicals, and is an important key industrial chemical in the chemical industry. The method for producing nitrobenzene was first developed in 1884.
Since the nitration of benzene was first carried out by Mitscherlich, the principle has not changed to this day.

すなわち硝酸と濃硫酸の混合物である混酸を用いて液相
でニトロ化する方法である。この方法は初期のバッチ法
から現在の連続法へと製法の進歩はあったものの、廃硫
酸や廃水処理と云う液相法であるが故の問題点は解決さ
れてない。
That is, this is a method of nitration in a liquid phase using a mixed acid that is a mixture of nitric acid and concentrated sulfuric acid. Although this process has progressed from the initial batch process to the current continuous process, the problems associated with the liquid phase process of waste sulfuric acid and wastewater treatment remain unsolved.

一方N(Jxによる気相ニトロ化法は、プロセスの簡易
さや廃硫酸が出ない事更には濃硝酸より安価な窒素酸化
物を使える事などの利点が予想されるために検討はされ
て来たが、残念ながら反応収率なり触媒活性の点で液相
法に及ばず、現在迄のところ工業化されるには至ってい
ない。
On the other hand, the gas phase nitration method using N(Jx) has been studied because it is expected to have advantages such as the simplicity of the process, no waste sulfuric acid, and the use of nitrogen oxides, which are cheaper than concentrated nitric acid. However, unfortunately, it is not as good as the liquid phase method in terms of reaction yield and catalytic activity, and has not been industrialized to date.

ベンゼンの気相ニトロ化法(こ関しては次の方法が知ら
れている。
Gas-phase nitration of benzene (the following methods are known in this regard:

l)米国特許第2,109,878号及びインダストリ
ー・アンド・エンジニャリングケミストリーJune 
、 1986 662ページにはベンゼンのNOxによ
る気相ニトロ化をシリカゲルを触媒にして行なう旨の記
載がある。その記述によると、シリカゲルは特に高表面
積のものが高活性であるが、その場合でも、反応温度は
810”Cの高温でかつNO27ベンゼン、モル比=2
なる条件下、ベンゼンのWH5V(重量空間速度)=0
.0206〜0.165〜/〜触媒・hrという極めて
遅いフィード速度で、空時収率=0.0145〜0.0
518に#・ニトロベンゼン/助・触媒・hr程度の低
い成積に止まっている。
l) U.S. Patent No. 2,109,878 and Industry and Engineering Chemistry June
, 1986, page 662, there is a description that gas phase nitration of benzene with NOx is carried out using silica gel as a catalyst. According to that description, silica gel with a particularly high surface area is highly active, but even in that case, the reaction temperature is as high as 810"C, and the molar ratio of NO27 benzene is 2.
Under the conditions, WH5V (weight hourly space velocity) of benzene = 0
.. Space-time yield = 0.0145-0.0 at extremely slow feed rate of 0206~0.165~/~catalyst/hr
518, the formation remained at a low level of #.nitrobenzene/co-catalyst.hr.

なお同文献の記述では、シリカゲルにのみ触媒活性があ
り、ボーキサイトや、活性アルミナ及びTi0g  −
軽石などはベンゼンの気相ニトロ化には無効だとされて
いる。又、反応は次式に従っていると推定されている。
According to the description in the same document, only silica gel has catalytic activity, and bauxite, activated alumina, and Ti0g-
Pumice and other materials are said to be ineffective for gas-phase nitration of benzene. It is also estimated that the reaction follows the following equation.

2)英国特許第586,782号にはベンゼンのHNU
s又はNO2による気相ニトロ化を、リン酸塩又は固体
吸収剤に担持したリン酸の焼成物を触媒にして行なう旨
の記載がある。その実施例によると、メタリン酸カルシ
ウムを触媒とし、ベンゼンのHNOs によるニトロ化
でニトロベンゼンを得ているが、)iN08/ベンゼン
・モル比=0.864、温度=176°C1Wl(SV
=0.176Ky/l ・触媒・hrナル条件下、ニト
ロベンゼンの空時収率=0.074Kl/l・触媒・h
r程度の低い成績に止まっている。なお同文献−こはニ
トロ化剤としてNowを使った実施例はなく、発明の実
質的態様は硝酸によるニトロ化と解釈される。
2) British Patent No. 586,782 describes HNU of benzene.
There is a description that gas phase nitration using s or NO2 is carried out using a phosphoric acid salt or a calcined product of phosphoric acid supported on a solid absorbent as a catalyst. According to that example, nitrobenzene was obtained by nitration of benzene with HNOs using calcium metaphosphate as a catalyst, iN08/benzene molar ratio = 0.864, temperature = 176°C1Wl (SV
=0.176Ky/l・Catalyst・hr Space-time yield of nitrobenzene under null conditions=0.074Kl/l・Catalyst・h
The result has been as low as r. Note that this document does not contain any examples using Now as a nitration agent, and the substantial embodiment of the invention is interpreted as nitration with nitric acid.

一方クロルベンゼンのニトロ化に於て生成するニトロク
ロルベンゼンの異性体比(パラ/オルト比)を制御しよ
うという目的で気相ニトロ化が検討されている。特開昭
54−細孔径を有する分子ふるい触媒(ゼオライト触媒
)の存在下にクロルベンゼンをNowで気相ニトロ化す
ると、広い範囲でパラ/オルト比が制御されたニトロク
ロルベンゼンが得られる旨の記載がある。この場合具体
的ゼオライト触媒の例示としては[ゼオロン−900H
」、「AW−500シーブ」 「ゼオロン800J  
rtaxモレキュラーシーブ」が載っている。反応成績
としては例えば「ゼオロン900−HJを触媒として使
用した場合、反応温度200℃、 NO2/クロルベン
ゼン・モル比=2.37なる条件下、クロルベンゼンの
WH8V=0.289Ky/l−触媒・hrナルフィー
ド速度(但し30倍の窒素ガスで希釈)で、空時収率(
STY) = 0.098 Ky/l・触媒・brの成
績であるが未だ不充分な活性である。
On the other hand, gas phase nitration has been studied for the purpose of controlling the isomer ratio (para/ortho ratio) of nitrochlorobenzene produced in the nitration of chlorobenzene. JP-A-1988-1986 - 1988-2007 - 2003-2012 - 2004-2012 - 2008-2012 - Nitrochlorobenzene with a para/ortho ratio controlled over a wide range can be obtained by nitrating chlorobenzene in the gas phase with Now in the presence of a molecular sieve catalyst (zeolite catalyst) having a pore size. There is a description. In this case, examples of specific zeolite catalysts include [ZEOLON-900H
”, “AW-500 Sheave”, “Zeoron 800J
rtax molecular sieve" is listed. As for the reaction results, for example, "When Zeolon 900-HJ is used as a catalyst, the reaction temperature is 200°C, the NO2/chlorobenzene molar ratio = 2.37, and the WH8V of chlorobenzene = 0.289 Ky/l-catalyst. hr null feed rate (however, diluted with 30 times nitrogen gas), space-time yield (
STY) = 0.098 Ky/l・catalyst・br results, but the activity is still insufficient.

なお同文献には前記ゼオライト触媒を用いてベンゼンの
気相ニトロ化を行なう旨の記述はない。
Note that this document does not mention that gas phase nitration of benzene is performed using the zeolite catalyst.

更に同じように、ハロベンゼンのニトロ化でP2O比を
制御する目的の一連の特許が知られている。即ち、特開
1850−121284号、特開昭50−126626
号、特開昭50−126627号、特開昭51 698
1号及び特開j[51−19784号である。これラバ
いずれもハロベンゼンの気相ニトロ化に関するものであ
るが、その明細書の記述内容及び実施例から判断すると
、その発明の実施態様は実質的に硝酸をニトロ化剤とす
る方法に限定されるものである。
Furthermore, a series of patents are known for the purpose of controlling the P2O ratio in the nitration of halobenzenes. That is, JP-A-1850-121284, JP-A-50-126626
No., JP-A-50-126627, JP-A-51-698
No. 1 and JP-A-J [51-19784]. Both of these patents relate to the gas phase nitration of halobenzene, but judging from the descriptions and examples of the specifications, the embodiments of the invention are substantially limited to methods using nitric acid as the nitration agent. It is something.

上記特許明細書にはニトロ化剤としてNO2も使われる
との記載も見られるが、実施例にはそれを裏付ける具体
例がない。また硝酸とNOxはNの酸化数が各々5価と
4価であり、明らかに化学穏として異るものである。従
って、硝酸をニトロ化剤とする実施態様とNO2をニト
ロ化剤とする実施態様は異る技術体系であると見なされ
るべきである。
Although there is a statement in the above patent specification that NO2 is also used as a nitrating agent, there is no specific example in the Examples to support this. Furthermore, nitric acid and NOx have N oxidation numbers of pentavalent and tetravalent, respectively, and are clearly different in terms of chemical mildness. Therefore, embodiments in which nitric acid is the nitrating agent and embodiments in which NO2 is the nitrating agent should be considered to be different systems of technology.

なおこれらはいずれもハロベンゼンのニトロ化1こ関す
る記述だけであり、本発明の対象であるベンゼンのニト
ロ化によるニトロベンゼンの製法については何ら記述は
ない。
Note that all of these are only descriptions regarding the nitration of halobenzene, and there is no description at all about the method for producing nitrobenzene by nitration of benzene, which is the object of the present invention.

所でニトロベンゼンは冒頭に述べたように基幹工業薬品
であり、その生産量は八口ニトロベンゼンをはるかに上
廻り、従って優れた新規プロセスが生まれた場合、その
メリットは莫大なものが期待される。
By the way, as mentioned at the beginning, nitrobenzene is a key industrial chemical, and its production volume far exceeds that of Yaguchi nitrobenzene. Therefore, if a superior new process is developed, the benefits are expected to be enormous.

本発明者らはベンゼンのNOxまたはN2O4による気
相ニトロ化が、プロセス上前述の如き種々の利点を有す
る可能性に鑑みて、気相ニトロ化に活性な触媒の探索を
鋭意進めた結果、2種以上の酸化物を含む酸性複合酸化
物を使用すればニトロ化反応の触媒活性が著しく高<、
シかもジニトロベンゼンなどの副生物を殆ど生成せずニ
トロベンゼンの選択率も著しく高いことをすでに見い出
している(特開昭58−162557号、58−180
460号公報)。
The present inventors, in view of the possibility that gas phase nitration of benzene with NOx or N2O4 has the various advantages mentioned above in terms of the process, have diligently searched for catalysts active in gas phase nitration, and have found that: If an acidic composite oxide containing more than one species of oxide is used, the catalytic activity of the nitration reaction is extremely high.
It has already been found that nitrobenzene hardly produces by-products such as dinitrobenzene, and the selectivity for nitrobenzene is extremely high (Japanese Patent Application Laid-Open No. 58-162557, 58-180).
Publication No. 460).

更に本発明者らはニトロ化反応の触媒について探索を進
めた結果、酸化ニオブが、他ノ金属酸化物と共存せしめ
て複合酸性酸化物とすることなく、それ単独でも極めて
高い触媒活性、選択率を示すことを見い出し本発明に至
った。
Furthermore, as a result of our search for catalysts for nitration reactions, the present inventors found that niobium oxide has extremely high catalytic activity and selectivity when used alone, without coexisting with other metal oxides to form a composite acidic oxide. The present invention was based on the discovery that the following is true.

すなわち本発明はベンゼンをNO2またはN2O4を用
いて気相ニトロ化する方法に於て、触媒として酸化ニオ
ブを用いることを特徴とする工業的に極めて優れたベン
ゼンの気相ニトロ化方法を提供するものである。
That is, the present invention provides an industrially excellent method for nitrating benzene in a gas phase using NO2 or N2O4, which is characterized by using niobium oxide as a catalyst. It is.

本発明において使用される酸化ニオブ触媒は例えば水酸
化ニオブ等を加熱処理することにより容易に得られる。
The niobium oxide catalyst used in the present invention can be easily obtained, for example, by heat-treating niobium hydroxide.

加熱温度は、例えば特開昭60−44089号公報に記
載の100〜400″Cであっても良いし、更に高い5
00〜600 ”Cであっても良い。
The heating temperature may be, for example, 100 to 400"C as described in JP-A-60-44089, or even higher 5"C.
00 to 600''C.

本発明方法に於けるニトロ化剤としては、NO!及びN
2O4などがあるが、特にNotが好ましい。また、N
Oは酸素の共存下すみやかにNowに酸化されることは
良く知られているので、本発明方法に於いても、NOと
02との混合ガスをニトロ化剤とする方法をも採用し得
る。
As the nitrating agent in the method of the present invention, NO! and N
Examples include 2O4, but Not is particularly preferred. Also, N
Since it is well known that O is readily oxidized to Now in the coexistence of oxygen, the method of the present invention may also employ a method in which a mixed gas of NO and 02 is used as the nitration agent.

本発明に於る気相ニトロ化は、反応温度80″C〜25
0℃の温度を保ちつつ、酸化ニオブ触媒床上に、ベンゼ
ンとニトロ化剤の気相混合物を連続的にフィードし、生
成するニトロベンゼンを前記気相混合物から分離するこ
とによって実施される。好ましくは前記気相ニトロ化反
応は希釈剤たる窒素などの不活性ガスの共存下で実施さ
れる。この場合の具体的反応の仕方を例示するならば次
の様になる。
The gas phase nitration in the present invention is carried out at a reaction temperature of 80"C to 25"C.
It is carried out by continuously feeding a gas phase mixture of benzene and a nitrating agent over a niobium oxide catalyst bed while maintaining a temperature of 0° C., and separating the formed nitrobenzene from said gas phase mixture. Preferably, the gas phase nitration reaction is carried out in the presence of an inert gas such as nitrogen as a diluent. A specific example of how the reaction occurs in this case is as follows.

ベンゼンを予備加熱して気化させ、一定流速の希釈用窒
素ガスと混合し、次いでニトロ化剤の気相流と混合後加
熱触媒床に導き接触反応せしめる。
Benzene is preheated and vaporized, mixed with a constant flow rate of diluent nitrogen gas, and then mixed with a gaseous stream of nitrating agent before being introduced into a heated catalyst bed for catalytic reaction.

本発明で好ましく使われるニトロ化剤はNO2であるが
、N02のベンゼンに対するモル比は一般には0.1〜
8.0であり、さらに好ましくは0.1〜2.0のモル
比である。またN2O4を用いる場合は、ベンゼンに対
し一般には0.05〜1,5モル比であり好ましくは0
.06〜1.0モル比である。
The nitrating agent preferably used in the present invention is NO2, and the molar ratio of N02 to benzene is generally from 0.1 to
The molar ratio is 8.0, more preferably 0.1 to 2.0. In addition, when N2O4 is used, the molar ratio is generally 0.05 to 1.5 with respect to benzene, preferably 0.
.. The molar ratio is 0.06 to 1.0.

各反応成分及び希釈用窒素ガスは所定の組成比を保ちつ
つ任意の空間速度で反応器中にフィードすることができ
る。
Each reaction component and diluting nitrogen gas can be fed into the reactor at an arbitrary space velocity while maintaining a predetermined composition ratio.

本発明を更に詳細に説明するために、以下に具体的実施
例を掲げるが、本発明はそれらに限定されるものではな
い。
In order to explain the present invention in more detail, specific examples are given below, but the present invention is not limited thereto.

実施例中の転化率、収率、選択率の計算方法は次のとお
りである。
The calculation methods for conversion rate, yield, and selectivity in Examples are as follows.

実施例1 含水酸化ニオブ(シービーエムエム・インターナシロナ
ル・リミターダ社製)を用い24〜48メツシユに粒径
を揃え、8.87f(5CC)を長さ82傭、内径1.
0mの石英ガラス反応管に充填した。次いで空気気流下
500℃で4時間加熱処理した後125℃に保った。
Example 1 Using hydrous niobium oxide (manufactured by CBMB International Limited), the particle size was adjusted to 24 to 48 mesh, and the particle size was 8.87f (5CC) with a length of 82mm and an inner diameter of 1.5mm.
A 0 m quartz glass reaction tube was filled with the mixture. Next, it was heat-treated at 500°C for 4 hours under a stream of air, and then kept at 125°C.

コ(7)触媒床に、Noガス29 tut/hr (7
7,44mmol/hr )とO!ガx 14.45 
mol/hr(88,72mmol/hr)とを混合し
て生成せしめたNO2ガスおよび熔融アルミナを充填し
た気化器により気化されたベンゼン6、04 f/hr
 (77,44mmo l /hr )をフィードして
接触反応をせしめた。触媒床の温度は125℃に保った
。この時のW/F(単位時間当りの原料フィード量に対
する触媒jl ) = 501−Cat −hr/mo
l /< ンゼンであった。
No gas 29 tut/hr (7
7.44 mmol/hr) and O! Ga x 14.45
6.04 f/hr of benzene vaporized by a vaporizer filled with molten alumina and NO2 gas produced by mixing mol/hr (88.72 mmol/hr).
(77.44 mmol/hr) was fed to cause a catalytic reaction. The temperature of the catalyst bed was maintained at 125°C. At this time, W/F (catalyst jl for raw material feed amount per unit time) = 501-Cat-hr/mo
It was l/< .

反応混合ガスは反応管を出た後、氷冷したトラップによ
りトラップし、排ガスはアルカリ水で中和した後パージ
した。
After leaving the reaction tube, the reaction mixture gas was trapped in an ice-cooled trap, and the exhaust gas was neutralized with alkaline water and then purged.

トラップ物はガスクロマトグラフにより分析した。この
結果を表1に示した。
The trapped substances were analyzed by gas chromatography. The results are shown in Table 1.

表  1 s’ry:に4ニトロベンゼン/助触媒・hr(空設収
率)W/F : Kg −Ca t −h r/mo 
1−ベンゼン比較例1 酸化モリブデン(Mo0a ) 、酸化タングステン(
11,京タングステン■製、Fl −WOa )をそれ
ぞれ0.5f/、9.5fおよび水12を乳鉢で充分混
合後加圧成型した。これを粉砕した後、24〜48メツ
シユに粒径を揃又、空気々流中500℃で8時間焼成し
、Moon −Won (原子比Mo/W = 0.0
85 )複合酸化物を調製した。
Table 1 s'ry: 4 nitrobenzene/cocatalyst/hr (empty yield) W/F: Kg -Cat -hr/mo
1-Benzene Comparative Example 1 Molybdenum oxide (Mo0a), tungsten oxide (
11, manufactured by Kyoto Tungsten ■, Fl-WOa) were thoroughly mixed with 0.5 f/, 9.5 f and water 12 in a mortar and then pressure molded. After pulverizing this, the particle size was made uniform to 24 to 48 meshes, and it was calcined at 500°C for 8 hours in a stream of air to obtain Moon-Won (atomic ratio Mo/W = 0.0
85) A composite oxide was prepared.

この触媒8.871!を実施例1と同様の反応管に充填
し実施例1と同様にしてニトロ化反応を行った。結果を
表2に示した。
This catalyst is 8.871! was filled into the same reaction tube as in Example 1, and the nitration reaction was carried out in the same manner as in Example 1. The results are shown in Table 2.

表  2 比較例2 酸化タングステン(東京タングステン■、Fl−won
 ) 8.879 ヲ24〜48 ) ッシュニ粒径を
揃え実施例1と同様の反応管に充填し、実施例1と同様
な条件下で加熱処理、ニトロ化反応を行った。結果を表
8に示した。
Table 2 Comparative Example 2 Tungsten oxide (Tokyo Tungsten ■, Fl-won
) 8.879 wo 24-48) The particles were filled in the same reaction tube as in Example 1 with the same particle size, and heat treatment and nitration reaction were performed under the same conditions as in Example 1. The results are shown in Table 8.

表 8Table 8

Claims (1)

【特許請求の範囲】[Claims] ベンゼンをNO_2またはN_2O_4を用いて気相ニ
トロ化する方法に於て、触媒として酸化ニオブを用いる
ことを特徴とするベンゼンの気相ニトロ化方法。
A method for nitrating benzene in a gas phase using NO_2 or N_2O_4, the method comprising using niobium oxide as a catalyst.
JP60167972A 1985-07-29 1985-07-29 Vapor-phase nitration of benzene Pending JPS6229556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167972A JPS6229556A (en) 1985-07-29 1985-07-29 Vapor-phase nitration of benzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167972A JPS6229556A (en) 1985-07-29 1985-07-29 Vapor-phase nitration of benzene

Publications (1)

Publication Number Publication Date
JPS6229556A true JPS6229556A (en) 1987-02-07

Family

ID=15859437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167972A Pending JPS6229556A (en) 1985-07-29 1985-07-29 Vapor-phase nitration of benzene

Country Status (1)

Country Link
JP (1) JPS6229556A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992004313A1 (en) * 1990-08-29 1992-03-19 Nippon Kayaku Kabushiki Kaisha Pollution-free process for producing aromatic nitro compound without using mineral acid
CN1096895C (en) * 1998-02-03 2002-12-25 石川岛播磨重工业株式会社 Method and apparatus for screening waste paper pulp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992004313A1 (en) * 1990-08-29 1992-03-19 Nippon Kayaku Kabushiki Kaisha Pollution-free process for producing aromatic nitro compound without using mineral acid
CN1096895C (en) * 1998-02-03 2002-12-25 石川岛播磨重工业株式会社 Method and apparatus for screening waste paper pulp

Similar Documents

Publication Publication Date Title
US4551568A (en) Process for nitration of benzene
US4415744A (en) Vapor phase nitration of aromatic compounds
US4107220A (en) Gas phase nitration of chlorobenzene
JPH0242032A (en) Production of methacrylic acid and/or methacrolein
EP0078247B1 (en) Process and catalysts for vapor phase nitration of aromatic compounds
US4347389A (en) Vapor phase nitration of aromatic compounds
US4418230A (en) Method for gaseous phase nitration of aromatics
US4426543A (en) Vapor phase nitration of aromatic hydrocarbons
Kuba et al. Gas-phase nitration of toluene with zeolite beta
JPS6229556A (en) Vapor-phase nitration of benzene
JPH0525550B2 (en)
EP3003553B1 (en) Liquid phase nitration of aromatics using solid acid catalyst
US6791000B2 (en) Process for vapor phase nitration of benzene using nitric acid over molybdenum silica catalyst
JP4139111B2 (en) Nitration of xylene isomers using zeolite beta catalyst
CS277105B6 (en) Process for preparing nitrobenzenes
Maurya et al. Solid acid catalysts for fluorotoluene nitration using nitric acid
JPH0263554A (en) Method for maintaining activity of zeolite catalyst
JPH0253100B2 (en)
EP1350787A1 (en) Process for the preparation of nitrotoluenes
US6825388B2 (en) Process for the preparation of 4-nitro-o-xylene
RU2559356C1 (en) Method of producing 5(6)-nitro-1-(4-nitrophenyl)-1,3,3-trimethylindanes
JPS58185543A (en) Catalytic nitration of benzene
JPS58162557A (en) Nitration process
Sato et al. Vapor phase nitration of benzene over solid acid catalysts (1): nitration with nitrogen dioxide (NO 2)
JPS63225339A (en) Production of aromatic nitro compound