[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58153757A - Gallium-containing amorphous magnetic alloy - Google Patents

Gallium-containing amorphous magnetic alloy

Info

Publication number
JPS58153757A
JPS58153757A JP57034947A JP3494782A JPS58153757A JP S58153757 A JPS58153757 A JP S58153757A JP 57034947 A JP57034947 A JP 57034947A JP 3494782 A JP3494782 A JP 3494782A JP S58153757 A JPS58153757 A JP S58153757A
Authority
JP
Japan
Prior art keywords
alloy
magnetic
amorphous
elements
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57034947A
Other languages
Japanese (ja)
Inventor
Takeshi Masumoto
健 増本
Kazuaki Fukamichi
和明 深道
Tadashi Sato
正 佐藤
Norihiro Sano
佐野 紀洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP57034947A priority Critical patent/JPS58153757A/en
Publication of JPS58153757A publication Critical patent/JPS58153757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve magnetic characteristics and heat stability, in a ferrous element-B amorphous magnetic alloy, by adding Ga. CONSTITUTION:This Ga containing amorphous magnetic alloy is shown by the formula (wherein M is one kind or more of B, C, Si, P and Ge and, on the basis of an atomic percent, 0<=x+y<81, 13<=alpha<=30.0, 0<beta<=20, 13<alpha+beta<=50). This alloy is the one which consists of 70-87 atomic % magnetic element including Fe and 13-30 atomic % semi-metal element such as Si, P, C, Ge including B and the part of the magnetic elements Fe, Co, Ni or the part of the semi-metal elements is substituted with max. 20% Ga.

Description

【発明の詳細な説明】 本発明tまガリウム含有非晶質イa性合金に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gallium-containing amorphous oxide alloy.

通常、固体の釜@あるいは合金は常温では糺晶状態vc
 jりるが、溶融状態エリ超、特冷(冷却連朋に1合金
の組成に依存するか、およそ1L+4〜1011K/就
程度である)すれば液体に類似した周期的な原子1己列
を持たない禍造の固体が得られる(=とがある。
Normally, solid kettles or alloys are in a crystalline state vc at room temperature.
If the liquid is in a molten state and is specially cooled (depending on the composition of the alloy, it is about 1L + 4 to 1011K/cooling), it will form a periodic array of atoms similar to that of a liquid. You can obtain a solid substance that does not have any physical properties (=).

このよつな金輪または合金は非晶實釜闇と畔ばれている
。一般に非晶質金蜆は2種以上の元素からなる合金であ
り、辿常遷#金属元素と半金帆元索の絹合せか原子半径
が異fCる2ft11−+た612科以−1−の遷移金
属元素の組合せよりなる。これらの非晶質合金において
、鉄族元素(Fe、 Co、 Ni、)を含む合金の一
部は強仕・性を示すことが知られている。約15〜30
7皇子係のBを含むtl’ e −B糸非晶′6合釜は
他の非晶質合金に比べて商い飽和磁朱密度をもつことか
、R−[(asega、waらt(エリΔppl。
This fine gold ring or alloy is known as amorphous pot darkness. In general, amorphous metal is an alloy consisting of two or more elements, and the atomic radius is different due to the combination of the metal element and the silk of the metal element. It consists of a combination of transition metal elements. Among these amorphous alloys, it is known that some alloys containing iron group elements (Fe, Co, Ni, etc.) exhibit strong strength. Approximately 15-30
The tl' e -B yarn amorphous '6 kettle containing B of 7 Princes has a higher saturation magnetic vermilion density than other amorphous alloys, or R-[(asega, wa et Δppl.

PhyS、■、ett、 29.219 (1976)
に幸に告されている。
PhyS, ■, ett, 29.219 (1976)
I am fortunate to have been informed.

旬;来この1+’ e −B系非晶質合金の熱安定性、
砒気特t4を1>書するいくつかの試みがlされてきた
Thermal stability of 1+'e-B amorphous alloys,
Several attempts have been made to write the arsenic characteristic t4.

例えば熱安定性を高めるためK V 、 Mn、 Mo
 等の元素の添加が試みられているか、これらの熱安定
1ノ1を篩める元素は磁気%111を低″1;σせるた
め好甘し7くない。捷た、半金属元素の通切な組合せに
よって熱安定性を高ぬることをねらった試みもなされて
いるが、熱安定性を高める工うl半金属元素の組合せも
磁気特性を改善することはほとんどできない。
For example, to improve thermal stability, K V , Mn, Mo
Attempts have been made to add elements such as these, or elements that screen these thermally stable elements are undesirable because they reduce the magnetic %111 to a low 1;σ. Attempts have been made to improve thermal stability through appropriate combinations, but even combinations of semimetallic elements intended to increase thermal stability are hardly able to improve magnetic properties.

本発明は非晶質磁性合金にGa を添力nすることに工
って磁気特性および熱安定性を改善し7たものである。
The present invention improves magnetic properties and thermal stability by adding Ga to an amorphous magnetic alloy.

本発明の合金はセ゛θを含む磁性元素が7 tl〜87
原子チ、Bを含むSi、 P、 O,Ga 等の半@晴
元素が13〜50原子係からなるものにおいて磁性元素
Fθ、 Co、 Ni  の一部あるいけ半@酬元素の
一部fK−Ca″′c最高り0%捷で置硬し7たもので
ある。ここで磁性元素としては15原子チ以上の刊e 
を含む’Fe、 Co、 Ni のうちの1種以上が5
0〜87原子チとしたのは、飽和磁束密度の点から好せ
しい実用的な範囲のためである。すなわち、F’e が
15L電子チ以下では飽和磁束密度が10KG以〜トと
なり実用的でなくなり、Fe、 Co、 Ni のうち
の1種1ソ上の元素が87原子係以上では実質的な非晶
質化が困難となる。半金属元素B 、  Si、 P、
 C,Ge等は16〜50原子係の範囲で本発明の合筆
は非晶質化が可能である。Oaは磁性元素)i” e 
、 Oo 、 N iと@筒20原子%甘で置換できる
。これ以」−のqaの添加も一応h」能ではあるが、2
U原子%歩、上の()a の添力ll−非晶質合金の特
徴の1つである強さ、ねばさを減することになるととも
に実質的な磁化の低下をきたすので実用的でなくなる。
The alloy of the present invention has a magnetic element containing SE θ of 7 tl to 87 tl.
In those consisting of 13 to 50 atoms of half-clear elements such as Si, P, O, Ga, etc. containing atoms Q and B, some of the magnetic elements Fθ, Co, and Ni and some of the free elements fK- Ca'''c is a material that has been hardened at 0% sintering.Here, as a magnetic element, there are 15 atoms or more.
One or more of 'Fe, Co, Ni containing 5
The reason why the number is 0 to 87 atoms is because it is a preferable practical range from the viewpoint of saturation magnetic flux density. That is, when F'e is less than 15 L electrons, the saturation magnetic flux density becomes more than 10 KG, making it impractical, and when one element among Fe, Co, and Ni exceeds 87 atomic coefficients, it becomes practically non-effective. Crystallization becomes difficult. Metalloid elements B, Si, P,
C, Ge, etc. can be made amorphous in the range of 16 to 50 atoms in the present invention. Oa is a magnetic element) i” e
, Oo, and Ni can be substituted with @ cylinder 20 atomic % sweetness. After this, the addition of qa is also possible, but 2
It is not practical because it reduces the strength and toughness, which are one of the characteristics of amorphous alloys, and also causes a substantial decrease in magnetization. It disappears.

一方、Gaの半金祇元素との置換については、本発明の
合金は半金−元素が16〜60原子係の範囲で非晶質化
可能なため0ぐGa−≦17  の範囲で#書できる。
On the other hand, regarding the substitution of Ga with the metalloid element, since the alloy of the present invention can be made amorphous in the range of 16 to 60 atoms of the metalloid element, # can.

以1本発明を実施例に基いて説明する。The present invention will now be explained based on examples.

〔実施例1〕 非晶質合金の製法は数多く知られているが岐も実用的で
1産に適する製法としては、いわゆる片ロール式、@6
法がある。片ロール式褒冷法は尚速回転する熱伝祷率の
工い金嫉製ロール表向に溶融、、□ 雀属を噴出させて1速冷却し、リボン状の非晶實合釡を
得るものである。本実施例ではこの片0−ル式象冷法I
Cよって試料を作製したが、不発明がその製法いかんに
かかわらず成り立つことはもちろんであり、双ロール、
特冷法、遠心會冷法、スパッタ法等で作製した試料にも
適用できる。1次、本発明の合@は大気中、不活性ガス
暮囲気中、真空中いずれのφ件でも象冷法によって作製
可能である。
[Example 1] There are many known manufacturing methods for amorphous alloys, but one that is practical and suitable for one production is the so-called single-roll method @6.
There is a law. In the single-roll cooling method, a roll made of metal with a high heat transfer rate that rotates at high speed is melted on the surface, and is cooled at one speed by spewing out molten metal to obtain a ribbon-shaped amorphous pot. It is something. In this example, this method
Although a sample was prepared using C, it goes without saying that non-invention applies regardless of the manufacturing method.
It can also be applied to samples prepared by special cooling method, centrifugal cooling method, sputtering method, etc. The primary composite of the present invention can be produced by the elephant cooling method in the atmosphere, in an inert gas atmosphere, or in a vacuum.

室温での飽和磁束密度、キュリ一温度、結晶化温度は磁
イヒ一温度曲糾から求めることができる。
The saturation magnetic flux density, Curie temperature, and crystallization temperature at room temperature can be determined from the magnetic curve.

磁化一温度曲線において非晶質状態から結晶質状態へと
変態する際に磁化の急激な変化が観測されるが、ここで
はこの変態を開始する温度を結晶化温度とする。なお、
キュリ一温度、結晶化温度は加熱速度に依存するが、測
定には約2.5 K7m J、 nの契温速度を用いた
In the magnetization-temperature curve, a rapid change in magnetization is observed when transforming from an amorphous state to a crystalline state, and here, the temperature at which this transformation starts is defined as the crystallization temperature. In addition,
Although the Curie temperature and crystallization temperature depend on the heating rate, a contract temperature rate of approximately 2.5 K7mJ,n was used for measurement.

非晶質状態の同定には様々な方法があるが、ここでは主
としてX線回折を用いた方法によって非晶質状態でめる
かどうかを確認した。
There are various methods for identifying the amorphous state, but here we primarily used a method using X-ray diffraction to confirm whether the amorphous state can be determined.

絹1図は本発明の合金のうちのF4366wiGa父B
20(!l: VeB3 =@ Gai B17とにつ
いて室温での飽和m東密度のOa 174度変化を示し
たものである。
Figure 1 shows F4366wiGa father B of the alloys of the present invention.
20(!l: VeB3 = @ Gai B17) shows the Oa 174 degree change in the saturated m-east density at room temperature.

= 5− Xが3原子チ付近で飽和磁束密度は最大となり、従来の
Fe−B合金に比べてGa の添加によつで約10%も
上昇する効果がある。
= 5- The saturation magnetic flux density reaches its maximum when X is around 3 atoms, and the addition of Ga has the effect of increasing it by about 10% compared to conventional Fe-B alloys.

第2図−〇°θ”’ −X ”X B17のキュリ一温
度と結晶イし温度の変化を0aの組成変化で示したもの
である。
Figure 2 -〇°θ'''-X''X Changes in the Curie temperature and crystallization temperature of B17 are shown with respect to composition changes in 0a.

Ga の添加によってキュリ一温度、結晶化温度とも上
昇する。特にキュリ一温度はf+l1才ばGa  4原
子チの添加によって100℃Jν上も−に刊するという
顕著な効果がある。
The addition of Ga increases both the Curie temperature and the crystallization temperature. In particular, the addition of Ga 4 atoms has a remarkable effect of increasing the Curie temperature to - even above 100°C Jν when f+l1 years old.

〔実施例2〕 本発明の合金の構成は磁性元素としてFe、 Co。[Example 2] The composition of the alloy of the present invention is Fe and Co as magnetic elements.

Ni、添加元素としてGa、半金属元素としては主にB
であるが、半金属元素Bの一部を他の半金属元素と置換
することもできるし、B以外の半金属元素Si、 P、
 O,Ge等を力lえることに五ってさらに合金の特性
を改良することも可能である。
Ni, Ga as an additive element, and mainly B as a metalloid element
However, a part of the metalloid element B can be replaced with another metalloid element, and metalloid elements other than B such as Si, P,
By adding O, Ge, etc., it is also possible to further improve the properties of the alloy.

一般的に、半金属元素の効果は非晶實形成能についてl
j:P、Si、Bが適しており、熱安定性ヤ脆化抵抗の
而からl1si、’Bが工く、PやCは好捷しくない。
In general, the effect of metalloid elements is on the ability to form amorphous materials.
j: P, Si, and B are suitable; l1si,'B is preferred due to its thermal stability and resistance to embrittlement; P and C are not preferred.

磁性の面では飽オロ磁化についてはB、O。In terms of magnetism, B and O are used for saturated magnetization.

−6= Sl がtl’f捷しく、キュリ一温度を高めることに
ついてP、I B 、 Ga、 sl が好士しいとさ
れる。
-6= Sl is tl'f agile, and P, I B , Ga, and sl are said to be favorable for raising the Curie temperature.

前う1sのように小発明の合金は()a の添加VCよ
って飽和イみ東密度、キュリ一温度、結晶化温度が上昇
するという効果が、わるが、第2図にみることく、1”
 eB3− XG a /B)、7でに↓Gt+6原子
チ以上ではキュリ一温度の力が結晶化温)政エリ尚くな
り、熱処理が困難となることがめる。こうした場合t7
cは半煽ン国光素Bの一部をSl で置換することによ
って磁気l待t7Lを吐下゛、Xせることなく結晶化温
度をギュリー温1f以上Vこ高めるご二とができる。
As mentioned in the previous point, the alloy of the small invention has the effect of increasing the saturation density, the Curie temperature, and the crystallization temperature due to the addition of ()a, but as can be seen in Figure 2, 1 ”
eB3- In this case t7
By substituting a part of the semi-excited light element B with Sl, the crystallization temperature can be increased by more than 1f of the Gury temperature without reducing the magnetic flux.

非晶質磁′l/lE ’FN 鮒の結晶化温度をM」め
ることは次(l]fつな理由から宅斗しいことである。
It is difficult to increase the crystallization temperature of amorphous magnetic carp for the following reasons.

1つは合釜の耐用温度を同士σせることかできるからで
ある。非晶′1合金が結晶化すると脆化したり、非晶1
構造に由来する陣れた磁気特性に著しい変化をきに1こ
とがある。もう1つの理由は磁性合金は熱処理!に工っ
て歿気傷、性を改良することができるがこの磁P+′W
1;錘はキュリーrhw付近かキュり一温度以上の温ル
ーで行なうため、非晶質合金では結晶化温度はキュリ一
温度工す商いことが望−チしいからである。
One reason is that the withstand temperatures of the kettles can be varied by σ. When amorphous '1 alloy crystallizes, it becomes brittle, and amorphous '1
There may be a significant change in the magnetic properties derived from the structure. Another reason is that magnetic alloys are heat treated! This magnetic P+'W can be worked on to improve the phlegm and sex.
1; Since the weight is used at a temperature near Curie rhw or above one Curie temperature, it is desirable that the crystallization temperature of an amorphous alloy is one Curie temperature or higher.

第5図はB’e7gGa4−517 V) Bの一部f
 s i −Cf& 換してT”87gGa4Bl7−
XSiXトシタ合金、7)キュlJ  77@IWと結
晶化温度の変化をみ7C’したものである。
Figure 5 shows B'e7gGa4-517 V) Part of B
s i -Cf& and T"87gGa4Bl7-
XSiX Toshita alloy, 7) CulJ 77@IW and the change in crystallization temperature were measured at 7C'.

、・gl が2加子慢以−にで結晶化温度がギュリー温
変工り高くなる。膳冷材の本発明金子は残留磁束密度が
小σく、角形比(残貿征(朱密IW/醗和(1チ(東密
jβ′)も小ざいが、磁場中焼鈍あるいは張カベ・ねに
り4どの応力下での焼鋪などV(、、J: リ磁気異方
性が誘4きれ、これらの性質が著[2く改善−,sれる
ことは従来知られている非晶質(In性合金が鞄気特性
改質方法と同じである。1’07g(ja4]’3Hs
ilを非醇什件雰囲気あるいけ真空中でイみ場中焼鈍(
25116+うの磁場中4(10℃で30分保持後約5
 ’C/ minで徐冷)することILLって飽和磁束
密度が約7 % l:昇するとともに1呆磁力が手分1
ヅ下に減少し、μj形比が面子した。
The crystallization temperature becomes higher as .gl increases. The present invention's refrigerated steel has a small residual magnetic flux density σ, and the squareness ratio (Zanbo Sen (Zhu Mi IW/醜) (1 Chi (To Mi jβ')) is also small, but it can be annealed in a magnetic field or It is conventionally known that when annealing under any stress, the magnetic anisotropy is reduced and these properties are significantly improved. Quality (In alloy is the same as the bag property modification method. 1'07g (ja4)'3Hs
The il is placed in a vacuum in a non-digestive atmosphere and annealed in-situ (
4 in the magnetic field of 25116+ (approx. 5 after holding at 10℃ for 30 minutes)
The saturation magnetic flux density of ILL is approximately 7%. As the temperature rises, the magnetic force decreases by 1 minute.
The μj shape ratio has decreased significantly.

〔′実施例6〕 第4図は斗2発ゆ」の2橿の合金Fe8l−xDo、上
117 L、h 2とH・θ8□−xN i XB17
Ga2 の室温での飽和磁束密度の変化をXの関数とし
て表わしたものである。Feの一部台CoV(置伊−r
ると飽和磁束密度はさらに十列し、第2図にみられるよ
う15.00 が約10原子% f’l近で最大(iI
′!17.6 K G 7+−なる。寸だ、Tl’eど
N1 との置換ではN1が6原子チ以下では飽和磁束密
度ははとんど変化しないが6原子係以上では単心1に減
少する。re  と(’!o、 Ni  との置換はO
≦CO≦24,05Ni ≦3の範囲が最適であるが、
とれ以上の緒囲の合金vCついても安定な非晶W磁性合
金とし−Cの%徴を保持しており、0−≦D O+ N
 j飄72の範囲で実用可能である。
['Example 6] Figure 4 shows two rods of alloy Fe8l-xDo, upper 117 L, h 2 and H・θ8□-xN i XB17
This figure shows the change in the saturation magnetic flux density of Ga2 at room temperature as a function of X. Some units of Fe CoV (Okii-r
Then, the saturation magnetic flux density further increases in ten rows, and as shown in Fig. 2, 15.00 becomes the maximum (iI
′! 17.6 K G 7+-. When replacing Tl'e with N1, the saturation magnetic flux density hardly changes when N1 is 6 atoms or less, but decreases to a single core of 1 when N1 is 6 atoms or more. The replacement of re with ('!o, Ni is O
The range of ≦CO≦24,05Ni≦3 is optimal, but
It is a stable amorphous W magnetic alloy even when the alloy vC is larger than the above, and maintains the percentage characteristic of -C, and 0-≦D
It is practical within the range of 72.

以上述べたように磁性元素Fθ、 co、旧 と半金−
元素からなる非晶質磁性合金に08  を添加すること
によって磁気特性およびriA安定t]1を改善するこ
とができる。
As mentioned above, magnetic elements Fθ, co, old and half metal −
Magnetic properties and riA stability t]1 can be improved by adding 08 to an amorphous magnetic alloy consisting of the element.

【図面の簡単な説明】[Brief explanation of the drawing]

p 11%lはII’ e −B−G a  系合金の
x rw、 Tの飽和他〈宋密度の()a 組成変化を
7トすグラフ、=〜 9− 8142図はドθ−13−Ga糸合金のギュ?ノー温I
糺と結晶化温度の変化音fleaの組成変化としてボし
たグラフ、 第6図はB’ e −Ga−B−8i  糸台逮のキュ
リ一温度結晶化温度の変化をSlの組成変化と(2て7
]ヌしたグラフ、 第4図はFe−Co−B−Ga と1(嘲e−Ni、−
B−Ua系合金の室温での飽和磁束密度をでれす7’L
 t: o。 N1 の組成変化として示したグラフである。 以   上 株式会社 第 二鞘工 書 代理人 升理十 最 上    務 −10−
p 11%l is II' e -B-Ga series alloy x rw, T saturation, etc. ()a graph of composition change of Song density, = ~ 9-8142 Figure is de Ga thread alloy gyu? No warm I
Figure 6 is a graph showing changes in the composition of flea as changes in glue and crystallization temperature. Te7
] Figure 4 shows Fe-Co-B-Ga and 1 (sneak e-Ni, -
Determine the saturation magnetic flux density of B-Ua alloy at room temperature7'L
t: o. It is a graph shown as a change in the composition of N1. The above is the second case law agent Masuriju Mogami-10-

Claims (1)

【特許請求の範囲】 組成式 %式% において、MはB、 C,Si、 P、 Gθのうちの
1種以上の元素であり、環子分率で U≦X 十y (81 13≦α≦ 60 O〈β≦20 13〈α」−β≦50 であることを特徴とするガリウム含有非晶質磁性合金。
[Claims] In the composition formula %, M is one or more elements of B, C, Si, P, and Gθ, and the ring molecule fraction is U≦X 10y (81 13≦α A gallium-containing amorphous magnetic alloy characterized in that ≦60 O<β≦20 13<α”−β≦50.
JP57034947A 1982-03-05 1982-03-05 Gallium-containing amorphous magnetic alloy Pending JPS58153757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57034947A JPS58153757A (en) 1982-03-05 1982-03-05 Gallium-containing amorphous magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57034947A JPS58153757A (en) 1982-03-05 1982-03-05 Gallium-containing amorphous magnetic alloy

Publications (1)

Publication Number Publication Date
JPS58153757A true JPS58153757A (en) 1983-09-12

Family

ID=12428357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57034947A Pending JPS58153757A (en) 1982-03-05 1982-03-05 Gallium-containing amorphous magnetic alloy

Country Status (1)

Country Link
JP (1) JPS58153757A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234509A (en) * 1985-04-11 1986-10-18 Sony Corp Soft magnetic thin film
JPS61234510A (en) * 1985-04-11 1986-10-18 Sony Corp Soft magnetic thin film
JPS6278805A (en) * 1985-10-01 1987-04-11 Sony Corp Soft magnetic thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234509A (en) * 1985-04-11 1986-10-18 Sony Corp Soft magnetic thin film
JPS61234510A (en) * 1985-04-11 1986-10-18 Sony Corp Soft magnetic thin film
JPS6278805A (en) * 1985-10-01 1987-04-11 Sony Corp Soft magnetic thin film

Similar Documents

Publication Publication Date Title
US4187128A (en) Magnetic devices including amorphous alloys
US5961745A (en) Fe Based soft magnetic glassy alloy
JP2008231463A (en) Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT
JPH06322472A (en) Production of fe base soft magnetic alloy
US6077367A (en) Method of production glassy alloy
JP3093461B2 (en) Magnetic material and its manufacturing method
US4483724A (en) Iron-boron solid solution alloys having high saturation magnetization and low magnetostriction
JPS58153757A (en) Gallium-containing amorphous magnetic alloy
JPH02236259A (en) Alloy excellent in iso-permeability and its production
US20120067468A1 (en) Amorphous magnetic alloys, associated articles and methods
JPS581183B2 (en) High magnetic permeability amorphous alloy with high magnetic flux density and large squareness ratio
JP2718261B2 (en) Magnetic alloy and method for producing the same
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
Tamoria et al. Magnetism, structure and the effects of thermal aging on (Fe/sub 1-x/Mn/sub x/)/sub 73.5/Si/sub 13.5/B/sub 9/Nb/sub 3/Cu/sub 1/alloys
JP3233289B2 (en) Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same
Kikuchi et al. Crystallization to Fine TbFe 2 Grains and Magnetic Properties in Rapidly Quenched Fe-Tb-B Alloys
JPH11131199A (en) Soft magnetic glass alloy
JPH03271346A (en) Soft magnetic alloy
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JPH01156452A (en) Fe-based magnetic alloy
US4532979A (en) Iron-boron solid solution alloys having high saturation magnetization and low magnetostriction
JPH03197651A (en) Fe-base high transmissible magnetic alloy
JPH04229604A (en) Low-frequency transformer