[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01156452A - Fe-based magnetic alloy - Google Patents

Fe-based magnetic alloy

Info

Publication number
JPH01156452A
JPH01156452A JP62313645A JP31364587A JPH01156452A JP H01156452 A JPH01156452 A JP H01156452A JP 62313645 A JP62313645 A JP 62313645A JP 31364587 A JP31364587 A JP 31364587A JP H01156452 A JPH01156452 A JP H01156452A
Authority
JP
Japan
Prior art keywords
alloy
magnetic alloy
based magnetic
magnetic
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62313645A
Other languages
Japanese (ja)
Other versions
JP2713714B2 (en
Inventor
Katsuto Yoshizawa
克仁 吉沢
Akitoshi Hiraki
平木 明敏
Kiyotaka Yamauchi
山内 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62313645A priority Critical patent/JP2713714B2/en
Publication of JPH01156452A publication Critical patent/JPH01156452A/en
Application granted granted Critical
Publication of JP2713714B2 publication Critical patent/JP2713714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an Fe-based magnetic alloy having superior magnetic properties and reduced in magnetostriction by rapidly cooling a molten Fe-Ni-Co alloy having a specific composition containing Si and B as essential elements to make the above alloy amorphous and then applying heat treatment to the above to form a part of the structure into fine crystals. CONSTITUTION:A molten Fe-based alloy represented by a general formula (where M' means at least one kind selected from Nb, W, Ta, Mo, and other elements, X means at least one element among, C, Ge, Ga, Al, and Be, Y means at least one kind selected from P, Sb, In, As, and other elements, a=0-0.2, b=0-0.5, a+b=0-0.5, y=4-30, z=2-9, alpha=0-20, gamma=0-20, delta=0-2, and y+z+gamma=10-35) is cooled rapidly so as to be formed into amorphous state, which is subjected to heat treatment at 450-700 deg.C so as to be formed into a structure in which at least 50% of the structure is composed principally of Fe solid solution of bcc structure and is in a state of fine crystals as to have <=1,000Angstrom average grain size measured by the maximum size and the balance remains in the amorphous state.

Description

【発明の詳細な説明】 〔並業上の利用分野〕 本発明は、優れた磁気特性を有し、磁歪が小さいFe基
磁性合金、特に組織の大半が微細な結晶粒からなるFe
基磁性合金に関する0 従来、高周波トランス、磁気ヘッド、可飽和リアクトル
、チ璽−クコイル等の磁心材料として、うず電流損が少
ない等の利点を有するフェライトが主に用いられていた
。しかしフェライトは飽和磁束密度が低く、温度特性も
悪いため、高周波トランスやテ鵞−クコイルに用いる場
合磁心を小形化することが困難であるという欠点があっ
た。
Detailed Description of the Invention [Field of Application in the Ordinary Industry] The present invention is directed to Fe-based magnetic alloys having excellent magnetic properties and low magnetostriction, particularly Fe-based magnetic alloys having a structure mostly composed of fine crystal grains.
0 Regarding Base Magnetic Alloys Conventionally, ferrite, which has advantages such as low eddy current loss, has been mainly used as a magnetic core material for high frequency transformers, magnetic heads, saturable reactors, check coils, etc. However, since ferrite has a low saturation magnetic flux density and poor temperature characteristics, it has the disadvantage that it is difficult to miniaturize the magnetic core when used in high frequency transformers and gear coils.

近年、従来の磁心材料に対抗するものとして高い飽和磁
束密度を有する非晶質磁性合金が有望視されておシ、種
々の組成のものが開発されている0非晶質合金は主とし
てFe糸とCo系に大別され、Fe系の非晶質合金は材
料コストがCo系に比べ安くつくという利点がある反面
−船釣に高周波においてCo系非晶質合金よシコア損失
が大きく、透磁率も低いという問題がある。これに対し
Co糸の非晶質合金は高周波のコア損失が小さく、透磁
率も高いがコア損失や透磁率の経時変化が大きい。さら
に高価なCoを主原料とするため価格的な不利は免れな
い。
In recent years, amorphous magnetic alloys with high saturation magnetic flux densities have been viewed as promising to compete with conventional magnetic core materials, and amorphous alloys with various compositions have been developed mainly using Fe yarns. Fe-based amorphous alloys have the advantage of being cheaper in material cost than Co-based alloys, but on the other hand, they have a higher core loss than Co-based amorphous alloys at high frequencies for boat fishing, and have lower magnetic permeability. The problem is that it is low. On the other hand, the amorphous alloy of Co thread has small core loss at high frequencies and high magnetic permeability, but the core loss and magnetic permeability change over time are large. Furthermore, since expensive Co is used as the main raw material, a cost disadvantage cannot be avoided.

このような状況下でFe基非晶質磁性合金について種々
の提案がなされた。
Under these circumstances, various proposals have been made regarding Fe-based amorphous magnetic alloys.

特公昭60−17019号は、74〜84原子チのFe
と、8〜24原料チのBと、16原子チ以下のSl及び
6原子チ以下のCの内の少なくとも1つ、とからなる組
成を有し、その構造の少なくとも85チが非晶質金属素
地の形を有し、かつ非晶質金属素地の全体にわたって不
連続に分布された合金成分の結晶質粒子群の析出物を有
しておシ、結晶質粒子群は0,05〜1μmの平均粒度
及び1〜10μmの平均粒子間距離を有しておυ、粒子
群は全体の0.01〜0.3の平均容積分率を占めてい
ることを特徴とする鉄基含硼素磁性非晶質合金を開示し
ている。この合金の結晶質粒子群は磁壁のピンニング点
として作用する不連続な分布のα−(Fe、St)粒子
群であるとされている。
Special Publication No. 17019/1986 discloses Fe with 74 to 84 atoms.
, B of 8 to 24 raw materials, at least one of Sl of 16 atoms or less and C of 6 atoms or less, and at least 85 atoms of the structure are an amorphous metal. It has the shape of a matrix and has precipitates of crystalline particles of alloying components distributed discontinuously throughout the amorphous metal matrix, and the crystalline particles have a size of 0.05 to 1 μm. An iron-based boron-containing magnetic non-magnetic non-magnetic material having an average particle size and an average interparticle distance of 1 to 10 μm, and characterized in that the particle group occupies an average volume fraction of 0.01 to 0.3 of the whole. A crystalline alloy is disclosed. The crystalline grains of this alloy are said to be a discontinuously distributed α-(Fe, St) grains that act as pinning points of the domain wall.

また特開昭60−52557号はFeB CubBe 
5t(1(ただし75≦a≦85,0≦b≦1.5.1
0≦C≦20゜d≦10かつc+d≦60)からなる低
損失非晶質磁性合金を開示している。この非晶質磁性合
金は結晶化温度以下でかつキュリー温度以上で熱処理さ
れる。
Also, JP-A-60-52557 is FeB CubBe
5t(1 (however, 75≦a≦85, 0≦b≦1.5.1
Disclosed is a low-loss amorphous magnetic alloy having the following relationship: 0≦C≦20°d≦10 and c+d≦60). This amorphous magnetic alloy is heat treated at a temperature below the crystallization temperature and above the Curie temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

特公昭60−17019号のFe基基磁磁性合金不連続
な結晶粒子群の存在によりコア損失が減少しているが、
経時変化が大きく高周波トランスやチ璽−りの磁心用材
料としては満足でない。
Although the core loss is reduced due to the presence of discontinuous crystal grain groups in the Fe-based magnetomagnetic alloy of Japanese Patent Publication No. 60-17019,
It is unsatisfactory as a material for magnetic cores in high-frequency transformers and chisels because of its large change over time.

一方、特開昭60−52557号のFe基非晶質合金は
Cuを含有しているためにコア損失が著しく低下してい
るが、上記結晶質粒子含有Fe基非晶質合金と同様に満
足ではない。さらにコア損失の経時変化、透磁率等に関
しても十分ではないという問題がある。また、磁歪が大
きく磁気特性のばらつきも大きく、キュリー温度がFe
−8t−A1合金やFe−5t合金よシ低く磁気特性の
安定性も劣る。
On the other hand, the Fe-based amorphous alloy of JP-A No. 60-52557 contains Cu, so the core loss is significantly reduced, but it is not as satisfactory as the Fe-based amorphous alloy containing crystalline particles mentioned above. isn't it. Further, there are problems in that changes in core loss over time, magnetic permeability, etc. are not sufficient. In addition, the magnetostriction is large, the variation in magnetic properties is large, and the Curie temperature is
It is lower than -8t-A1 alloy and Fe-5t alloy, and its magnetic properties are also inferior in stability.

従って、本発明の目的は磁歪が小さくコア損失、コア損
失の経時変化、透磁率その他の磁気特性の安定性に優れ
た新規なFe基基磁磁性合金提供することである。
Therefore, an object of the present invention is to provide a novel Fe-based magnetomagnetic alloy that has low magnetostriction and excellent stability in core loss, change in core loss over time, magnetic permeability, and other magnetic properties.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的に鑑み鋭意研究の結果、本発明者等は一般式 %式% (原子チ) (ただし、MはNb、W、Ta、Zr、Hf、Ti、M
o+V。
As a result of intensive research in view of the above objectives, the present inventors have determined that the general formula % (atomic ti) (where M is Nb, W, Ta, Zr, Hf, Ti, M
o+V.

Cr 、 Mn p白金属元素Sc、Y、希土類元素+
 Au a Zn 。
Cr, Mn p White metal element Sc, Y, rare earth element +
Au a Zn.

Sn * Reからなる群から選ばれた少なくとも1種
の元素、XはCr Ge * Ga * AL 、Be
からなる群から選ばれた少なくとも1種の元素、Yはp
 + sb + In rAs +Li +Mg、Ca
+Sr、Ba+Cd、Pb、Bi lNt O+S 、
 Se及びTeからなる群から選ばれた少なくとも1穐
の元素であシ、 0≦a<0−2.0≦b<0.5.0≦a+b<0.5
t4≦y≦60,2≦2≦9,0≦α≦20゜0≦γ≦
20,0≦δ≦2,10≦y+z+r≦35を満たす。
At least one element selected from the group consisting of Sn*Re, X is CrGe*Ga*AL, Be
At least one element selected from the group consisting of, Y is p
+ sb + In rAs + Li + Mg, Ca
+Sr, Ba+Cd, Pb, Bi lNt O+S,
At least one element selected from the group consisting of Se and Te, 0≦a<0-2.0≦b<0.5.0≦a+b<0.5
t4≦y≦60, 2≦2≦9, 0≦α≦20゜0≦γ≦
20, 0≦δ≦2, 10≦y+z+r≦35.

) によシ表わされる組成の合金において組織の少なくとも
50%が微細な結晶粒からなり、前記結晶粒の最大寸法
で測定した粒径の平均が1000A以下の平均粒径を有
する場合、優れた軟磁性が得られることを見い出し本発
明に想到した。
) If at least 50% of the structure of an alloy with the composition represented by They discovered that magnetism can be obtained and came up with the present invention.

本発明においてSt、Bは必須の元素であシ、合金の結
晶粒微細化および磁歪調整軟磁気特性の改善に有用な元
素である。
In the present invention, St and B are essential elements, and are elements useful for refining the crystal grains of the alloy and improving the magnetostriction adjustment soft magnetic properties.

本発明の合金は、好ましくは、−旦81.B添加により
非晶質合金とした後で、熱処理によシ微細結晶粒を形成
することによシ得られる。
The alloy of the present invention preferably comprises -dan81. It is obtained by forming an amorphous alloy by adding B and then forming fine crystal grains by heat treatment.

St含有jkyの限定理由は、yが30原子チを超える
と軟磁気特性の良好な条件では磁歪が大きくなってしま
い好ましくなく、4原子−未満では軟磁気特性が著しく
劣化するため好ましくないためである。Bの含有量2の
限定理由は、2が2原子チ未満では均一な結晶粒組織が
得にくく軟磁気特性が劣化し好ましくなく、2が9yA
子チを超えると軟磁気特性の良好な熱処理条件では磁歪
が大きくなってしまい好ましくないためである。
The reason for limiting the St-containing jky is that if y exceeds 30 atoms, the magnetostriction will become large under conditions with good soft magnetic properties, which is undesirable, and if y is less than 4 atoms, the soft magnetic properties will deteriorate significantly, which is undesirable. be. The reason for limiting the B content to 2 is that if 2 is less than 2 atoms, it is difficult to obtain a uniform crystal grain structure and the soft magnetic properties deteriorate, which is undesirable.
This is because if the magnetic field exceeds the maximum magnetostriction, the magnetostriction becomes large under heat treatment conditions that provide good soft magnetic properties, which is undesirable.

XはC、Ge 、 Ga * At+ Beからなる群
から選ばれた少なくとも1種の元素であシ、これらの元
素は非晶質化や磁歪、キエリー温度調整等に効果がある
O Xの含有量γの限定理由は20原子チを超えると、著し
く軟磁気特性が劣化し、飽和磁束密度も低下するためで
ある。
X is at least one element selected from the group consisting of C, Ge, Ga*At+Be, and these elements are effective for amorphization, magnetostriction, Chier temperature adjustment, etc. The reason for limiting γ is that if it exceeds 20 atoms, the soft magnetic properties will deteriorate significantly and the saturation magnetic flux density will also decrease.

St、B、Xの総和量y+z+γの値に関しては、y+
z+γが10原子チ未満では非晶質化が困難になシ磁気
特性が劣化し好ましくなく、一方、y−I−z+rが3
5原子チを超えると、飽和磁束密度の著しい低下および
軟磁気特性の劣化がある。より好ましいSt、B含有量
の範囲は、10≦y≦25゜4≦2≦7である。
Regarding the value of the total amount y+z+γ of St, B, and X, y+
If z+γ is less than 10 atoms, it is difficult to make it amorphous and the magnetic properties deteriorate, which is undesirable. On the other hand, if y-I-z+r is 3
If it exceeds 5 atoms, there will be a significant decrease in saturation magnetic flux density and deterioration of soft magnetic properties. A more preferable range of St and B content is 10≦y≦25°4≦2≦7.

この範囲で特に優れた軟磁性が得られ、磁歪も小さいも
のが得やすい。
Within this range, particularly excellent soft magnetism can be obtained, and magnetostriction can also be easily obtained.

本発明に係る合金においてMは、結晶粒を微細化したり
、耐食性を改善したりする効果を有しており、20原子
チ以下含むことができる。この理由は、Mの含Miiα
が20原子チを越えた場合は飽和磁束密度の著しい低下
を示すためである。特に好ましいαの範囲は1≦α≦1
0であり、この範囲で優れた軟磁性を得ることができる
。特にMとしてはNb、W、Ta及びMoが軟磁気特性
の面で好ましい。
In the alloy according to the present invention, M has the effect of making crystal grains finer and improving corrosion resistance, and can be contained in an amount of 20 atoms or less. The reason for this is that M contains Miiα
This is because when the amount exceeds 20 atoms, the saturation magnetic flux density decreases significantly. A particularly preferable range of α is 1≦α≦1
0, and excellent soft magnetism can be obtained within this range. In particular, Nb, W, Ta, and Mo are preferable as M in terms of soft magnetic properties.

添加元素YはP * Sb 、In * As r L
i* Nia t Ca 、Sr rBa 、 Cd 
、 Ph 、 Bj、 、 N r Or S r S
e及びTeからなる群から選ばれた少なくとも1種の元
素であり、2原子チ以下含んでも良い。
The additive element Y is P*Sb, In*As r L
i* Niat Ca , Sr rBa , Cd
, Ph , Bj, , N r Or S r S
It is at least one element selected from the group consisting of e and Te, and may contain up to two atoms.

残部は不純物を除いて実質的にFeが主体であるが、F
eの1部はNi及び/又はCoにより置換されていても
良い。Niの含有JilaはOSa<0.2であるが、
これは0.2を超えると軟磁性が著しく劣化するためで
あり、tVfK好ましい範囲110≦a ;S 0.1
である。この範囲で特に良好な軟磁性が得られる。
The remainder is essentially Fe, excluding impurities, but F
A part of e may be replaced by Ni and/or Co. Ni content Jila is OSa<0.2, but
This is because soft magnetism deteriorates significantly when it exceeds 0.2, and tVfK is preferably in the range 110≦a; S 0.1
It is. Particularly good soft magnetism can be obtained within this range.

Coの含有量すは0≦b<o、sであり、Niの含有量
との総和a+bは0≦a+b<0.5である。特に好ま
しいCoの含有量およびCoとNiの含有量の総和は0
≦b≦0.1.0≦a+b≦0.1である。
The Co content satisfies 0≦b<o, s, and the total sum a+b with the Ni content satisfies 0≦a+b<0.5. Particularly preferable Co content and the sum of Co and Ni contents are 0
≦b≦0.1.0≦a+b≦0.1.

本発明合金は微細なりccFe固溶体を主体とする合金
で組織の少なくとも50%が微細な結晶粒からなシ、前
記結晶粒の最大寸法で測定した粒径の平均が1000A
以下の平均粒径を有する合金である0 通常は単ロール法、双ロール法等の液体急冷法やスパッ
ター法、蒸着法等による気相急冷法等により非晶質合金
を作製後これを加熱し結晶化させることKより作製され
る。
The alloy of the present invention is an alloy mainly composed of a fine ccFe solid solution, in which at least 50% of the structure is composed of fine crystal grains, and the average grain size measured at the maximum dimension of the crystal grains is 1000A.
The alloy has an average grain size of It is made from crystallized K.

特に最大寸法で測定し九粒径の平均が500A以下の平
均粒径を有する場合、特に優れた軟磁気特性を得ること
ができる。
Particularly excellent soft magnetic properties can be obtained when the average particle size of the nine particle sizes measured in the maximum dimension is 500A or less.

前記結晶粒の残部は主に非晶質であるが、本発明合金は
実質的に100%結晶質であっても十分優れた軟磁気特
性を得ることができる。
Although the remainder of the crystal grains are mainly amorphous, the alloy of the present invention can obtain sufficiently excellent soft magnetic properties even if it is substantially 100% crystalline.

また本発明合金はbccFe固溶体を主体とする合金テ
あり、飽和磁歪λsが一5x10〜+5X10−’の範
囲にあるものが得られ、Fe基アモルファス合金よシ著
しく磁歪が小さい。また、磁歪がほぼ零の合金も得るこ
とができる。
Furthermore, the alloy of the present invention is an alloy mainly composed of bccFe solid solution, and the saturation magnetostriction λs is in the range of -5x10 to +5x10-', and the magnetostriction is significantly lower than that of the Fe-based amorphous alloy. Furthermore, alloys with almost zero magnetostriction can also be obtained.

本発明のFe基磁性合金は、前述のように単ロール法、
双ロール法、遠心急冷法等によシ非晶質薄帯を作製後熱
処理を行ない微細な結晶粒を形成する方法、蒸着法、ス
パッター法やイオンブレーティング等によシ非晶質膜を
作製後熱処理し結晶化させる方法、アトマイズ法やキャ
ビテーシ冒ン法により非晶質粉を得た後熱処理し結晶化
させる方法や回転液中紡糸法やガラス被覆紡糸法により
、非晶質線を得た後熱処理し結晶化させる方法等いろい
ろな方法で作製することができる。したがって、本発明
合金は粉末、線、薄帯、膜などいろいろな形状のものが
でき、圧接等を行なえばバルク体も得ることができる。
The Fe-based magnetic alloy of the present invention can be produced by the single roll method as described above.
Amorphous thin strips are prepared by the twin roll method, centrifugal quenching method, etc., and then heat treated to form fine crystal grains. Amorphous films are prepared by vapor deposition, sputtering, ion blating, etc. An amorphous wire was obtained by a method of post-heat treatment and crystallization, a method of obtaining amorphous powder by an atomization method or a cavitation blowing method, and then a method of heat-treating and crystallizing it, a spinning method in a rotating liquid, or a glass-covered spinning method. It can be produced by various methods such as a method of post-heat treatment and crystallization. Therefore, the alloy of the present invention can be made into various shapes such as powder, wire, ribbon, and film, and can also be made into a bulk body by pressure welding.

本合金を得る除行われる熱処理は内部歪を小さくするこ
とと、微細結晶粒組織とし軟磁気特性を向上させるとと
もに磁歪を小さくする目的で行われる。
The heat treatment performed before obtaining this alloy is performed for the purpose of reducing internal strain, creating a fine grain structure, improving soft magnetic properties, and reducing magnetostriction.

熱処理は通常真空中または水紫ガス、窒素ガス。Heat treatment is usually done in vacuum or with water purple gas or nitrogen gas.

アルゴンガス等の不活性ガス雰囲気中において行なわれ
る。しかし場合によっては大気中で行っても良い。
This is carried out in an inert gas atmosphere such as argon gas. However, depending on the case, it may be performed in the atmosphere.

熱処理温度及び時間は非晶質合金リボンからなる磁心の
形状、サイズ、組成により異なるが一般的に450℃〜
700℃で5分から24時間程度が望ましい。
The heat treatment temperature and time vary depending on the shape, size, and composition of the magnetic core made of amorphous alloy ribbon, but generally 450℃~
Preferably, the temperature is 700°C for about 5 minutes to 24 hours.

熱処理の際の昇温や冷却の条件は状況に応じて任意に変
えることができる。また同一温度または異なる温度で複
数回にわけ熱処理を行ったシ、多段の熱処理パターンで
熱処理を行なうこともできる。更には、本合金は熱処理
を直流あるいは交流の磁場中で行なうこともできる。磁
場中熱処理によp本合金に磁気異方性を生じさせること
ができる。本合金からなる磁心の磁路方向に磁場を印加
し熱処理した場合は、B−Hカーブの角形性が良いもの
が得られ、可飽和リアクトル、磁気スイッチ、パルス圧
縮用コア、スパイク電圧防止用リアクトル等に好適な特
性が得られ、一方磁路と直角方向に磁場を印加し熱処理
した場合は、B−Hカーブが傾斜し、低角形比で恒速磁
率性に優れた特性が得られ、トランスやノイズフィルタ
ー、チ璽−クコイル等に好適となる。
Conditions for heating and cooling during heat treatment can be arbitrarily changed depending on the situation. The heat treatment can also be performed in a multi-stage heat treatment pattern, in which the heat treatment is performed multiple times at the same temperature or at different temperatures. Furthermore, the present alloy can also be heat treated in a direct current or alternating current magnetic field. Magnetic anisotropy can be produced in the p-based alloy by heat treatment in a magnetic field. When heat-treated by applying a magnetic field in the magnetic path direction of a magnetic core made of this alloy, a product with good B-H curve squareness can be obtained, which can be used for saturable reactors, magnetic switches, cores for pulse compression, and reactors for preventing spike voltages. On the other hand, when heat treatment is performed by applying a magnetic field in the direction perpendicular to the magnetic path, the B-H curve becomes sloped, and excellent characteristics with low squareness ratio and constant velocity magnetic properties are obtained, and the transformer It is suitable for use as noise filters, check coils, etc.

磁場は熱処理の間中かける必要はなく、合金のキエリー
温度Tcよシ低い温度でかければ十分効果がある。本発
明合金のキエリー温度は非晶質の場合よシ主相のキエリ
ー温度が上昇しており、非晶質合金のキエリー温度より
高い温度でも磁場中熱処理が適用できる。また回転磁場
中熱処理を行ない軟磁気特性を更に改善することもでき
る。また、熱処理の際合金に電流を流したシ、高周波磁
界を印加し合金を発熱させることにより合金を熱処理す
ることもできる。
It is not necessary to apply a magnetic field throughout the heat treatment, and it is sufficiently effective if it is applied at a temperature lower than the Chierly temperature Tc of the alloy. The Chielly temperature of the main phase of the alloy of the present invention is higher than that of the amorphous alloy, and heat treatment in a magnetic field can be applied even at a temperature higher than the Chielly temperature of the amorphous alloy. Further, the soft magnetic properties can be further improved by heat treatment in a rotating magnetic field. Alternatively, the alloy can be heat-treated by passing a current through the alloy and applying a high-frequency magnetic field to generate heat in the alloy.

また応力下で熱処理し磁気特性を調整することもできる
。特に本発明の合金は低磁歪の特徴を有するため、合金
表面に絶縁層を形成したシ、含浸やコーティングを行ワ
ても磁気特性の劣化が小さい特徴があシ、優れた特性の
モールドコアやカットコア、コーティングコア、磁気ヘ
ッド等を作製できる。
The magnetic properties can also be adjusted by heat treatment under stress. In particular, since the alloy of the present invention has the characteristic of low magnetostriction, it has the characteristic that the magnetic properties do not deteriorate even after forming an insulating layer on the alloy surface, impregnation or coating, and mold cores with excellent characteristics. Cut cores, coated cores, magnetic heads, etc. can be produced.

〔実施例〕 本発明を以下の実施例によシさらに詳細に説明するが、
本発明はこれらに限定されるものではないO 実施例1 原子チでSi 17.5at%、B5at%、Nb5a
t%及び残部実質的にFeからなる組成の溶湯から、単
ロール法により合金薄帯を作製した。板厚は18μm幅
は311I+であった。
[Example] The present invention will be explained in more detail with reference to the following example.
The present invention is not limited to these examples. Example 1 Si 17.5 at%, B5 at%, Nb5a
An alloy ribbon was produced by a single roll method from a molten metal having a composition of t% and the balance substantially consisting of Fe. The plate thickness was 18 μm and the width was 311I+.

この合金のX線回折を行ったところ非晶質合金特有のハ
ローパターンが得られた。透過電子顕微鏡による組織観
察の結果でも結晶相は認められなかった。この合金の結
晶化温度は541℃であった0 次にこの合金を外径19M、内径155mのトロイダル
状に巻き巻磁心を作製した。次にこの巻磁心を560℃
に保持したAr雰囲気の炉に装入し、1時間保持後、5
いの冷却速度で室温まで冷却した。
When this alloy was subjected to X-ray diffraction, a halo pattern unique to amorphous alloys was obtained. No crystalline phase was observed in the results of structure observation using a transmission electron microscope. The crystallization temperature of this alloy was 541° C. Next, this alloy was wound into a toroidal shape having an outer diameter of 19 m and an inner diameter of 155 m to prepare a wound magnetic core. Next, this wound magnetic core was heated to 560°C.
It was charged into a furnace with an Ar atmosphere maintained at
The mixture was cooled to room temperature at a cooling rate of 1.

第1図(a)にX線回折パターン、第1図(b)に透過
電子顕微鏡で観、察したミクロ組織の模式図を示す。
FIG. 1(a) shows an X-ray diffraction pattern, and FIG. 1(b) shows a schematic diagram of the microstructure observed and observed with a transmission electron microscope.

X線回折および透過電子顕微鏡による組織観察の結果よ
り本発明合金は組織の大部分が50〜500Aの粒径の
微細なりccFe固溶体固溶体表ることが確認された。
From the results of structure observation using X-ray diffraction and transmission electron microscopy, it was confirmed that the majority of the structure of the alloy of the present invention is a fine grain size of 50 to 500A and represents a ccFe solid solution.

磁気特性は、飽和磁束密度Bsが12.4KG、IKH
zにおける実効透磁率が14300.2KG100KH
zにおけるコア損失W2/1(IIKが630 mW/
ccであり優れた軟磁性を示すことが確認された。また
飽和磁歪λ、は+2.5X10でありFe基アモルファ
ス合金に比べ著しく小さいことが確認された。
As for magnetic properties, saturation magnetic flux density Bs is 12.4KG, IKH
Effective magnetic permeability at z is 14300.2KG100KH
Core loss W2/1 at z (IIK is 630 mW/
cc and was confirmed to exhibit excellent soft magnetism. It was also confirmed that the saturation magnetostriction λ was +2.5×10, which was significantly smaller than that of the Fe-based amorphous alloy.

実流例2 原子チで5i17.8at%、B5.Oat%、Nb3
.1atチ及び残部実質的にFeからなる組成の溶湯か
ら、板厚18μm帽5mの合金薄帯を単ロール法によシ
作製した。この合金はX線回折の結果非晶質合金特有の
ハローパターンを示し、透過電子顕微鏡による組織観察
の結果でも結晶相は認められず、非晶質単相であること
が′8gされた。
Actual flow example 2 5i17.8at% in atoms, B5. Oat%, Nb3
.. An alloy thin strip having a thickness of 18 μm and 5 m was produced by a single roll method from a molten metal having a composition of 1 atm and the remainder substantially consisting of Fe. This alloy exhibited a halo pattern characteristic of amorphous alloys as a result of X-ray diffraction, and no crystalline phase was observed in the results of structural observation using a transmission electron microscope, indicating that it was an amorphous single phase.

次にこの合金薄帯を外径19削内径15mのトロイダル
状に巻回しトロイダル磁心とし窒素ガス雰囲気中で熱処
理を行った。保持時間は1時間とした。熱処理中試料に
は50000eの磁場を印加し試料を回転させた。冷却
は5′c/Hの冷却速度で行りた。
Next, this alloy ribbon was wound into a toroidal shape having an outer diameter of 19 and an inner diameter of 15 m, and was heat-treated in a nitrogen gas atmosphere to form a toroidal magnetic core. The holding time was 1 hour. During the heat treatment, a magnetic field of 50,000 e was applied to the sample and the sample was rotated. Cooling was carried out at a cooling rate of 5'c/H.

熱処理温度と磁気特性の関係および結晶相の割合を第1
表に示す。
The relationship between heat treatment temperature and magnetic properties and the ratio of crystalline phase are determined first.
Shown in the table.

第   1   表 結晶相の比率が50%を越えると飽和磁歪定数λBが著
しく小さくなシ、かつ軟磁気特性も良好な特性を示すこ
とがわかる。結晶相の比率が0%の非晶質状態の合金よ
、り 1 KHzの実効透磁率がやや低い場合もあるが
、実用的に問題ない値であり、λ8が著しく小さい特徴
があるため含浸等による歪による磁気特性の劣化が小さ
くモールドコア等に用いる場合有利となる。
Table 1 It can be seen that when the ratio of crystalline phase exceeds 50%, the saturation magnetostriction constant λB becomes extremely small, and the soft magnetic properties also show good properties. Although the effective magnetic permeability at 1 KHz may be slightly lower than that of an amorphous alloy with a crystalline phase ratio of 0%, it is a value that poses no practical problem, and is characterized by a significantly small λ8, making it suitable for impregnation, etc. Since the deterioration of magnetic properties due to distortion is small, it is advantageous when used for mold cores, etc.

実施例6 第2表に示す組成の淳さ15μm1幅5鱈の合金薄帯を
単ロール法により作製した。
Example 6 An alloy ribbon having the composition shown in Table 2 and having a thickness of 15 μm and a width of 5 mm was produced by a single roll method.

次に、この合金薄帯を外径19fi、内径15鴫に巻回
しトロイダル磁心を作製し、N2ガス雰囲気中で結晶化
温度以上で熱処理後100KHz 、 0.27におけ
るコア損失、飽和磁歪λ8120℃に1000時間保持
した後のコア損失の増加率を測定した。
Next, this alloy ribbon was wound to have an outer diameter of 19 fi and an inner diameter of 15 mm to make a toroidal magnetic core, and after heat treatment in an N2 gas atmosphere at a temperature higher than the crystallization temperature, the core loss at 100 KHz, 0.27, and the saturation magnetostriction λ were 8120°C. The rate of increase in core loss after holding for 1000 hours was measured.

Wo:初期のコア損失 Wtooo : 1000時間
後のコア損失筒   2   表 なお、透過電子顕微鏡による組織観察の結果ミクロ組織
は実施例1とほぼ同様であることが確認された。
Wo: Initial core loss Wtooo: Core loss cylinder after 1000 hours Table 2 Note that as a result of structure observation using a transmission electron microscope, it was confirmed that the microstructure was almost the same as in Example 1.

表かられかるように本発明合金は従来のFe基7モル7
アス合金よジ飽和磁歪λ8が著しく小さく、コア損失も
小さい。またFe基およびCo基アモルファス合金に比
べ著しくコア損失の経時変化率が小さく安定である。こ
のため高信頼性の磁心を作製することができる。
As can be seen from the table, the alloy of the present invention has a Fe base of 7 mol 7
As alloy, the saturation magnetostriction λ8 is extremely small and the core loss is also small. Furthermore, compared to Fe-based and Co-based amorphous alloys, the rate of change in core loss over time is significantly smaller and more stable. Therefore, a highly reliable magnetic core can be manufactured.

実施例4 第3表に示す組成の厚さ6μmの合金膜を7オトセラム
基板上にマグネトロンスパッタ法により作製し九。X線
回折の結果得られた合金膜はほぼ非晶質単相であること
が確認された。
Example 4 An alloy film having the composition shown in Table 3 and having a thickness of 6 μm was prepared on an Otoceram substrate by magnetron sputtering. As a result of X-ray diffraction, it was confirmed that the alloy film obtained was almost an amorphous single phase.

次にこの合金をNガス雰囲気中で結晶化温度以上に加熱
し熱処理した。得られた合金膜の組繊は実施例1とほぼ
同様でありた。次に、この合金膜のIMHzの実効透磁
率μeIMを測定し、次に120℃1ooo時間保持後
のIMHzの実効透磁率μ”IMを測定した。IMHz
の実効透磁率の変化率Δμ0M第0M 衣かられかるように本発明合金膜は従来のア七ルファス
合金膜に比べ経時変化が著しく小さく優れている。
Next, this alloy was heat treated in an N gas atmosphere to a temperature higher than the crystallization temperature. The fiber composition of the obtained alloy film was almost the same as in Example 1. Next, the IMHz effective magnetic permeability μeIM of this alloy film was measured, and then the IMHz effective magnetic permeability μ”IM after holding at 120°C for 100 hours was measured.IMHz
The rate of change in effective magnetic permeability Δμ0Mth0M As can be seen from the above, the alloy film of the present invention is superior in that the change over time is significantly smaller than that of the conventional alpha alpha alloy film.

〔発明の効果〕〔Effect of the invention〕

本発明によれは優れた軟磁気特性を有し、磁歪が小さく
熱安定性にも優れたFe基磁性合金を得ることができる
ため、その効果は著しいものがある。
According to the present invention, it is possible to obtain an Fe-based magnetic alloy having excellent soft magnetic properties, low magnetostriction, and excellent thermal stability, so the effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明合金のX線回折パターンの一例を
示した図、第1図(b)は本発明合金の透過電子顕微鏡
により観察した組織の模式図を示した図である。
FIG. 1(a) is a diagram showing an example of the X-ray diffraction pattern of the alloy of the present invention, and FIG. 1(b) is a diagram showing a schematic diagram of the structure of the alloy of the present invention observed by a transmission electron microscope.

Claims (1)

【特許請求の範囲】 1、一般式 (Fe_1_−_a_−_bNi_aCo_b)_1_
0_0_−_y_−_z_−_α_−_β_−_γ_−
_δSi_yB_zM′_αX_γY_δ(原子%) (ただし、M′はNb、W、Ta、Zr、Hf、Ti、
Mo、V、Cr、Mn、白金属元素、Sc、Y、希土類
元素、Au、Zn、Sn、Reからなる群から選ばれた
少なくとも1種の元素、XはC、Ge、Ga、Al、B
eからなる群から選ばれた少なくとも1種の元素、Yは
P、Sb、In、As、Li、Mg、Ca、Sr、Ba
、Cd、Pb、Bi、N、O、S、Se及びTeからな
る群から選ばれた少なくとも1種の元素であり、 0≦a<0.2、0≦b≦0.5、0≦a+b<0.5
、4≦y≦30、2≦z≦9、0≦α≦20、0≦γ≦
20、0≦δ≦2、10≦y+z+γ≦35を満たす。 )により表わされる組成を有し、組織の少なくとも50
%が微細な結晶粒からなり、前記結晶粒の最大寸法で測
定した粒径の平均が1000Å以下の平均粒径を有する
ことを特徴とするFe基磁性合金。 (2)特許請求の範囲第1項に記載のFe基磁性合金に
おいて、a、b、y、z、α、γが 0≦a≦0.1、0≦b≦0.1、0≦a+b≦0.1
、10≦y≦25、4≦z≦7、1≦α≦10、0≦γ
≦10の関係を満足することを特徴とするFe基磁性合
金。 (3)特許請求の範囲第1項乃至第2項に記載のFe基
磁性合金において、前記組織の残部が非晶質であること
を特徴とするFe基磁性合金。 (4)特許請求の範囲第1項乃至第2項に記載のFe基
磁性合金において、前記組織が実質的に微細な結晶粒か
らなることを特徴とするFe基磁性合金。 (5)前記結晶粒がbcc構造のFe固溶体を主体とし
たものからなることを特徴とする特許請求の範囲第1項
乃至第4項に記載のFe基磁性合金。 (6)前記結晶粒の最大寸法で測定した粒径の平均が5
00Å以下の平均粒径を有することを特徴とする特許請
求の範囲第1項乃至第5項記載のFe基磁性合金。 (7)M′がNb、W、Ta及びMoからなる群から選
ばれる少なくとも1種の元素であることを特徴とする特
許請求の範囲第1項乃至第6項に記載のFe基磁性合金
。 (8)飽和磁歪λ_sが−5×10^−^6〜+5×1
0^−^6の範囲にあることを特徴とする特許請求の範
囲第1項乃至第7項に記載のFe基磁性合金。
[Claims] 1. General formula (Fe_1_-_a_-_bNi_aCo_b)_1_
0_0_-_y_-_z_-_α_-_β_-_γ_-
_δSi_yB_zM'_αX_γY_δ (atomic %) (However, M' is Nb, W, Ta, Zr, Hf, Ti,
At least one element selected from the group consisting of Mo, V, Cr, Mn, platinum metal element, Sc, Y, rare earth element, Au, Zn, Sn, Re, X is C, Ge, Ga, Al, B
At least one element selected from the group consisting of e, Y is P, Sb, In, As, Li, Mg, Ca, Sr, Ba
, Cd, Pb, Bi, N, O, S, Se, and Te, and 0≦a<0.2, 0≦b≦0.5, 0≦a+b <0.5
, 4≦y≦30, 2≦z≦9, 0≦α≦20, 0≦γ≦
20, 0≦δ≦2, 10≦y+z+γ≦35. ) and at least 50% of the tissue
% of the crystal grains, and the average grain size measured at the maximum dimension of the crystal grains is 1000 Å or less. (2) In the Fe-based magnetic alloy according to claim 1, a, b, y, z, α, and γ are 0≦a≦0.1, 0≦b≦0.1, 0≦a+b ≦0.1
, 10≦y≦25, 4≦z≦7, 1≦α≦10, 0≦γ
An Fe-based magnetic alloy characterized by satisfying the relationship of ≦10. (3) The Fe-based magnetic alloy according to claims 1 and 2, wherein the remainder of the structure is amorphous. (4) The Fe-based magnetic alloy according to claims 1 and 2, characterized in that the structure consists of substantially fine crystal grains. (5) The Fe-based magnetic alloy according to any one of claims 1 to 4, wherein the crystal grains are mainly composed of Fe solid solution having a bcc structure. (6) The average grain size measured at the maximum dimension of the crystal grains is 5
6. The Fe-based magnetic alloy according to claim 1, wherein the Fe-based magnetic alloy has an average grain size of 00 Å or less. (7) The Fe-based magnetic alloy according to any one of claims 1 to 6, wherein M' is at least one element selected from the group consisting of Nb, W, Ta, and Mo. (8) Saturation magnetostriction λ_s is -5×10^-^6 to +5×1
The Fe-based magnetic alloy according to any one of claims 1 to 7, characterized in that the Fe-based magnetic alloy is in the range of 0^-^6.
JP62313645A 1987-12-11 1987-12-11 Fe-based magnetic alloy Expired - Fee Related JP2713714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62313645A JP2713714B2 (en) 1987-12-11 1987-12-11 Fe-based magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62313645A JP2713714B2 (en) 1987-12-11 1987-12-11 Fe-based magnetic alloy

Publications (2)

Publication Number Publication Date
JPH01156452A true JPH01156452A (en) 1989-06-20
JP2713714B2 JP2713714B2 (en) 1998-02-16

Family

ID=18043801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62313645A Expired - Fee Related JP2713714B2 (en) 1987-12-11 1987-12-11 Fe-based magnetic alloy

Country Status (1)

Country Link
JP (1) JP2713714B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1198605A2 (en) * 1999-05-25 2002-04-24 Bechtel BWXT Idaho, LLC Methods of forming steel
JP2002226956A (en) * 2000-11-29 2002-08-14 Alps Electric Co Ltd Amorphous soft magnetic alloy
CN103668006A (en) * 2013-12-19 2014-03-26 南京信息工程大学 Nickel-free alloy and preparation method thereof
CN108251753A (en) * 2018-02-08 2018-07-06 东北大学 A kind of high-magnetostriction coefficient Fe-Ga base strips and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1198605A2 (en) * 1999-05-25 2002-04-24 Bechtel BWXT Idaho, LLC Methods of forming steel
EP1198605A4 (en) * 1999-05-25 2002-11-06 Bechtel Bwxt Idaho Llc Methods of forming steel
EP1452617A1 (en) * 1999-05-25 2004-09-01 Bechtel BWXT Idaho, LLC Methods of forming steel
JP2002226956A (en) * 2000-11-29 2002-08-14 Alps Electric Co Ltd Amorphous soft magnetic alloy
CN103668006A (en) * 2013-12-19 2014-03-26 南京信息工程大学 Nickel-free alloy and preparation method thereof
CN108251753A (en) * 2018-02-08 2018-07-06 东北大学 A kind of high-magnetostriction coefficient Fe-Ga base strips and preparation method thereof

Also Published As

Publication number Publication date
JP2713714B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
JPH044393B2 (en)
JPH01242755A (en) Fe-based magnetic alloy
EP0429022B1 (en) Magnetic alloy with ulrafine crystal grains and method of producing same
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP3231149B2 (en) Noise filter
JPH0375343A (en) Soft magnetic alloy
JP2667402B2 (en) Fe-based soft magnetic alloy
JPH01156452A (en) Fe-based magnetic alloy
JPH01290744A (en) Fe-base soft-magnetic alloy
JP2718261B2 (en) Magnetic alloy and method for producing the same
JP2704157B2 (en) Magnetic parts
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JP3233289B2 (en) Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JPH01142049A (en) Fe-based magnetic alloy
JPH04272159A (en) Ferrous magnetic alloy
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JPH03197650A (en) Fe-base high transmissible magnetic alloy
JPH03197651A (en) Fe-base high transmissible magnetic alloy
JPH03271346A (en) Soft magnetic alloy
JPH0499253A (en) Iron-based soft magnetic alloy
JPH0353048A (en) Fe-base magnetic alloy
JPH03249151A (en) Superfine crystalline magnetic alloy and its manufacture
JPH0853739A (en) Soft magnetic alloy
JPH04341544A (en) Fe base soft magnetic alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees