[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5814741B2 - handout - Google Patents

handout

Info

Publication number
JPS5814741B2
JPS5814741B2 JP50152664A JP15266475A JPS5814741B2 JP S5814741 B2 JPS5814741 B2 JP S5814741B2 JP 50152664 A JP50152664 A JP 50152664A JP 15266475 A JP15266475 A JP 15266475A JP S5814741 B2 JPS5814741 B2 JP S5814741B2
Authority
JP
Japan
Prior art keywords
film
forming
group
oxide
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50152664A
Other languages
Japanese (ja)
Other versions
JPS5275268A (en
Inventor
古池進
松田俊夫
神原銀次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP50152664A priority Critical patent/JPS5814741B2/en
Priority to US05/751,124 priority patent/US4102715A/en
Priority to DE2657415A priority patent/DE2657415C2/en
Priority to FR7638415A priority patent/FR2335950A1/en
Priority to GB53080/76A priority patent/GB1581726A/en
Publication of JPS5275268A publication Critical patent/JPS5275268A/en
Publication of JPS5814741B2 publication Critical patent/JPS5814741B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)

Description

【発明の詳細な説明】 本発明は、半導体基板にほう素またはアルミニウムまた
はガリウム等の■族低濃度層と高濃度層を選択的に同時
に形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for selectively and simultaneously forming a low-concentration layer and a high-concentration layer of group Ⅰ, such as boron, aluminum, or gallium, on a semiconductor substrate.

シリコン基板表面に形成された酸化ほう素(B203)
、酸化アルミニウム(Al203)、酸化ガリウム(G
a203)膜、あるいは、これらの酸化物のそれぞれに
酸化け(ハ)素との混合膜(Si02−B203 t
Si02−Al203 s Si02−Ga2一〇3)
は、シリコンへの不純物拡散源として使用される。
Boron oxide (B203) formed on the silicon substrate surface
, aluminum oxide (Al203), gallium oxide (G
a203) film, or a mixed film of each of these oxides with silicon oxide (Si02-B203 t
Si02-Al203 s Si02-Ga2103)
is used as a source of impurity diffusion into silicon.

これらの酸化膜は、たとえば、ほう素に関しては、30
0〜700℃の有機ほう素化合物あるいは、これと有機
ンランとの酸化反応または熱分解反応、ジボラン(B2
H6)、ンラン(Si一H4)の酸化反応によシシリコ
ン表面に形成される。
For example, for boron, these oxide films have a thickness of 30
Oxidation reaction or thermal decomposition reaction between an organic boron compound or an organic oran at 0 to 700°C, diborane (B2
H6) is formed on the silicon surface by the oxidation reaction of silicon (Si-H4).

アルミニウム、ガリウムについても、それぞれの有機化
合物あるいはハロゲン化物から、同様に酸化膜が形成さ
れる。
For aluminum and gallium, oxide films are similarly formed from their respective organic compounds or halides.

こうした膜形成後、800〜1200℃で酸素、あるい
は窒素気流中、あるいはこれらの混合ガス中などで適当
な時間置くことにより、シリコン基板中にほう素あるい
はアルミニウム、ガリウムが拡散する。
After forming such a film, boron, aluminum, or gallium is diffused into the silicon substrate by leaving the film at 800 to 1200° C. in an oxygen or nitrogen stream, or a mixed gas thereof for an appropriate period of time.

この拡散による接合深さと表面濃度は、温度、時間、酸
化膜中の不純物のほう素(あるいはアルミニウム、ガリ
ウム)温度などによって決定され、特に表面濃度は酸化
膜中の不純物濃度に大きく依存する。
The junction depth and surface concentration due to this diffusion are determined by temperature, time, the temperature of the impurity boron (or aluminum, gallium) in the oxide film, etc. In particular, the surface concentration largely depends on the impurity concentration in the oxide film.

表面濃度はこの方法により10t6〜1020/cm3
の範囲が得られるが、実用的には1018/cm3以上
であり、1016〜17/cm3以下は酸化膜中のほう
素(あるいはアルミニウム、ガリウム)濃度を非常に小
さくコントロールしなければならず、再現性を期待でき
ない。
The surface concentration is 10t6~1020/cm3 by this method.
However, in practice it is more than 1018/cm3, and below 1016-17/cm3, the concentration of boron (or aluminum or gallium) in the oxide film must be controlled to be extremely low, making it difficult to reproduce. I can't expect sex.

従って、シリコン基板中に高濃度層と低濃度層を形成す
るに際して、得られるそれぞれの層の表面濃度は101
8/cm3以上であって両者の濃度差を大きくできない
ばかりか、高濃度層と低濃度層形成のため、それぞれに
対して、膜形成、拡散を別々に行わなければならない。
Therefore, when forming a high concentration layer and a low concentration layer in a silicon substrate, the surface concentration of each layer obtained is 101
8/cm3 or more, which makes it impossible to increase the difference in concentration between the two, and in order to form a high concentration layer and a low concentration layer, film formation and diffusion must be performed separately for each layer.

これは工程が面倒のみならず、加熱工程の繰り返しは結
晶基板に欠陥を増加して好ましくない。
This is not only a troublesome process, but also repeating the heating process increases defects in the crystal substrate, which is undesirable.

本発明はト述の問題を解決するものであり、シリコン基
板に、ほう素またはアルミニウムまたはガリウム等の■
族不純物の高濃度および低濃度の拡散層を選択的に同時
に形成する方法を与えるものである。
The present invention solves the above-mentioned problems, and includes a material such as boron, aluminum, or gallium on a silicon substrate.
The present invention provides a method for selectively and simultaneously forming diffusion layers with high concentration and low concentration of group impurities.

すなわち、本発明は(1)シリコン結晶基板に不純物拡
散源となるほう素およびほう素酸化物(またはアルミニ
ウムおよびアルミニムラ酸化物、またはガリウムおよび
ガリウム酸化物)のうち少なくとも一方を含む膜を形成
する第一工程と、その上の所定個所に酸化けい素膜を形
成する第二工程と、その後アンモニアを含む雰囲気中で
高温熱処理を行う第三工程からなシ、第三工程と同時に
あるいはさらに必要な高温熱処理によって表面濃度、接
合深さの異なる拡散層を選択的に同時に形成することを
特徴としており、あるいはまた(2)シリコン結晶基板
表面の所定個所に酸化けい素膜を形成し、次いで第一、
第二、第三工程を行い、表面濃度、接合深さの異なる拡
散層を選択的に同時に形成することを特徴にしており、
さらにまた(3)シリコン結晶基板表面の所定個所に酸
化けい素膜を形成し、次いで上記の第一工程を行い、そ
の後、第三工程を行って表面濃度、接合深さの異なる層
を選択的に同時に形成することを特徴とするものである
That is, the present invention provides (1) forming a film containing at least one of boron and boron oxide (or aluminum and aluminum uneven oxide, or gallium and gallium oxide) to serve as an impurity diffusion source on a silicon crystal substrate; One step, a second step of forming a silicon oxide film on a predetermined location on the silicon oxide film, and a third step of performing high-temperature heat treatment in an atmosphere containing ammonia. It is characterized by selectively and simultaneously forming diffusion layers with different surface concentrations and junction depths by heat treatment. Alternatively, (2) a silicon oxide film is formed at a predetermined location on the surface of a silicon crystal substrate, and then a first step is performed.
It is characterized by performing the second and third steps to selectively and simultaneously form diffusion layers with different surface concentrations and junction depths.
Furthermore, (3) a silicon oxide film is formed at a predetermined location on the surface of a silicon crystal substrate, and then the first step described above is performed, and then the third step is performed to selectively form layers with different surface concentrations and junction depths. It is characterized by being formed at the same time.

すなわち、本発明のごとく酸化ほう素一酸化けい素膜(
または酸化アルミニウム、または酸化ガリウム)を60
0〜1200℃の範囲でアンモニア処理するか、アンモ
ニアの存在下で拡散することによって表面濃度1016
〜10l7/CML3以下の拡散が実用的に可能となる
That is, as in the present invention, a boron oxide silicon monoxide film (
or aluminum oxide, or gallium oxide) 60
A surface concentration of 1016 can be achieved by ammonia treatment in the range 0-1200°C or by diffusion in the presence of ammonia.
Diffusion of ~10l7/CML3 or less is practically possible.

本発明の方法によれば、アンモニアにより、酸化膜中の
ほう素(またはアルミニウム、またはガリウム)に結合
している酸素が窒素に置換され、B−N(またはAl−
N,Ga−N)結合が形成される。
According to the method of the present invention, ammonia replaces oxygen bonded to boron (or aluminum or gallium) in the oxide film with nitrogen, and
N,Ga-N) bonds are formed.

この結合が形成されると、混合膜中のほう素(またはア
ルミニウム、またはガリウム)は拡散を抑制され、シリ
コン中には導入されにくくなる。
When this bond is formed, diffusion of boron (or aluminum or gallium) in the mixed film is suppressed, and it becomes difficult to introduce into silicon.

したがってこの処理によって、従来のドープドオキサイ
ト法よりも表面濃度を2〜3桁低くずることが可能であ
る。
This treatment therefore makes it possible to shift the surface concentration two to three orders of magnitude lower than with the conventional doped oxide method.

すなわち、前述のように、従来法によって得られる10
18〜1020/cIrL3の表面濃度がアンモニア処
理により、1016〜10l7/cIrL3になる。
That is, as mentioned above, 10 obtained by the conventional method
The surface concentration of 18-1020/cIrL3 becomes 1016-1017/cIrL3 by ammonia treatment.

従って厚い酸化けい素膜をアンモニアに対するマスクと
して、この一部に窓をあけると、窓部のみがアンモニア
の影響を受け、窓部外と異なった拡散が生じ、しかも上
記の理由により濃度差の大きい結果が得られるわけであ
る。
Therefore, if a thick silicon oxide film is used as a mask against ammonia and a window is opened in a part of the film, only the window will be affected by ammonia, resulting in a different diffusion than outside the window, and due to the above reasons, there will be a large concentration difference. That's how you get results.

つぎに本発明の方法を詳細に説明する。Next, the method of the present invention will be explained in detail.

第1図A,B,Cけそれぞれ上記(1) , (2)
, (3)の方法を示すものである。
Figure 1 A, B, C (1) and (2) above respectively
, (3).

第1図において、1はシリコン基板、2はたとえばS
102 B2 03膜、3はSiO2膜、4はSiO
2膜5に形成された窓、5は低濃度拡散層、6は高濃度
拡散層、Iはシリコン基派1の表面に選択的に形成され
たSiO2膜である。
In FIG. 1, 1 is a silicon substrate, 2 is, for example, an S
102 B2 03 film, 3 is SiO2 film, 4 is SiO
2 is a window formed in the film 5, 5 is a low concentration diffusion layer, 6 is a high concentration diffusion layer, and I is a SiO2 film selectively formed on the surface of the silicon substrate 1.

まず、第1図Aによれば、上記アンモニアは窓4からの
み作用し、この窓下のSiO2−B203膜2のほう素
は拡散を抑制され、シリコン基板1には低い表面濃度、
浅い接合深さの拡散層5が形成され、一方SiO2膜3
で覆われたSiO2−B2O3膜はアンモニアの処理を
受けないため、高い表面濃度、深い接合を有する拡散層
6が形成される。
First, according to FIG. 1A, the ammonia acts only through the window 4, and the diffusion of boron in the SiO2-B203 film 2 under this window is suppressed, and the silicon substrate 1 has a low surface concentration.
A diffusion layer 5 with a shallow junction depth is formed, while a SiO2 film 3
Since the SiO2-B2O3 film covered with ammonia is not treated with ammonia, a diffusion layer 6 having a high surface concentration and a deep junction is formed.

BけSiO2膜7直下への不純物の拡散を阻止したもの
であって、この場合もS i02膜直下以外へ人と同じ
く、それぞれ異なる拡散層5,6を形成することができ
る。
This prevents the diffusion of impurities directly under the SiO2 film 7, and in this case as well, different diffusion layers 5 and 6 can be formed in areas other than directly under the SiO2 film.

CはBにおいて、SiO2膜3を形成せず、選択的に低
濃度拡散層5を選択的に形成したものである。
C is the same as B in which the SiO2 film 3 is not formed and a low concentration diffusion layer 5 is selectively formed.

つぎに本発明の実施例を示す。Next, examples of the present invention will be shown.

N形のンリコン基板1(比抵抗6〜10Ωcrn)に4
00℃で7ランと窒素の混合ガス(シラン濃度5チ)の
流量2 7 0ml/min,ジボランと窒素の混合ガ
ス(ジボラン濃度0.5%)の流量150ml/min
、窒素4017min,酸素100ml/minの条件
で酸化けい素一酸化ほう素混合膜2を厚さ1000人で
形成する。
4 on N-type silicone substrate 1 (specific resistance 6 to 10 Ωcrn)
At 00°C, the flow rate of a mixed gas of 7ran and nitrogen (silane concentration 5%) is 270 ml/min, and the flow rate of a mixed gas of diborane and nitrogen (diborane concentration 0.5%) is 150 ml/min.
The silicon oxide/boron monoxide mixed film 2 was formed to a thickness of 1000 people under the conditions of 4017 min of nitrogen and 100 ml/min of oxygen.

次iでジボランを止め、この上に上記条件で酸化けい素
膜3を10000Å形成する。
Next, diborane is stopped at step i, and a silicon oxide film 3 of 10,000 Å is formed thereon under the above conditions.

この酸化けい素膜3の一部を写真食刻法により幅30μ
で格子状に除去する。
A part of this silicon oxide film 3 was etched into a film with a width of 30μ by photolithography.
Remove it in a grid pattern.

この後、アンモニア気流中(流量2l/min1000
℃で30分熱処理を行う。
After this, in an ammonia air flow (flow rate 2 l/min 1000
Heat treatment is performed at ℃ for 30 minutes.

拡散は窒素気流中(流量1l/min)、1150℃で
30分行う。
Diffusion is carried out at 1150° C. for 30 minutes in a nitrogen stream (flow rate 1 l/min).

この結果、酸化膜3を除去した部分では、拡散層5の表
面濃度3×10l7/cm3接合深さ0.8μ−であり
、その他の部分の拡散層6の表面濃度2×1020/c
m3、接合深さ2.3μであった。
As a result, in the part where the oxide film 3 has been removed, the surface concentration of the diffusion layer 5 is 3 x 10l7/cm3, and the junction depth is 0.8μ-, and the surface concentration of the diffusion layer 6 in the other part is 2 x 1020/cm3.
m3, and the bonding depth was 2.3μ.

第2図に角度研磨により20倍に拡大した拡散層の断面
写真を示した。
FIG. 2 shows a cross-sectional photograph of the diffusion layer enlarged 20 times by angle polishing.

なおこの写真においては弗酸によるステインエッチによ
り酸化膜は除去されている。
Note that in this photo, the oxide film has been removed by stain etching with hydrofluoric acid.

このように、酸化膜を除去した部分ではアンモニア処理
の効果を受け、拡散が抑制されて表面濃度が低下し、酸
化けい素膜直下ではアンモニアの酸化けい素一酸化ほう
素膜への侵入が防がれるので高濃度拡散が行われる。
In this way, the area where the oxide film has been removed is affected by the ammonia treatment, which suppresses diffusion and reduces the surface concentration, and directly below the silicon oxide film, ammonia is prevented from entering the silicon oxide boron monoxide film. High concentration diffusion takes place.

アルミニウムやガリウムの場合も、酸化アルミニウム一
酸化けい素膜、酸化ガリウム一酸化けい素膜をシリコン
表面に形成して旧記と同様の処理により同様な結果を得
る。
In the case of aluminum or gallium, similar results can be obtained by forming an aluminum oxide silicon monoxide film or a gallium oxide silicon monoxide film on the silicon surface and performing the same treatment as in the previous description.

以上のように、本発明によれば、不純物の選択同時拡散
が容易となるため、素子の高耐圧化、ホトアバランンエ
ダイオード等の低濃度および高濃度拡散を必要とする素
子に特に有益である。
As described above, the present invention facilitates selective and simultaneous diffusion of impurities, which is particularly useful for devices that require high breakdown voltage and low-concentration and high-concentration diffusion such as photoavalanche diodes. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,B,Cは本発明にかかる方法の説明図である
。 第2図は本発明の方法により形成した拡散層の断面写真
である。 1・・・・・・シリコン基板、2・・・・・・SiO2
−B203膜、3・・・・・・SiO2膜、4・・・・
・・窓、5・・・・・・低濃度拡散層、6・・・・・・
高濃度拡散層、7・・・・・・S 102膜。
FIGS. 1A, B, and C are explanatory diagrams of the method according to the present invention. FIG. 2 is a cross-sectional photograph of a diffusion layer formed by the method of the present invention. 1... Silicon substrate, 2... SiO2
-B203 film, 3... SiO2 film, 4...
...Window, 5...Low concentration diffusion layer, 6...
High concentration diffusion layer, 7...S102 film.

Claims (1)

【特許請求の範囲】 1 半導体結晶基板に不純物拡散源となる■族元素およ
び■族元素の酸化物のうち少くとも一方を含む膜を形成
する工程と、この膜上の所定個所に酸化け9素膜を形成
する工程と、その後アンモニアを含む雰囲気中で高温熱
処理を行う工程とを備え、この工程と同時にあるいはさ
らに必要な高温熱処理によって表面濃度、接合深さの異
なる拡散層を選択的に同時に形成することを特徴とする
半導体中への不純物拡散方法。 2 半導体結晶基板表面の所定個所に酸化けい素膜を形
成し、次いで同基板の不純物拡散源となる■族元素およ
び■族元素の酸化物のうち少なくとも一方を含む膜を形
成することを特徴とする特許請求の範囲第1項に記載の
半導体中への不純物拡散方法。 3 半導体結晶基板表面の所定個所に酸化けい素膜を形
成する工程と、上記基板および酸化けい素膜上に不純物
拡散源となる■族元素および■族元素の化合物のうち少
くとも一方を含む膜を形成し、その後アンモニアを含む
雰囲気中で高温処理を行う工程を備え、前記■族元素を
前記半導体結晶基板中に選択的に拡散することを特徴と
する半導体中への不純物拡散方法。
[Claims] 1. A step of forming a film containing at least one of a group (III) element and an oxide of a group (III) element serving as an impurity diffusion source on a semiconductor crystal substrate, and forming an oxide (9) at a predetermined location on this film. It consists of a step of forming an elementary film and a step of performing high-temperature heat treatment in an atmosphere containing ammonia, and simultaneously or at the same time as this step, diffusion layers with different surface concentrations and junction depths are selectively formed at the same time by a necessary high-temperature heat treatment. 1. A method for diffusing impurities into a semiconductor, characterized by forming. 2. A silicon oxide film is formed at a predetermined location on the surface of a semiconductor crystal substrate, and then a film containing at least one of a group (III) element and an oxide of a group (III) element, which serves as an impurity diffusion source for the substrate, is formed. A method for diffusing impurities into a semiconductor according to claim 1. 3. A step of forming a silicon oxide film at a predetermined location on the surface of a semiconductor crystal substrate, and a film containing at least one of a group III element and a compound of a group III element, which serves as an impurity diffusion source, on the substrate and the silicon oxide film. 1. A method for diffusing impurities into a semiconductor, comprising the steps of forming a semiconductor crystal substrate and then performing high-temperature treatment in an atmosphere containing ammonia, and selectively diffusing the group (I) element into the semiconductor crystal substrate.
JP50152664A 1975-12-19 1975-12-19 handout Expired JPS5814741B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP50152664A JPS5814741B2 (en) 1975-12-19 1975-12-19 handout
US05/751,124 US4102715A (en) 1975-12-19 1976-12-16 Method for diffusing an impurity into a semiconductor body
DE2657415A DE2657415C2 (en) 1975-12-19 1976-12-17 Method for diffusing foreign matter into a semiconductor substrate
FR7638415A FR2335950A1 (en) 1975-12-19 1976-12-20 PROCESS FOR CARRYING OUT THE DIFFUSION OF AN IMPURITY IN A SEMICONDUCTOR BODY
GB53080/76A GB1581726A (en) 1975-12-19 1976-12-20 Method for diffusing an impurity into a semiconductor body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50152664A JPS5814741B2 (en) 1975-12-19 1975-12-19 handout

Publications (2)

Publication Number Publication Date
JPS5275268A JPS5275268A (en) 1977-06-24
JPS5814741B2 true JPS5814741B2 (en) 1983-03-22

Family

ID=15545377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50152664A Expired JPS5814741B2 (en) 1975-12-19 1975-12-19 handout

Country Status (1)

Country Link
JP (1) JPS5814741B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3234588A1 (en) * 1982-09-17 1984-03-22 Siemens AG, 1000 Berlin und 8000 München Solid-state source to be used for diffusion on semiconductor material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152661A (en) * 1974-05-28 1975-12-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152661A (en) * 1974-05-28 1975-12-08

Also Published As

Publication number Publication date
JPS5275268A (en) 1977-06-24

Similar Documents

Publication Publication Date Title
US3502517A (en) Method of indiffusing doping material from a gaseous phase,into a semiconductor crystal
KR920005271A (en) Manufacturing Method of Semiconductor Device
US3751314A (en) Silicon semiconductor device processing
JPS5814741B2 (en) handout
US4102715A (en) Method for diffusing an impurity into a semiconductor body
US4313773A (en) Method for removing borosilicate and boron rich oxides from a silicon body prior to doping silicon bodies with a SiB6 solid source
FR2301093A1 (en) Semiconductors using aluminium doped insulation layer - where aluminium is diffused simultaneously with boron required for the base
JPS6262457B2 (en)
JP2519207B2 (en) Method for manufacturing semiconductor device
US3634133A (en) Method of producing a high-frequency silicon transistor
US3801383A (en) Method for alignment of diffusion masks for semiconductors
JPS5922381B2 (en) Handout Taisoshino Seizouhouhou
US3690967A (en) Method for the production of a germanium planar transistor
JPS6218040A (en) Flattening of phosphosilicate glass film
JPS6118348B2 (en)
JPS60128635A (en) Forming process of element isolation region
JPS5559778A (en) Method of fabricating semiconductor device
JPH0431175B2 (en)
JPH0378260A (en) Manufacture of semiconductor device
JPH02177535A (en) Manufacture of semiconductor device
JPH01123471A (en) Manufacture of semiconductor device
JPS58182874A (en) Manufacture of thin film transistor
JPS5877235A (en) Manufacture of semiconductor device
JPS62290174A (en) Manufacture of semiconductor device
JPS5931228B2 (en) MOS