[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58100663A - Production of rolled material of titanium alloy having good texture - Google Patents

Production of rolled material of titanium alloy having good texture

Info

Publication number
JPS58100663A
JPS58100663A JP19632481A JP19632481A JPS58100663A JP S58100663 A JPS58100663 A JP S58100663A JP 19632481 A JP19632481 A JP 19632481A JP 19632481 A JP19632481 A JP 19632481A JP S58100663 A JPS58100663 A JP S58100663A
Authority
JP
Japan
Prior art keywords
region
beta region
alpha
alloy
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19632481A
Other languages
Japanese (ja)
Other versions
JPS646268B2 (en
Inventor
Kazuhiko Nishida
和彦 西田
Chiaki Hanada
花田 千昭
Kenji Kurokawa
黒川 健次
Hiroyuki Morimoto
博之 森本
Masamori Yoshitoshi
吉年 正守
Tomio Yamakawa
富夫 山川
Koji Okuyama
奥山 孝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19632481A priority Critical patent/JPS58100663A/en
Publication of JPS58100663A publication Critical patent/JPS58100663A/en
Publication of JPS646268B2 publication Critical patent/JPS646268B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain a Ti alloy having good texture with less surface flaws in continuous rolling of the Ti alloy by combining heating in a beta region and sufficient rough processing and intermediate and finish processing in a beta region and alpha + beta region. CONSTITUTION:After an alpha + beta type Ti alloy is bloomed, the bloom is heated to a beta region of <=1,150 deg.C and is subjected to working at >=3 forging ratio in the beta region with continuous rolling mill, and further to working at >=10 forging ratio continuously in the alpha + beta region. If necessary, the same is subjected to a treatment for formation of equi-axed crystals. If the alloy is roughly processed in the beta region where processability is good in the above-mentioned manner, the generation of surface flaws not only in the rough processing but also in the succeeding processing in the alpha + beta region is prevented. Here if the heating temp. in the beta region is too high, the processability is degraded and the control of the temp. during rolling is difficult. Particularly there is the possibility of infeasibility in taking sufficient reduction rate in the alpha + beta region. As the forging ratio is higher, the effect is higher, but there is a limit in the size of blank materials. The forging ratio higher than 3 is sufficient in practicability. If the forging ratio is made >=10 in the alpha + beta region, the rolled material of the alloy having improved texture is obtained efficiently by heating at one time.

Description

【発明の詳細な説明】 本発明は1組織の良好なチタン合金圧延材の製造方法,
特に多段スタンドの連続圧延によh組織の嵐好なチタン
合金圧延材の製造方法に関する。
[Detailed Description of the Invention] The present invention provides a method for producing a rolled titanium alloy material with a good structure,
In particular, the present invention relates to a method for manufacturing a rolled titanium alloy material with a good h-structure by continuous rolling on a multi-stage stand.

チタン合金は比強k(重さに対する強さの比)が大であ
ることから,軽量で高強直を要求される航空機・**開
発機材などの分野をはじめ.高信頼性が要求される用途
に使用されている。しかし、これらの用途に対しては,
単に高強にであるだけでは不充分で、特に線または棒の
形態で供給される場合には,ボルトあるいは構造部品と
しての最終製品への製造段階で必ず成形゛加工工程を経
るので,適度なm性が不可欠である.そして、仁の姑性
の改善には、均−且つ微細な組織であることが必須であ
る。
Titanium alloy has a high specific strength k (strength to weight ratio), so it is used in fields such as aircraft and development equipment that require light weight and high stiffness. Used in applications that require high reliability. However, for these uses,
Merely having high strength is not enough; especially when supplied in the form of a wire or rod, a forming process is always required during the manufacturing process to produce the final product as a bolt or structural part. Gender is essential. In order to improve the lint-like appearance, it is essential to have a uniform and fine structure.

ところで、チタン合金材は難加工材の1つで、その製造
方法に関する報告はほとんどない0例えば、鍛造材につ
いては特開@51ー77886号に開示されて9るが,
圧延材については本発明省らの知る@シ製造条件に関す
る報告例は見当らない。
By the way, titanium alloy material is one of the difficult-to-process materials, and there are almost no reports on its manufacturing method.For example, forged materials are disclosed in JP-A No. 51-77886;
Regarding rolled materials, there are no reports on the manufacturing conditions known to the Ministry of the Invention and others.

ちなみに、上記の鍛造材の製造は,β鍛造後、連続的に
α+β域で10%以上の加工を行ない。
Incidentally, in manufacturing the above-mentioned forged material, after β forging, processing of 10% or more is continuously performed in the α+β region.

次いでβ域に加熱後、20℃/分以上の冷却速にでαト
β域またはα域まで冷却することによシ行なわれ、それ
によ)組繊の微細化を図っている。
Next, after heating to the β region, the fibers are cooled to the α to β region or the α region at a cooling rate of 20° C./min or more, thereby making the braided fibers finer.

しかしながら、チタン合金の中丸ないし小棒を鍛造によ
p製造した場合、鍛造長手方向の組織のバ2ツキ%*面
内での部位による組織のバラツキなど鍛造方法−有の基
本的な問題を伴なう。また生産効率の点でも、数回の繰
返し加熱鍛造を行なうとiうことから、圧延法とは比較
にならぬ根、効率が劣る。
However, when a round or small titanium alloy bar is produced by forging, there are fundamental problems associated with forging methods, such as variation in the structure in the longitudinal direction of the forging. Now. In addition, in terms of production efficiency, because heat forging is repeated several times, the efficiency is incomparably inferior to the rolling method.

また、圧延を実施しても、チタン合金は難加工材のため
、IIEIET疵が発生し易く、α+β域内の高目の温
度で加熱しても、粗ないし中間圧延列での表面疵発生を
避けることができない。したがって、後工楊で全面ピー
リングを行なうことが必要とされる丸め、その結果歩留
)低下と工数増となシ。
In addition, even if rolling is carried out, titanium alloy is a difficult-to-process material, so IIEIET flaws are likely to occur, and even if heated at a high temperature within the α+β range, surface flaws will not occur in rough or intermediate rolling rows. I can't. Therefore, it is necessary to perform full-surface peeling in the post-processing process, resulting in a decrease in yield and an increase in man-hours.

効率の低下は免かれない。A decrease in efficiency is inevitable.

かくして本発明の目的は1組織が良好で表面疵の少ない
チタン合金圧延材を製造する方法を提供することである
Thus, an object of the present invention is to provide a method for producing a rolled titanium alloy material with a good structure and few surface defects.

ところで、組織を嵐好とするには圧延温度を低くするこ
とが必要であり、一方表面疵は加工温度が高いほど発生
のS度は低下する。したがって、組織を良好にするとい
う要求と表面疵を少なくするという要求とは相互に矛盾
するものである。
By the way, in order to make the structure smooth, it is necessary to lower the rolling temperature, and on the other hand, the higher the processing temperature, the lower the S degree of occurrence of surface flaws. Therefore, the requirement to improve the structure and the requirement to reduce surface flaws are mutually contradictory.

よって本発明者らは、チタン合金の連続圧延について鋭
意研究した結果、圧延時の加熱温度のコントロールと圧
延中における材料温度の制−によシ、上述のような相矛
盾する要求を同時に満足し表面疵がなく組織の良好なT
1合金圧延材を得ることに成功した。特に、本発明は表
面疵をなくするためのβ域加熱と粗列での充分な加工度
と、中間および仕上列におけるα(β域での充分な加工
度の組合せの臨界性を見い出したことく基づくものであ
る。
Therefore, as a result of intensive research into the continuous rolling of titanium alloys, the present inventors have found a method that simultaneously satisfies the contradictory requirements described above by controlling the heating temperature during rolling and controlling the material temperature during rolling. T with good texture and no surface flaws
1 alloy rolled material was successfully obtained. In particular, the present invention has discovered the criticality of the combination of heating in the β region to eliminate surface flaws, sufficient working degree in the rough row, and sufficient working degree in the α (β region) in the intermediate and finishing rows. It is based on

ここに本発明は、α+β麿チクチタフ合金塊圧延後、1
160℃以下のβ域に加熱し、連続式圧延機によルβ域
で鍛錬比8以上の加工を加え、更に連続的にα+β域で
鍛錬比10以上の加工を加え。
Herein, the present invention provides that after rolling α+β Maro Chikuchitough alloy ingot, 1
It is heated to a β range of 160°C or less, processed using a continuous rolling mill to a working ratio of 8 or more in the β range, and then continuously processed to a working ratio of 10 or more in the α+β range.

必要によ)得られた熱間圧延材に等軸晶形成処壊を行な
うことを%黴とする1組織の良好なチタン合金圧延材の
製造方法である。
This is a method for producing a titanium alloy rolled material having a good structure by subjecting the obtained hot rolled material to equiaxed crystal formation treatment (if necessary) to reduce mold.

ζOように1本発明は、β域加熱圧延を1つの411値
とするが、加工性の嵐好なβ域で粗加工することにより
、@加工時の表面疵発生を防止するだけでなく、後続の
α+l域加工時の表面疵発生を抑制すゐ効果がある。
As shown in ζO1, the present invention uses β region hot rolling as one 411 value, but by performing rough processing in the β region where workability is favorable, it not only prevents the occurrence of surface flaws during @ processing, but also This has the effect of suppressing the occurrence of surface flaws during subsequent processing in the α+l area.

β域での加熱温度を1150℃以下としたのは。The heating temperature in the β region was set to 1150°C or less.

余*a温に加熱するとガス吸収層(いわゆるα−(:a
s@)が生成し、加工性が劣化すること及び、逼絖圧延
時の温寂制−が困−となシ特にα+β域でO加工度が充
分にとれない恐れが生ずるからである。
When heated to a temperature above *a, a gas absorption layer (so-called α-(:a
This is because s@) is generated, deteriorating workability, and difficulty in controlling temperature during thread rolling, and there is a risk that a sufficient degree of O workability cannot be obtained, especially in the α+β region.

鍛錬比は多いほうがα+β域での表面疵発生防止に対し
ては有利であるが、実用上素材寸法に制約があるため多
くとることができない。鍛錬比を@以上とすることによ
り実用上充分な表面性状を得ることが出来る。
A larger training ratio is advantageous for preventing surface flaws in the α+β region, but it cannot be increased in practice due to restrictions on material dimensions. By setting the forging ratio to at least @, it is possible to obtain a practically sufficient surface quality.

さらに1本発@によれば、α+β域での加工度が規制さ
れるが、Wt述のように、連続的にα+β域で鍛錬比1
0以上の加工を加えることが本発明のさらに1つの特徴
である。つまり、1ヒートにて両生はβ域鍛錬、後半は
α+βtILIIIiill[とすることKj:Oて極
めて能率よく組織良好なT1合金圧延材が表向キズもな
く製造されるのである。iた。
Furthermore, according to 1-shot@, the degree of processing in the α+β region is regulated, but as mentioned in Wt, the forging ratio is 1 in the α+β region continuously.
Another feature of the present invention is that zero or more processing is added. In other words, in one heat, the amphibious part is forged in the β region, and the second half is given as α+βtILIIIiill[Kj:O, so that a T1 alloy rolled material with a good structure is produced extremely efficiently and without any surface scratches. It was.

α+β域での鍛錬比は組織改善に非常に重要な役vR)
を来たすのでToシ、組織的にはα+β域の鍛錬比が大
きいほどよシ微細な等軸晶粒を形成するが、実用土は素
材寸法の制約もTo4)、実用面から経験的に設定され
る組織の許容限度を基準としてみえ場合、鍛錬比を10
以上とすれば充分である。
The training ratio in the α+β region plays a very important role in organizational improvementvR)
Microstructure-wise, the larger the training ratio in the α+β region, the finer the equiaxed grains will be formed, but practical soils also have restrictions on material dimensions (To4), which are set empirically from a practical standpoint. If the permissible limit of the organization is considered as the standard, the training ratio is set to 10.
The above is sufficient.

α+β域での加工温度を41にζζでは制限しないが、
β−ト2ンザヅ直下の温[になると1組織内に変態β組
織が増加し好ましくな−、また。加工温度が約700℃
を下廻ると、加工中における結晶粒界の移動、再結晶等
′は極喝に遅くなるため。
Although the processing temperature in the α+β region is not limited to 41 by ζζ,
If the temperature is just below the β temperature, the number of metamorphosed β structures increases within one tissue, which is undesirable. Processing temperature is approximately 700℃
If the value is lower than , the movement of grain boundaries, recrystallization, etc. during processing becomes extremely slow.

後述する等軸晶形成処場を總むすことで管軸晶化するこ
とが好ましい。従りて、α+β域の加工温直としては、
必ずしもそれに限定されないが、好ましくttsoo−
soo℃テアル。
It is preferable to carry out tube-axis crystallization by using an equiaxed crystal formation process which will be described later. Therefore, the machining temperature in the α+β region is as follows:
Although not necessarily limited thereto, preferably ttsoo-
soo℃teal.

こむで、勢軸晶形成処理とは、鵬閲圧mに続いて直ちに
徐冷、好壇しくは炉冷によj1700″C壕で1100
/hr以下の速度で冷却し、その後室温まで放冷し、あ
るいは熱間圧延後800〜960℃の亀直に所定時開、
一般には80分以上、好ましくは1時間以上保持し、さ
らにあるiは熱間圧延後に100℃以下までまず放冷し
、次いで850〜96G’CK保持した炉内で再加熱し
て800〜1160℃に所定時開、一般には80分以上
、好ましくは1時間以上保持し、その後700℃以下ま
で放冷する処理のことであシ、かかる処理によって等軸
晶績晶の生成が促進される。
In this case, the axial crystal formation treatment refers to the process of cooling at 1100°C in a 1700"C trench immediately following the pressure reduction, or by cooling in a furnace or in a furnace.
/hr or less, and then allowed to cool to room temperature, or after hot rolling, open at a predetermined time at a temperature of 800 to 960°C.
In general, it is held for 80 minutes or more, preferably for 1 hour or more, and in some cases, after hot rolling, it is first allowed to cool down to 100°C or less, and then reheated in a furnace maintained at 850 to 96 G'CK to 800 to 1160°C. It is a treatment in which the temperature is opened at a predetermined time, generally held for 80 minutes or more, preferably 1 hour or more, and then allowed to cool to 700° C. or less. Such treatment promotes the formation of equiaxed crystals.

熱間圧延材を圧延直後に徐冷するのは、α(β域の圧延
によシ蓄積された結晶歪を解放し1等軸晶化するのに有
効であるからである。そのためKは、結蟲粒界移動の発
生し易い700℃以上での保持時間を充分にとる必要が
あシ、そのために徐冷を行なうが、前述のように%好ま
しくは700℃までは1ljot/hr以下でO徐冷が
必要である。
The reason for slowly cooling the hot-rolled material immediately after rolling is that it is effective in releasing the crystal strain accumulated during rolling in the α (β region) and achieving uniaxial crystallization. Therefore, K is It is necessary to allow sufficient holding time at temperatures above 700°C, where grain boundary movement is likely to occur, and for this purpose gradual cooling is performed. Slow cooling is required.

熱間圧延後800〜950℃に保持することによっても
同機な効果が得られる。
The same effect can be obtained by maintaining the temperature at 800 to 950°C after hot rolling.

まえ、熱間圧延材を放冷し1次φで再加熱することによ
〕結晶粒を微細化する丸めには、800〜960’CK
加熱することが有効である。950℃を越すと、!相が
増加しl冷畿に針状組織が増加する九め好ましくない、
一方、800’Cを下回ると1丁OO℃付近までは長時
間の加熱を行なえば結晶粒の微細化が可能であるが、長
時間を要すとiうことから経済的でない。
Before rounding, the hot-rolled material is left to cool and then reheated at the primary φ to refine the crystal grains.
Heating is effective. When it exceeds 950℃! The number of phases increases and the acicular structure increases in the cold region, which is unfavorable.
On the other hand, when the temperature is lower than 800'C, it is possible to refine the crystal grains by heating for a long time to around 100°C, but it is not economical because it takes a long time.

かくして得られる等軸晶は結晶粒形態が等方的である結
晶であシ、理想的には結晶粒が任意の断面で特定の方向
に伸びていない結晶粒からなる。
The equiaxed crystal thus obtained is a crystal whose crystal grain morphology is isotropic, and ideally consists of crystal grains that do not extend in any particular direction in an arbitrary cross section.

本発明を実施するに轟りては、一般に多段スタンドの連
続圧延が紡機であシ、β域に加熱後、圧延を開始するこ
とから、圧爾適中でαトβ域に温度が低下するように圧
延温度をコントロールする必要がある。tた。加工途中
での圧延材からの発熱もあシ、遅絖圧嬌横列の適当な部
分で水冷等による冷却が必要であp10−ル間での水冷
、圧延直後の水冷又は両者の併用が考えられるが、必ず
しもそれらに制限されるものではない、水冷を採用する
場合、流量調節によりて温度111節を行なってもよ−
When carrying out the present invention, continuous rolling on a multi-stage stand is generally carried out using a spinning machine, and rolling is started after heating to the β range, so that the temperature decreases to the α to β range during rolling. It is necessary to control the rolling temperature. It was. To prevent heat generation from the rolled material during processing, cooling by water cooling, etc. is necessary at an appropriate part of the slow rolling rolling row, so water cooling between p10 and 10, water cooling immediately after rolling, or a combination of both can be considered. However, it is not necessarily limited to these. If water cooling is used, the temperature may be adjusted by adjusting the flow rate.
.

本発明が適用されるα÷/!mlチタン合金の代表的な
ものはT1−・At−4V、Tl−4ムt−4Mnであ
シ、その他の例としてはTi−8Mn、T1−BAA−
476Cr−IJIF@、Tl−4ATl−4At−4
,Tl−4ATl−4AA−I等が挙げられる。ただし
、本発明がそれらのみに制限されるものではないことは
理解されよう。
α÷/! to which the present invention is applied! Typical titanium alloys are T1-・At-4V, Tl-4mut-4Mn, and other examples include Ti-8Mn and T1-BAA-
476Cr-IJIF@, Tl-4ATl-4At-4
, Tl-4ATl-4AA-I and the like. However, it will be understood that the invention is not limited thereto.

次に実施例に関連させて本発明をさらに説明する。The invention will now be further described in connection with examples.

実施例 Tl−6At−4V合会を真空アーク溶解して1)ンの
鋳塊を溶製し、分塊圧延したのち、皮むきを行なりて表
面疵を除去し、そののち本発gAK従って第1IIK示
す如く、直径180■および58■角のビレッFを製造
し、連続孔型圧砥材によシ同じく第111に示す仕上圧
延速度で直径9■の丸棒に圧延し丸、圧延が高速度で行
なわれ九九め、圧延による温度上昇がみられ友ので1本
発明に徹ってロール間および/lたは圧延直後に水吹付
けによる冷却を行なりた。得られた各圧延機について。
Example Tl-6At-4V was melted in a vacuum arc to produce a 1) ingot, which was then subjected to blooming and peeling to remove surface defects. As shown in No. 1 IIK, billets F with diameters of 180 mm and 58 square squares were produced, and rolled into round bars with a diameter of 9 mm using a continuous hole type abrasive at the finishing rolling speed also shown in No. 111. Since rolling was carried out at a high speed and the temperature increased due to rolling, we carried out cooling by water spraying between the rolls and immediately after rolling. For each rolling mill obtained.

後述の組織判定および*tii疵判定を行な−)た、圧
延条件および結果を比較例のそれと共に第11!Kまと
めて示す。
The following rolling conditions and results were subjected to microstructure determination and flaw determination as described below, along with those of the comparative example. K are shown together.

なお1組fII&の判定法につめては、従来からの経験
と実績に基いて種々のものが各社で考えられている。ζ
ζでは添付図面に示すように、α÷β等軸晶組繊のもの
を1級とし、(図(〜参照)、結晶粒の等劣化が進んで
いない、即ち加工組繊に近いものが残った状態を4級と
評価しく図(Φ参照)。
Note that various companies have devised various methods for determining the set of fII& based on past experience and results. ζ
For ζ, as shown in the attached drawing, α÷β equiaxed grains are classified as 1st grade (see figure (~)). The figure shows that the condition is evaluated as grade 4 (see Φ).

その中間段階として加工組織残留度合の高いものと(図
(e)参照)、この段階の低いもの、すなわち、等軸晶
化の不充分なもの(図(6)参照)、02段階に分け、
合計4階級とした。1〜2級は実用に耐える組織であシ
、8〜4級は改善を要す為組織である。
The intermediate stage is divided into 02 stages, with a high degree of processed structure remaining (see Figure (e)), and a low stage, that is, those with insufficient equiaxed crystallization (see Figure (6)).
There were a total of 4 classes. Grades 1 to 2 are structures that can withstand practical use, and grades 8 to 4 are structures that require improvement.

表l1i11の判定は、製品表面を目視検査し、表面疵
を検出し九時には、その部分をグツインダーで研削して
疵深さを測定する。疵深さに応じて、第息表に示すよう
に1級な−し%4級に分類する。
For the determination in Table 11i11, the surface of the product is visually inspected to detect surface flaws, and at 9:00, the part is ground with a grinder and the depth of the flaw is measured. Depending on the depth of the flaw, it is classified from grade 1 to grade 4 as shown in the breath table.

1〜1級は実用に耐える組織であp、8〜4級はさらに
手入れを要する11度である。
Grades 1 to 1 are p, which can withstand practical use, and grades 8 to 4 are 11 degrees, which require further care.

第 1! 表 表中1例人ないしIは本発明例を示し1例1いしOは比
較例を示す0例■および1はそれぞれ例CおよびDで示
す例によって得られ丸熱間圧延材(それぞれC材および
DIと表示する)K等軸蟲形成処理を施した例を示すも
ので参る。
Number 1! In the table, Examples 1 to 1 indicate examples of the present invention, 1 Example 1 to O indicate comparative examples, 0 Examples 2 and 1 are round hot-rolled materials (respectively C materials) obtained by Examples C and D, respectively. This example shows an example in which the K equiaxed insect formation process (denoted as DI and DI) was applied.

本発明例では、前述の組織JPl電および表面疵判定が
いずれも1tたは8と満足のゆくもので6った。
In the example of the present invention, the above-mentioned tissue JPL density and surface flaw judgment were both 1t or 8, which was 6, which was satisfactory.

しかしながら例Jが示すように、α+β域の鍛錬比がl
・未満のときは組織の微細化が十分でなく、−1例にお
よびLが示すようにα+β域での圧延のみを行なり九場
合には、m面直の発生は免がhない。
However, as Example J shows, the training ratio in the α+β region is l
When it is less than -1, the structure is not refined sufficiently, and as shown in the -1 example and L, rolling is performed only in the α+β region, and in the case of 9, the occurrence of m-plane perpendicularity is inevitable.

逼絖圧延の場合1組織を良好とするためにはα+β域で
の加熱圧延が一般的に考えられるが、その場合全体の材
料温度が低いこと及び形状の関係からコーナ一部分がよ
)低くなることの九め、圧延中その部分は引ahを受け
、もともと8相異合域で変形態が劣るため表面疵を生ず
るものと考えられる。まえ、例M、Nが示すようにα+
β域で圧延を開始し、圧延途中で昇温した場合、例Mの
ように/域まで昇温すると1表面疵の発生は少なくなる
が、いずれの伺におりて4組−の劣化は防止できない0
例Oは加熱温度が本発明の規定する温度よシ高い場合を
示すものである。
In the case of tight rolling, hot rolling in the α+β region is generally considered to improve the structure, but in that case, the temperature of the entire material is low and some corners are lower due to the shape. Ninth, during rolling, that part is subjected to elongation, and it is thought that surface defects occur because the deformation is originally poor in the 8-phase heterogeneous region. Before, as examples M and N show, α+
When rolling is started in the β range and the temperature is raised during rolling, raising the temperature to the / range as in Example M reduces the occurrence of 1 surface flaws, but prevents the deterioration of 4 sets at any stage. I can't do it 0
Example O shows a case where the heating temperature is higher than the temperature specified by the present invention.

以上のように、本発明にありては、熱間圧延に先立9て
、β域加熱を行ない材料温度を高め一相組織とすること
によシ粗圧延ないし中間圧延での表面疵発生を防止し1
次いで鍛錬比を高めた後。
As described above, in the present invention, prior to hot rolling, surface flaws can be prevented from occurring during rough rolling or intermediate rolling by heating the material in the β region to raise the material temperature and form a single-phase structure. Prevent 1
Next, after increasing the training ratio.

中間圧延ないし仕上圧延をα+β域で行ない得るように
制御冷却する。その結果、第1表に示す如く、β域のか
な夛高い温度に加熱し圧延しても、制御冷却と組合せる
ことで、ai執および%表面疵の双方が共に良好なTi
合余圧延材を得為ととく成功した。比較例で示されるよ
うに1本発明の範囲を外れる限シ、これらの条件を種々
変えても、組織と自ずの両者を同時に実用上差支えない
レベルで満足することは困難なことである。
Controlled cooling is performed so that intermediate rolling to finish rolling can be performed in the α+β region. As a result, as shown in Table 1, even when heated and rolled to very high temperatures in the β range, by combining it with controlled cooling, both the AI and surface defects are good.
We succeeded in obtaining a jointly rolled material. As shown in the comparative examples, even if these conditions are varied, it is difficult to simultaneously satisfy both the tissue and the nature at a level that is acceptable for practical use, even if these conditions are outside the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は、等軸晶組織の判定基準を示す結晶組織の模
式図でTob、図(a)、 (b)、 (e)および(
d)#′iそれぞれ1級、2級、8級および4級の各等
級の組織に相当する。 出願人代理人  弁理士 広瀬章− ((2)      tb+         tc+
      td)第1頁の続き 0発 明 者 山川富夫 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内 0発 明 者 奥山孝司 東京都千代田区丸の内1丁目3 番2号住友金属工業株式会社内 9
The attached drawings are schematic diagrams of crystal structures showing criteria for determining equiaxed crystal structures.
d) #'i corresponds to the structures of 1st class, 2nd class, 8th class and 4th class, respectively. Applicant's representative Patent attorney Akira Hirose ((2) tb+ tc+
td) Continued from page 1 0 Author Tomio Yamakawa 1-3 Nishinagasu Hondori, Amagasaki City, Sumitomo Metal Industries, Ltd. Central Technology Laboratory 0 Author Takashi Okuyama Sumitomo 1-3-2 Marunouchi, Chiyoda-ku, Tokyo Metal Industry Co., Ltd. 9

Claims (2)

【特許請求の範囲】[Claims] (1)  α+β臘チメチ2フ 以下Oβ域に加熱し1連続式圧延機によ)β域で鍛錬比
8以上の加工を加え.更に連続的にα+β域で鍛錬比1
0以上の加工を加えることを特徴とする1組織の良好な
チタン合金圧延材の製造方法。
(1) Heat the material to the Oβ region of α + β 2 degrees or less and process it using a continuous rolling mill at a working ratio of 8 or more in the β region. Further, the training ratio is continuously increased to 1 in the α+β region.
1. A method for producing a rolled titanium alloy material having a good one-structure structure, the method comprising adding 0 or more processing steps.
(2)α÷β臘チクチタフ合金塊圧延後.1150℃以
下のβ域に加熱し、連続式圧延機によシβ域で鍛錬比8
以上の加工を加え,更に連続的にαモβ域で鍛錬比10
以上の加工を加え1次いで,得られた熱間圧延材に等軸
晶形成処理を行なうことを!Vt黴とする1組織の良好
なチタン合金圧延材の製造方法。
(2) After rolling α÷β Chikuchitough alloy ingot. It is heated to a β range of 1150℃ or less, and then passed through a continuous rolling mill to a forging ratio of 8 in the β range.
In addition to the above processing, the forging ratio is 10 in the α and β regions continuously.
After the above processing, the resulting hot-rolled material is subjected to equiaxed crystal formation treatment! A method for producing a rolled titanium alloy material having a good structure of Vt mold.
JP19632481A 1981-12-08 1981-12-08 Production of rolled material of titanium alloy having good texture Granted JPS58100663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19632481A JPS58100663A (en) 1981-12-08 1981-12-08 Production of rolled material of titanium alloy having good texture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19632481A JPS58100663A (en) 1981-12-08 1981-12-08 Production of rolled material of titanium alloy having good texture

Publications (2)

Publication Number Publication Date
JPS58100663A true JPS58100663A (en) 1983-06-15
JPS646268B2 JPS646268B2 (en) 1989-02-02

Family

ID=16355920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19632481A Granted JPS58100663A (en) 1981-12-08 1981-12-08 Production of rolled material of titanium alloy having good texture

Country Status (1)

Country Link
JP (1) JPS58100663A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086256A (en) * 1983-10-15 1985-05-15 Kobe Steel Ltd Heat treatment of titanium alloy
FR2650967A1 (en) * 1989-08-16 1991-02-22 Gen Electric PROCESS FOR PRODUCING TEXTURE MARKING IN TITANIUM ALLOYS AND PARTS MADE THEREFROM
US5125986A (en) * 1989-12-22 1992-06-30 Nippon Steel Corporation Process for preparing titanium and titanium alloy having fine acicular microstructure
CN102230145A (en) * 2011-06-20 2011-11-02 西部钛业有限责任公司 Method for producing TC25 two-phase titanium alloy rod material with large specification

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531617A (en) * 1976-06-28 1978-01-09 Kobe Steel Ltd Production of forged product of titanium alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531617A (en) * 1976-06-28 1978-01-09 Kobe Steel Ltd Production of forged product of titanium alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086256A (en) * 1983-10-15 1985-05-15 Kobe Steel Ltd Heat treatment of titanium alloy
FR2650967A1 (en) * 1989-08-16 1991-02-22 Gen Electric PROCESS FOR PRODUCING TEXTURE MARKING IN TITANIUM ALLOYS AND PARTS MADE THEREFROM
US5125986A (en) * 1989-12-22 1992-06-30 Nippon Steel Corporation Process for preparing titanium and titanium alloy having fine acicular microstructure
CN102230145A (en) * 2011-06-20 2011-11-02 西部钛业有限责任公司 Method for producing TC25 two-phase titanium alloy rod material with large specification

Also Published As

Publication number Publication date
JPS646268B2 (en) 1989-02-02

Similar Documents

Publication Publication Date Title
US5304263A (en) Titanium alloy part
US5200005A (en) Interstitial free steels and method thereof
JP3113137B2 (en) Manufacturing method of high toughness rail with pearlite metal structure
US3128211A (en) Process for minimizing ridging in chromium steels
JPS58100663A (en) Production of rolled material of titanium alloy having good texture
JPS6233009B2 (en)
JPH06292906A (en) Manufacture of bar and wire rod of titanium and titanium alloy
JPH07180011A (en) Production of alpha+beta type titanium alloy extruded material
JP3487234B2 (en) Manufacturing method of high carbon steel slab for seamless steel pipe
JPS627247B2 (en)
JPS5825424A (en) Manufacture of titanium alloy rolling material having satisfactory texture
JPS6366895B2 (en)
JP3625224B2 (en) Manufacturing method of high depth and high hardness rail
RU2110600C1 (en) Method for producing articles from zirconium alloys
JP2756533B2 (en) Manufacturing method of high strength, high toughness steel bars
JPS6367550B2 (en)
JPS6233008B2 (en)
US3251215A (en) Process for making rails
JPH0122348B2 (en)
JPH0696759B2 (en) Method for producing α + β type titanium alloy rolled rod and wire having good structure
JPS5825422A (en) Manufacture of titanium alloy rolling material having high strength and high ductility
JPH01197005A (en) Manufacture of titanium seamless pipe
JPH05192736A (en) Manufacture of hexagon socket head cap screw
JPS59205447A (en) Ultra-fine grain ferrite steel and preparation thereof
JPS58221258A (en) Hyperfine-grained ferrite steel and its manufacture