【発明の詳細な説明】[Detailed description of the invention]
本発明は組織の良好なチタン合金圧延材の製造
方法、特に、均一且つ微細な結晶組織を有し、機
械的性質のすぐれたα+β型チタン合金の圧延材
を製造する方法に関する。
チタン合金は比強度(重さに対する強さの比)
が大であることから、軽量で高強度を要求される
航空機、宇宙開発器材などの分野をはじめ、高信
頼性が要求される用途、あるいは高温、高荷重、
高腐食などの苛酷な条件下での耐久性が要求され
る用途に使用されている。しかし、これらの用途
に対しては、単に高強度・高耐食性であるだけで
は不充分で、特に線または棒の形態で供給される
場合には、ボルトあるいは構造部品としての最終
製品への製造段階で必ず成形加工工程を経るの
で、適度な延性が不可欠である。そして、この延
性の改善には、均一且つ微細な組織であることが
必須である。
ところで、チタン合金材は難加工材の1つで、
その製造方法に関する報告はほとんどない。例え
ば、鍜造材については特開昭51−77385号に開示
されているが、圧延材については実用化された例
はなく、またその報告例もない。
ちなみに、上記の鍜造材の製造は、β鍜造後、
連続的にα+β域で10%以上の加工を行ない、次
いでβ域に加熱後、20℃/分以上の冷却速度でα
+β域またはα域まで冷却することにより行なわ
れ、それにより組織の微細化を図つている。
本発明者らは、均一且つ微細な組織を示し、機
械的性質のすぐれたTi合金圧延材の製造方法を
提供すべく鋭意研究を重ねた結果、圧延工程に続
く冷却条件のコントロールが組織の均一微細化に
極めて有効であることを見出し、本発明を完成す
るに至つた。
ここに、本発明はα+β型チタン合金鋳塊を分
塊圧延し、得られた圧延素材をα+β域で50%以
上の加工度を与えて熱間圧延し、次いで得られた
熱間圧延材に等軸晶形成処理を行なうことを特徴
とする、組織の良好なチタン合金圧延材の製造方
法である。
ここで、等軸晶形成処理とは、熱間圧延に続い
て直ちに徐冷、好ましくは炉冷により700℃まで
150℃/hr以下程度の速度で冷却し、その後室温
まで大気冷却し、あるいは熱間圧延後800〜950℃
の温度に所定時間、一般には30分以上好ましくは
1時間以上保持し、さらにあるいは熱間圧延後に
700℃以下までまず放冷し、次いで850〜950℃に
保持した炉内で再加熱して800〜950℃に所定時
間、一般には30分以上、好ましくは1時間以上保
持し、その後700℃以下まで放冷する処理のこと
であり、かかる処理によつて等軸晶結晶の生成が
促進される。本発明によれば、熱間圧延時にα+
β域で50%以上の加工が行なわれるが、α+β域
で50%以上の加工度を与えることにより、内部歪
の蓄積を大きくし、後続の等軸晶形成処理におけ
る徐冷または再加熱時の再結晶を容易化させ、等
軸結晶粒の生成を促進するのである。等軸晶形成
処理において、等温保持を行なうときは、800〜
950℃に所定時間保持されるが、この等温保持温
度が950℃を上回ると組織の中に占めるβの量比
が大きくなりすぎ、組織の改善が難しくなる。一
方、この温度が800℃より低くなると再結晶反応
そのものが時間的に遅くなり、実用化でなくな
る。
かくして得られる等軸晶は、結晶粒形態が等方
的である結晶であり、理想的には結晶粒が任意の
断面で特定の方向に伸びていない結晶粒からな
る。
本発明はこのように、チタン合金圧延材、例え
ばチタン合金板やチタン棒材などの製造方法に関
するもので、圧延法により製造されるものであれ
ば特にその形態は制限されない。またチタン合金
は好ましくはα+β型チタン合金であつて、その
代表例はTi−6Al−4Vであるが、その他の例と
しては、Ti−8Mn、Ti−4Al−4Mn、Ti−7Al−
7Mo、Ti−3Al−2.5V、Ti−4Al−4Mo−4V、
Ti−4Al−3Mo−1V、Ti−2Fe−2Cr−2Mo、Ti
−5Al−2.75Cr−1.25Fe等が挙げられる。
ここに、本発明における加工度は次のようにし
て定義される。
加工度(%)
=加工前の断面積−加工後の断面積/加工前の断面
積×100
添付図面は、本発明における等軸晶形成処理を
略式で説明する線図であつて、第1図は熱間圧延
後、徐冷する場合および800〜950℃に保持後、放
冷する場合を示し、第2図は放冷後、再び800〜
950℃に加熱保持する場合を示す。加熱保持時間
は、温度が高ければそれだけ、また熱間圧延によ
る加工度が大きければそれだけ短かくてよい。徐
冷は700℃まで行えば良いのであつて、その後は
大気中で放冷してもよい。一旦、放冷して再加熱
する場合も、必要によつては700℃まで放冷して
から再加熱してもよい。また、圧延仕上げ温度が
800℃より低くなつた場合には再加熱して800〜
950℃に所定時間保持する処理(第2図参照)行
なう必要がある。
以下、実施例に関連させて本発明をさらに説明
する。
実施例
Ti−6Al−4V合金を真空アーク溶解して1ト
ンの鋳塊を溶製し、分塊圧延したのち、皮むきを
行なつて表面疵を除去し、そののち第1表に示す
如く、直径55mmの丸棒〜180mm角の角材を製造し、
連続孔型圧延機により直径36mmの丸棒に圧延し
た。
それぞれの圧延条件および結果を第1表にまと
めて示す。
なお、組織の判定法については、従来からの経
験と実績に基いて種々のものが規格として示され
ている。ここでは第3図に示すように、α+β等
軸晶組織のものを1級とし(第3図a参照)、結
晶粒の等方化が進んでいない、即ち加工組織に近
いものが残つた状態を4級と評価し(第3図d参
照)、その中間段階として加工組織残留度合の高
いものと(第3図c参照)、等軸晶化の不充分な
もの(第3図b参照)とを3級および2級との2
段階に分け、合計4階級とした。1〜2級は実用
に耐える組織であり、3〜4級は改善を要する組
織である。
The present invention relates to a method for manufacturing a rolled titanium alloy material with a good structure, and particularly to a method for manufacturing a rolled material of an α+β titanium alloy having a uniform and fine crystal structure and excellent mechanical properties. Titanium alloy has specific strength (ratio of strength to weight)
Because of its large strength, it is suitable for applications that require high reliability, such as aircraft and space development equipment that require light weight and high strength, and applications that require high temperature, high load,
It is used in applications that require durability under harsh conditions such as high corrosion. However, for these applications, simply having high strength and high corrosion resistance is not enough, especially when supplied in the form of wire or rod, the manufacturing step into the final product as a bolt or structural component. Since it always goes through a forming process, appropriate ductility is essential. In order to improve this ductility, it is essential to have a uniform and fine structure. By the way, titanium alloy material is one of the difficult-to-process materials.
There are few reports regarding its manufacturing method. For example, a rolled material is disclosed in JP-A-51-77385, but a rolled material has not been put to practical use, nor has there been any report thereof. By the way, the production of the above-mentioned forged material is carried out after β forging.
Continuously perform processing of 10% or more in the α+β region, then heat to the β region, and then process α at a cooling rate of 20℃/min or more.
This is done by cooling to the +β region or α region, thereby making the structure finer. The inventors of the present invention have conducted intensive research to provide a method for producing a rolled Ti alloy material that exhibits a uniform and fine structure and has excellent mechanical properties. They found that this method is extremely effective for miniaturization, and have completed the present invention. Here, the present invention involves blooming an α+β type titanium alloy ingot, hot rolling the obtained rolled material with a degree of working of 50% or more in the α+β region, and then applying the method to the obtained hot rolled material. This is a method for producing a rolled titanium alloy material with a good structure, which is characterized by performing equiaxed crystal formation treatment. Here, equiaxed crystal formation treatment refers to hot rolling followed immediately by slow cooling, preferably furnace cooling to 700℃.
Cool at a rate of about 150℃/hr or less, then cool to room temperature in the air, or after hot rolling to 800 to 950℃
The temperature is maintained at a temperature of
First let it cool down to 700℃ or less, then reheat it in a furnace maintained at 850 to 950℃ and hold it at 800 to 950℃ for a specified period of time, generally 30 minutes or more, preferably 1 hour or more, and then keep it at 700℃ or less. This is a treatment in which the material is allowed to cool to a certain temperature, and this treatment promotes the formation of equiaxed crystals. According to the present invention, α+
More than 50% of processing is performed in the β region, but by giving more than 50% of processing in the α + β region, the accumulation of internal strain increases, and during slow cooling or reheating in the subsequent equiaxed crystal formation process. It facilitates recrystallization and promotes the formation of equiaxed crystal grains. When performing isothermal maintenance during equiaxed crystal formation treatment, 800~
The temperature is maintained at 950°C for a predetermined period of time, but if this isothermal holding temperature exceeds 950°C, the proportion of β in the structure becomes too large, making it difficult to improve the structure. On the other hand, if this temperature is lower than 800°C, the recrystallization reaction itself will slow down, making it impractical. The equiaxed crystal thus obtained is a crystal whose crystal grain morphology is isotropic, and ideally consists of crystal grains that do not extend in any particular direction in any cross section. The present invention thus relates to a method for manufacturing a rolled titanium alloy material, such as a titanium alloy plate or a titanium bar, and the form thereof is not particularly limited as long as it is manufactured by a rolling method. The titanium alloy is preferably an α+β type titanium alloy, a typical example of which is Ti-6Al-4V, but other examples include Ti-8Mn, Ti-4Al-4Mn, Ti-7Al-
7Mo, Ti−3Al−2.5V, Ti−4Al−4Mo−4V,
Ti−4Al−3Mo−1V, Ti−2Fe−2Cr−2Mo, Ti
-5Al-2.75Cr-1.25Fe etc. are mentioned. Here, the processing degree in the present invention is defined as follows. Processing degree (%) = Cross-sectional area before processing - Cross-sectional area after processing / Cross-sectional area before processing × 100 The attached drawing is a diagram schematically explaining the equiaxed crystal formation process in the present invention, and the first The figure shows the case of slow cooling after hot rolling and the case of holding at 800 to 950°C and then letting it cool.
The case of heating and holding at 950℃ is shown. The higher the temperature, the higher the degree of working by hot rolling, the shorter the heating holding time can be. Slow cooling may be carried out to 700°C, and after that it may be left to cool in the atmosphere. Even in the case of cooling once and then reheating, it may be allowed to cool to 700°C and then reheated, if necessary. In addition, the rolling finishing temperature
If the temperature drops below 800℃, reheat to 800℃ or lower.
It is necessary to hold the temperature at 950°C for a predetermined time (see Figure 2). The invention will now be further explained in connection with examples. Example 1 ton of ingot was produced by vacuum arc melting of Ti-6Al-4V alloy, and after blooming and rolling, peeling was performed to remove surface defects, and then as shown in Table 1. , manufactures round bars with a diameter of 55 mm to square bars of 180 mm square,
It was rolled into a round bar with a diameter of 36 mm using a continuous hole rolling mill. The respective rolling conditions and results are summarized in Table 1. Note that various methods for determining tissues have been presented as standards based on past experience and achievements. As shown in Fig. 3, the α+β equiaxed crystal structure is classified as first class (see Fig. 3 a), and the state in which the isotropy of the crystal grains has not progressed, that is, the state in which something close to the processed structure remains. is evaluated as grade 4 (see Figure 3 d), and intermediate stages include those with a high degree of remaining processed structure (see Figure 3 c) and those with insufficient equiaxed crystallization (see Figure 3 b). and 3rd grade and 2nd grade and 2
It was divided into stages, with a total of four classes. Grades 1 and 2 are structures that can withstand practical use, and grades 3 and 4 are structures that require improvement.
【表】
第1表に示す結果からもわかるように、本発明
方法により得られたA〜Gでは、α+β域の加工
度を50%以上とし、且つ圧延後の冷却を徐冷また
は再加熱徐冷とすることにより、組織判定1〜2
級の良好な組織を得ることができる。一方、α+
β域での加工度が少なく、圧延後放冷したもので
は、組織判定は3〜4級となり、組織不良であ
る。[Table] As can be seen from the results shown in Table 1, in A to G obtained by the method of the present invention, the working degree in the α+β region was 50% or more, and the cooling after rolling was slow cooling or slow reheating. Tissue determination 1-2 by cooling
A good quality structure can be obtained. On the other hand, α+
In the case where the degree of working in the β region is low and the steel is allowed to cool after rolling, the structure is judged to be grade 3 to 4, indicating a poor structure.
【図面の簡単な説明】[Brief explanation of drawings]
第1図および第2図は、本発明における等軸晶
形成処理を略式で説明する線図;および第3図
は、組織判定の基準を略式で示す組織図であつて
第3図a,b,cおよびdがそれぞれ判定1級、
2級、3級および4級の組織に相当する。
1 and 2 are diagrams schematically explaining the equiaxed crystal formation process in the present invention; and FIG. 3 is a tissue diagram schematically showing criteria for tissue determination; , c and d are respectively grade 1,
Corresponds to 2nd, 3rd and 4th class organizations.