[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1145319A - Data carrier - Google Patents

Data carrier

Info

Publication number
JPH1145319A
JPH1145319A JP9203220A JP20322097A JPH1145319A JP H1145319 A JPH1145319 A JP H1145319A JP 9203220 A JP9203220 A JP 9203220A JP 20322097 A JP20322097 A JP 20322097A JP H1145319 A JPH1145319 A JP H1145319A
Authority
JP
Japan
Prior art keywords
data carrier
tuning
power supply
voltage
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9203220A
Other languages
Japanese (ja)
Inventor
Hidekazu Ishii
英一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9203220A priority Critical patent/JPH1145319A/en
Publication of JPH1145319A publication Critical patent/JPH1145319A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the rise of a voltage more than needed when the distance between a base unit and a hand set is comparatively shortened. SOLUTION: Signals from the base unit are received by a tuner circuit composed of an antenna coil 1 and tuning capacitors 2 and 3. While parallelly connecting the tuning capacitor 3 and a variable capacity diode 5, further, the tuning capacitor 2 is serially connected. In order to obtain power to be used in a data carrier, a voltage is rectified by a diode 4. The rectified voltage is detected by a resistor 6 and applied to the variable capacity diode 5. When the distance between the data carrier and the base unit changes and the rectified voltage rises, the capacity of the variable capacity diode 5 changes, the tuning frequency of the tuner circuit is gradually deviated from the frequency of signals from the base unit, and an induced voltage is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、データキャリアに
関し、親機と子機(データキャリア)との間で信号の授
受行う非接触式ICカード型のデータキャリアに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a data carrier and, more particularly, to a non-contact type IC card type data carrier for exchanging signals between a master unit and a slave unit (data carrier).

【0002】[0002]

【従来の技術】親機と子機のカードとの間で、電磁結合
方式又は電磁誘導方式等により信号の授受を行う非接触
式ICカードシステムが広く知られている。特に、搬送
波を子機側で整流して、子機の電力として使用する無電
池方式の非接触式ICカード型データキャリアがIDカ
ード用、搬送物の認識用タグ等として広く用いられる様
になってきた。
2. Description of the Related Art A non-contact type IC card system for transmitting and receiving signals between a parent device and a card of a child device by an electromagnetic coupling method or an electromagnetic induction method is widely known. In particular, batteryless non-contact IC card type data carriers that rectify a carrier wave on the slave device side and use it as power for the slave device have been widely used as ID cards, tags for recognizing goods, and the like. Have been.

【0003】このような電磁結合方式の非接触式ICカ
ードシステムにおいては、親機は、OSC(発振器)で
発生させた搬送波を送信データに応じて変調し、その変
調波をドライバー回路で増幅し、アンテナコイルを駆動
して子機に送信する。子機は、アンテナコイルで親機か
らの信号を受信すると、整流回路で搬送波を整流して内
部で使用する電力を得るとともに、復調回路で受信信号
を復調してデータ処理回路に送り、データ処理回路でデ
ータ処理を行う。
In such an electromagnetic coupling type non-contact type IC card system, a base unit modulates a carrier generated by an OSC (oscillator) according to transmission data, and amplifies the modulated wave by a driver circuit. Then, the antenna coil is driven and transmitted to the slave unit. When the slave unit receives a signal from the master unit with the antenna coil, the rectifier circuit rectifies the carrier wave to obtain power for internal use, and the demodulation circuit demodulates the received signal and sends it to the data processing circuit to perform data processing. Data processing is performed by the circuit.

【0004】ところで、子機で使用する電力は親機から
受信した信号を整流回路で整流して発生しているが、子
機には親機からの信号の選択度を高めるため、アンテナ
コイルと並列にコンデンサを接続して同調用共振回路が
形成されている事が多い。この共振回路の同調周波数f
0 は、アンテナコイルのインダクタンスLとコンデンサ
のキャパシタンスCにより決定される。同調周波数f0
を搬送波の周波数に合わせておくと親機と子機の結合が
強くなり、親機と子機の距離が離れていても充分な電力
が得られる。
[0004] By the way, the power used in the slave unit is generated by rectifying a signal received from the master unit by a rectifier circuit. In order to enhance the selectivity of a signal from the master unit, the slave unit is provided with an antenna coil. In many cases, a tuning resonance circuit is formed by connecting capacitors in parallel. Tuning frequency f of this resonant circuit
0 is determined by the inductance L of the antenna coil and the capacitance C of the capacitor. Tuning frequency f0
Is adjusted to the frequency of the carrier wave, the coupling between the master unit and the slave unit is strengthened, and sufficient power can be obtained even if the distance between the master unit and the slave unit is large.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
データキャリアシステムでは、親機と子機の距離を充分
取れるようにするためには、予め設定された最大通信距
離でも充分な電力が得られる様にするために、整流回路
のパラメータが設定される。すると、親機と子機の距離
が至近距離になった場合には、同調回路に大きな電圧が
発生し、この高電圧に耐えるだけの耐圧を整流回路の各
部品に持たせなければならず、部品コストの上昇、サイ
ズの増大を招いていた。この問題は回路をIC化した場
合に大きな問題となる。更に内部回路の動作電圧を一定
範囲に保つため、整流出力はレギュレートされるが、こ
のレギュレート回路での発熱が大きくなる問題が有っ
た。
However, in the conventional data carrier system, in order to ensure a sufficient distance between the master unit and the slave unit, sufficient power can be obtained even at a preset maximum communication distance. , The parameters of the rectifier circuit are set. Then, when the distance between the master unit and the slave unit becomes short, a large voltage is generated in the tuning circuit, and each component of the rectifier circuit must have a withstand voltage enough to withstand this high voltage. This has led to an increase in parts cost and size. This problem becomes a serious problem when the circuit is formed into an IC. Furthermore, the rectified output is regulated in order to keep the operating voltage of the internal circuit within a certain range, but there has been a problem that heat generation in the regulated circuit increases.

【0006】本発明は以上のような従来技術の問題点を
解決しようとするものであり、親機と子機の距離が比較
的近くなった場合に、必要以上の電圧の上昇を抑えられ
るデータキャリアを提供する事を目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art. When the distance between the master unit and the slave unit becomes relatively short, data which can suppress an unnecessary rise in voltage can be suppressed. The purpose is to provide a career.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明のデータキャリアは、受信コイルと、受信コイ
ルと並列に接続され同調回路を構成する共振コンデンサ
と、受信コイルで受信された信号を復調する復調手段
と、復調手段で復調された信号を元に各種信号処理を行
う信号処理手段と、受信コイルで受信された信号を整流
して信号処理手段への電力を生成する電源手段とを備え
たデータキャリアにおいて、共振コンデンサに接続され
た可変容量ダイオードを設け、可変容量ダイオードの容
量を電源手段の出力電圧に比例して変化させるようにし
ている。
To achieve the above object, a data carrier according to the present invention comprises a receiving coil, a resonant capacitor connected in parallel with the receiving coil to form a tuning circuit, and a signal received by the receiving coil. Demodulation means for demodulating the signal, signal processing means for performing various signal processing based on the signal demodulated by the demodulation means, and power supply means for rectifying the signal received by the receiving coil to generate power to the signal processing means. Is provided with a variable capacitance diode connected to the resonance capacitor, and the capacitance of the variable capacitance diode is changed in proportion to the output voltage of the power supply means.

【0008】親機と子機の距離が至近距離になって電源
手段の出力電圧が上昇した場合に、可変容量ダイオード
の容量を変化させ、同調回路の同調周波数をわざと受信
信号の周波数からずらことにより、子機のコイルの誘導
電圧が下がる。従って整流回路から得られる電圧の上昇
を抑える事が出来る。また、上記目的を達成するために
本発明のデータキャリアは、受信コイルと、前記受信コ
イルと並列に接続され同調回路を構成する共振コンデン
サと、受信コイルで受信された信号を復調する復調手段
と、復調手段で復調された信号を元に各種信号処理を行
う信号処理手段と、受信コイルで受信された信号を整流
して信号処理手段への電力を生成する電源手段とを備え
たデータキャリアにおいて、同調回路は、電源手段の出
力電圧に応じて同調周波数を変化させる。これにより電
源手段の出力電圧の変動幅を少なくすることができ、デ
ータキャリアを構成する部品、特に整流回路に用いる部
品の耐圧を低く押さえる事が出来る。
When the distance between the master unit and the slave unit is short and the output voltage of the power supply means rises, the capacity of the variable capacitance diode is changed to deliberately shift the tuning frequency of the tuning circuit from the frequency of the received signal. As a result, the induction voltage of the coil of the slave unit decreases. Therefore, an increase in the voltage obtained from the rectifier circuit can be suppressed. Further, in order to achieve the above object, the data carrier of the present invention includes a receiving coil, a resonance capacitor connected in parallel with the receiving coil to form a tuning circuit, and a demodulating means for demodulating a signal received by the receiving coil. A data carrier comprising signal processing means for performing various signal processing based on the signal demodulated by the demodulation means, and power supply means for rectifying the signal received by the receiving coil to generate power for the signal processing means. The tuning circuit changes the tuning frequency according to the output voltage of the power supply means. As a result, the fluctuation range of the output voltage of the power supply means can be reduced, and the withstand voltage of components constituting the data carrier, particularly components used in the rectifier circuit, can be reduced.

【0009】[0009]

【発明の実施の形態】以下、本発明を非接触式ICカー
ド型のデータキャリアに適用した実施の形態を図面を用
いて説明する。図1に本発明の実施の形態のデータキャ
リアのブロック図を示す。図1に示す本発明の実施の形
態のデータキャリアは、アンテナコイル1、同調コンデ
ンサ2、3、整流ダイオード4、抵抗6、可変容量ダイ
オード5、平滑コンデンサ8、信号処理回路9、および
復調回路10を有する。不図示の変調回路を加えてデー
タキャリアからデータを発信する構成のデータキャリア
も在るが本発明の説明に直接関係しないので図示してい
ない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a non-contact type IC card type data carrier will be described below with reference to the drawings. FIG. 1 shows a block diagram of a data carrier according to an embodiment of the present invention. The data carrier of the embodiment of the present invention shown in FIG. 1 includes an antenna coil 1, tuning capacitors 2, 3, a rectifier diode 4, a resistor 6, a variable capacitance diode 5, a smoothing capacitor 8, a signal processing circuit 9, and a demodulation circuit 10. Having. There is also a data carrier configured to transmit data from the data carrier by adding a modulation circuit (not shown), but this is not shown because it does not directly relate to the description of the present invention.

【0010】アンテナコイル1は不図示の親機の送信コ
イルからの電磁波を受け、電磁結合する。この時の電磁
結合により発生する誘導電圧は、アンテナコイル1と同
調コンデンサ2、3から構成される同調回路の同調周波
数が送信周波数と同じ場合に最も高く、周波数がずれる
に従って急激に減少する事が知られている。また誘導電
圧は親機と子機の距離が離れるほど減少する。子機のデ
ータキャリア内で使用される電源としては常に一定の電
圧を得るのが望ましいが、IDカード用、搬送物の認識
用タグ等として使用される場合には一定の検出エリア内
に入っている事だけが検出の条件とされる場合が多く、
データキャリアと親機の距離は、数十センチから数セン
チまで変化する場合も珍しくない。この様にデータキャ
リアと親機の距離が大きく変化しても出来るだけ電源回
路の出力電圧を一定に押さえるために(特に部品の破壊
をもたらす最大許容電圧を超えない様に)可変容量ダイ
オード5が同調コンデンサ3に並列に接続されている。
可変容量ダイオード5のアノード・カソード間には平滑
コンデンサ8の両端に出力される出力電圧Vが抵抗6を
介して印加されている。
The antenna coil 1 receives an electromagnetic wave from a transmission coil of a master unit (not shown) and electromagnetically couples. The induced voltage generated by the electromagnetic coupling at this time is the highest when the tuning frequency of the tuning circuit composed of the antenna coil 1 and the tuning capacitors 2 and 3 is the same as the transmission frequency, and can rapidly decrease as the frequency shifts. Are known. Also, the induced voltage decreases as the distance between the master unit and the slave unit increases. It is desirable to always obtain a constant voltage as the power supply used in the data carrier of the slave unit. However, when it is used as an ID card, a tag for recognition of a conveyed object, etc., it is necessary to enter a certain detection area. Is often the only condition for detection.
It is not uncommon for the distance between the data carrier and the parent device to vary from tens of centimeters to several centimeters. In order to keep the output voltage of the power supply circuit constant as much as possible even if the distance between the data carrier and the base unit greatly changes in this way (especially so as not to exceed the maximum permissible voltage that causes destruction of components), It is connected in parallel with the tuning capacitor 3.
An output voltage V output to both ends of the smoothing capacitor 8 is applied between the anode and the cathode of the variable capacitance diode 5 via the resistor 6.

【0011】同調コンデンサ3と可変容量ダイオード5
を並列に接続したものにさらに同調コンデンサ2を直列
接続してある。さらに同調コンデンサ2には並列に大き
な抵抗6が接続されている。同調コンデンサ2と抵抗6
による時定数は信号周波数の周期の100倍以上に設定
されている。同調コンデンサ2は可変容量ダイオード5
にかける直流バイアスがアンテナコイルでショートさせ
ない為と可変容量ダイオード5そのものが整流して充電
した電荷を保持する効果がありさらに可変容量ダイオー
ド5に印可される交流振幅を減らす効果がある。
Tuning capacitor 3 and variable capacitance diode 5
Are connected in parallel, and a tuning capacitor 2 is further connected in series. Further, a large resistor 6 is connected to the tuning capacitor 2 in parallel. Tuning capacitor 2 and resistor 6
Is set to be 100 times or more the period of the signal frequency. The tuning capacitor 2 is a variable capacitance diode 5
In addition, there is an effect that the DC bias applied to the capacitor does not cause a short circuit in the antenna coil, the effect that the variable capacitance diode 5 itself rectifies and holds the charged electric charge, and an effect that the AC amplitude applied to the variable capacitance diode 5 is reduced.

【0012】同調コンデンサ2、3と可変容量ダイオー
ド5の設定に関しては子機が動作できる下限の誘導電圧
が同調回路に発生したときに可変容量ダイオード5に直
流バイアスが印可される条件で、親機からの信号周波数
に同調が取れかつ許容しようとする最大誘導電圧では約
10%以上の同調周波数の変化が発生するように設定す
る。
Regarding the setting of the tuning capacitors 2 and 3 and the variable capacitance diode 5, under the condition that a DC bias is applied to the variable capacitance diode 5 when the lower limit induced voltage at which the slave unit can operate is generated in the tuning circuit, It is set so that a change in the tuning frequency of about 10% or more occurs at the maximum induced voltage that is tuned to the signal frequency from the input and is to be allowed.

【0013】具体例を示して説明する。親機からの信号
周波数は125KHzでアンテナコイル1のインダクタ
ンスは1mHの場合、正確に同調するのは同調容量が全
体で1621pFの時であり、10%高く同調するのは
同調容量が1340pFまで減った時である。データキ
ャリである非接触式ICカードの内部回路は内部電源が
2Vから動作し、その時の同調回路への誘導電圧は5V
p−pであり、可変容量ダイオードはAMチューナ用の
500〜20pF程度の変化幅をもったものを採用する
とした場合は、図3に示した様な定数で目標条件を満足
できる。即ち同調コンデンサ32の容量が7100p
F、同調コンデンサ33の容量が1500pF、抵抗3
6の抵抗値が100KΩである。
A specific example will be described. When the signal frequency from the master unit is 125 KHz and the inductance of the antenna coil 1 is 1 mH, the tuning is accurately tuned when the tuning capacitance is 1621 pF as a whole, and the tuning capacitance is reduced by 10% to 1340 pF. It is time. The internal circuit of the contactless IC card, which is a data carrier, operates from an internal power supply of 2V, and the induced voltage to the tuning circuit at that time is 5V.
If it is assumed that a variable capacitance diode having a variation width of about 500 to 20 pF for an AM tuner is adopted, the target condition can be satisfied by the constants shown in FIG. That is, the capacity of the tuning capacitor 32 is 7100p
F, the capacitance of the tuning capacitor 33 is 1500 pF, and the resistance is 3
6 has a resistance of 100 KΩ.

【0014】ちなみに、図3の例では可変容量ダイオー
ド34、35は2個並列にしているが、現実に2個以上
まとめた製品が一般的に入手しやすい。図3の例で確認
しておくと、可変容量ダイオード34、35に2Vの直
流バイアスが印可されると容量はそれぞれが300pF
程度になり、全体の同調容量はほぼ1621pFとな
る。さらに直流バイアスが5.5Vになると可変容量ダ
イオード34、35の容量はそれぞ65pFとなり、全
体では1326pFとなり目標を達成できている。な
お、直流バイアスが5.5V発生する時の同調回路への
誘導電圧は12Vp−pである。
By the way, in the example of FIG. 3, two variable capacitance diodes 34 and 35 are arranged in parallel, but a product in which two or more variable capacitance diodes are actually collected is generally easily available. It is confirmed from the example of FIG. 3 that when a DC bias of 2 V is applied to the variable capacitance diodes 34 and 35, each of the capacitances becomes 300 pF.
And the overall tuning capacitance is approximately 1621 pF. Furthermore, when the DC bias becomes 5.5 V, the capacitances of the variable capacitance diodes 34 and 35 become 65 pF, respectively, and reach 1326 pF as a whole, achieving the target. The induced voltage to the tuning circuit when a DC bias of 5.5 V is generated is 12 Vp-p.

【0015】図4で本実施の形態の効果を示す。この図
において、従来例(符号Aで示す)では親機とデータキ
ャリアのアンテコイル同士の結合が強くなると30Vp
―p以上に達していたが、本実施の形態(符号Bで示
す)では11Vp―pまでしか大きくなっていない。こ
の例では同調回路に誘導される電圧が35Vp―pでI
Cの耐圧限界に達するが、どちらもこの点では問題な
い。一方、同調回路に誘導される電圧が26Vp―pで
連続印可による発熱による限界に達するが、従来例では
問題になっており親機の信号を下げる必要があることが
わかる。当然動作の限界距離は近くなってしまう。一
方、本発明によれば、11Vp―pまでに押さえられて
いるので必要なら親機の信号レベルをあげて距離を伸ば
すことも可能である。尚、この図4のデータは、データ
キャリアのアンテナコイル1の直径が、親機の送信コイ
ルの直径に比べて十分小さな直径を有する場合を前提と
して作成されている。
FIG. 4 shows the effect of this embodiment. In this figure, in the conventional example (indicated by reference numeral A), when the coupling between the master unit and the antenna of the data carrier becomes strong, 30 Vp
−p or more, but in the present embodiment (indicated by the symbol B), it has increased only to 11 Vp-p. In this example, the voltage induced in the tuning circuit is 35 Vp-p and I
Although the breakdown voltage limit of C is reached, neither is a problem in this regard. On the other hand, the voltage induced in the tuning circuit reaches a limit due to heat generation due to continuous application at 26 Vpp, but this is a problem in the conventional example, and it is understood that it is necessary to reduce the signal of the master unit. Naturally, the limit distance of the operation is short. On the other hand, according to the present invention, the distance is extended by raising the signal level of the parent device if necessary, since the voltage is held down to 11 Vp-p. It should be noted that the data in FIG. 4 is created on the assumption that the diameter of the antenna coil 1 of the data carrier is sufficiently smaller than the diameter of the transmission coil of the master unit.

【0016】図2は本発明の第2実施の形態のデータキ
ャリア装置を示す回路図である。この実施の形態では整
流回路として全波整流回路を用いている。図2に示す本
発明の実施の形態のデータキャリアは、アンテナコイル
1、同調コンデンサ11、12、13、整流ダイオード
ブリッジ回路19、抵抗16、17、18、可変容量ダ
イオード14、15、平滑コンデンサ20、信号処理回
路21、および復調回路10を有する。この実施の形態
では同調回路の調整用の容量として用いられるのは同調
コンデンサ12であり、同調周波数は概ね同調コンデン
サ11と同調コンデンサ13の直列回路の合成容量によ
って決まる。可変容量ダイオード14、15のアノード
端子には整流ダイオードブリッジ回路19の一方の出力
端子Aが抵抗16、18を介して接続され、カソード端
子には整流ダイオードブリッジ回路19の他方の出力端
子Bが抵抗17を介して接続され、可変容量ダイオード
14、15のアノード・カソード間には平滑コンデンサ
10の両端に供給される出力電圧を抵抗分割した電圧が
印加される。従って、電源回路の出力電圧の変化に応じ
て可変容量ダイオード14、15の容量を変化させ、同
調周波数を変化させることにより、親機と子機の距離が
比較的近くなった場合等において電源回路の出力電圧が
上昇した場合に、電圧上昇を抑制することが出来る。可
変容量ダイオードを逆方向に接続することで、此処での
歪みを押さえ、Qを高く保つ効果がある。
FIG. 2 is a circuit diagram showing a data carrier device according to a second embodiment of the present invention. In this embodiment, a full-wave rectifier circuit is used as a rectifier circuit. The data carrier according to the embodiment of the present invention shown in FIG. 2 includes an antenna coil 1, tuning capacitors 11, 12, 13, a rectifying diode bridge circuit 19, resistors 16, 17, 18, variable capacitance diodes 14, 15, and a smoothing capacitor 20. , A signal processing circuit 21, and a demodulation circuit 10. In this embodiment, the tuning capacitor 12 is used as the tuning capacitor of the tuning circuit, and the tuning frequency is substantially determined by the combined capacitance of the series circuit of the tuning capacitor 11 and the tuning capacitor 13. One output terminal A of the rectifier diode bridge circuit 19 is connected to the anode terminals of the variable capacitance diodes 14 and 15 via resistors 16 and 18, and the other output terminal B of the rectifier diode bridge circuit 19 is connected to the cathode terminal. A voltage obtained by dividing the output voltage supplied to both ends of the smoothing capacitor 10 by resistance is applied between the anode and the cathode of the variable capacitance diodes 14 and 15. Therefore, by changing the capacitance of the variable capacitance diodes 14 and 15 in accordance with the change in the output voltage of the power supply circuit and changing the tuning frequency, the power supply circuit can be used when the distance between the master unit and the slave unit is relatively short. Can be suppressed when the output voltage rises. By connecting the variable capacitance diodes in the reverse direction, there is an effect of suppressing distortion here and keeping Q high.

【0017】もちろん、親機と子機の距離が比較的近く
なった場合に、必要以上の電圧の上昇を抑える為には、
ツエナーダイオード等を用いて電圧にリミットをかける
方法も在るがこの場合にはツエナー電圧以上の電圧分の
エネルギーは熱となって消費される事になり、データキ
ャリアの温度が上昇して好ましくない。これに対して、
本発明では電磁結合の強さを弱めているだけなので発熱
等の問題は発生しない。
Of course, when the distance between the master unit and the slave unit is relatively short, in order to suppress an unnecessary rise in voltage,
There is also a method of limiting the voltage using a Zener diode or the like, but in this case, energy corresponding to the voltage higher than the Zener voltage is consumed as heat, and the temperature of the data carrier increases, which is not preferable. . On the contrary,
In the present invention, since the strength of electromagnetic coupling is only weakened, problems such as heat generation do not occur.

【0018】[0018]

【発明の効果】本発明によれば、親機と子機の距離が比
較的近くなった場合に、必要以上の電圧の上昇を抑えら
れる。また、データキャリアを構成する部品、特に整流
回路に用いる部品の耐圧を低く押さえる事が出来る。
According to the present invention, an unnecessary rise in voltage can be suppressed when the distance between the master unit and the slave unit is relatively short. Further, the withstand voltage of the components constituting the data carrier, particularly the components used for the rectifier circuit, can be kept low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態のデータキャリアの
回路図である。
FIG. 1 is a circuit diagram of a data carrier according to a first embodiment of the present invention.

【図2】本発明の他の実施の形態のデータキャリアの回
路図である。
FIG. 2 is a circuit diagram of a data carrier according to another embodiment of the present invention.

【図3】本発明の第1の実施の形態の具体的定数を記載
したデータキャリアの回路図である。
FIG. 3 is a circuit diagram of a data carrier describing specific constants according to the first embodiment of the present invention.

【図4】図3の回路で可変容量ダイオード33、34の
容量を変化させた場合の誘起電圧の変化を示す図であ
る。
FIG. 4 is a diagram showing a change in induced voltage when the capacitances of variable capacitance diodes 33 and 34 are changed in the circuit of FIG. 3;

【符号の説明】[Explanation of symbols]

1 アンテナコイル 2、3 同調コンデンサ 4 整流ダイオード 5 可変容量ダイオード 6 抵抗 8 平滑コンデンサ 9 信号処理回路 10 復調回路 DESCRIPTION OF SYMBOLS 1 Antenna coil 2, 3 Tuning capacitor 4 Rectifier diode 5 Variable capacitance diode 6 Resistance 8 Smoothing capacitor 9 Signal processing circuit 10 Demodulation circuit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 受信コイルと、前記受信コイルと並列に
接続され同調回路を構成する共振コンデンサと、前記受
信コイルで受信された信号を復調する復調手段と、前記
復調手段で復調された信号を元に各種信号処理を行う信
号処理手段と、前記受信コイルで受信された信号を整流
して前記信号処理手段への電力を生成する電源手段とを
備えたデータキャリアにおいて、 前記電源手段は、前記共振コンデンサに接続された可変
容量ダイオードを備え、前記可変容量ダイオードの容量
は前記電源手段の出力電圧によって変化する事を特徴と
するデータキャリア。
1. A receiving coil, a resonance capacitor connected in parallel with the receiving coil to form a tuning circuit, a demodulating means for demodulating a signal received by the receiving coil, and a signal demodulated by the demodulating means. A data carrier comprising signal processing means for performing various signal processing based on the signal, and power supply means for generating power to the signal processing means by rectifying a signal received by the receiving coil, the power supply means, A data carrier comprising a variable capacitance diode connected to a resonance capacitor, wherein a capacitance of the variable capacitance diode changes according to an output voltage of the power supply means.
【請求項2】 請求項1において、前記可変容量ダイオ
ードの容量は前記電源手段の出力電圧が上昇した場合
に、前記同調回路の同調周波数を受信信号の周波数から
ずらすように変化する事を特徴とするデータキャリア。
2. The variable capacitance diode according to claim 1, wherein the capacitance of said variable capacitance diode changes so as to shift the tuning frequency of said tuning circuit from the frequency of a received signal when the output voltage of said power supply means rises. Data carrier to do.
【請求項3】 請求項1において、前記共振コンデンサ
は少なくとも2個以上の直列接続されたコンデンサを有
し、前記可変容量ダイオードは前記直列接続されたコン
デンサの1つに並列に接続されている事を特徴とするデ
ータキャリア。
3. The device according to claim 1, wherein the resonance capacitor has at least two or more capacitors connected in series, and the variable capacitance diode is connected in parallel to one of the capacitors connected in series. A data carrier characterized by the following.
【請求項4】 受信コイルと、前記受信コイルと並列に
接続され同調回路を構成する共振コンデンサと、前記受
信コイルで受信された信号を復調する復調手段と、前記
復調手段で復調された信号を元に各種信号処理を行う信
号処理手段と、前記受信コイルで受信された信号を整流
して前記信号処理手段への電力を生成する電源手段とを
備えたデータキャリアにおいて、 前記同調回路は、前記電源手段の出力電圧に応じて同調
周波数を変化させる事を特徴とするデータキャリア。
4. A receiving coil, a resonance capacitor connected in parallel with the receiving coil to form a tuning circuit, demodulating means for demodulating a signal received by the receiving coil, and a demodulating means for demodulating the signal received by the demodulating means. In a data carrier comprising signal processing means for performing various signal processing in the original, and power supply means for rectifying a signal received by the receiving coil to generate power to the signal processing means, wherein the tuning circuit comprises: A data carrier characterized by changing a tuning frequency according to an output voltage of a power supply means.
【請求項5】 請求項4において、前記同調回路は前記
電源手段の出力電圧が所定の電圧を超えない様に同調周
波数を変化させる事を特徴とするデータキャリア。
5. The data carrier according to claim 4, wherein the tuning circuit changes a tuning frequency so that an output voltage of the power supply does not exceed a predetermined voltage.
【請求項6】 請求項4において、前記同調回路は前記
電源手段の出力電圧が少なくとも所定の電圧を超て上昇
する場合に同調周波数を受信信号の周波数からずらす方
向に変化させる事を特徴とするデータキャリア。
6. The tuning circuit according to claim 4, wherein the tuning circuit changes the tuning frequency in a direction shifted from the frequency of the received signal when the output voltage of the power supply means rises at least beyond a predetermined voltage. Data carrier.
JP9203220A 1997-07-29 1997-07-29 Data carrier Withdrawn JPH1145319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9203220A JPH1145319A (en) 1997-07-29 1997-07-29 Data carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9203220A JPH1145319A (en) 1997-07-29 1997-07-29 Data carrier

Publications (1)

Publication Number Publication Date
JPH1145319A true JPH1145319A (en) 1999-02-16

Family

ID=16470456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9203220A Withdrawn JPH1145319A (en) 1997-07-29 1997-07-29 Data carrier

Country Status (1)

Country Link
JP (1) JPH1145319A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526852A (en) * 2000-02-04 2003-09-09 ギーゼッケ ウント デフリエント ゲーエムベーハー Transponder suitable for contactless smart card
JP2007067494A (en) * 2005-08-29 2007-03-15 Nec Saitama Ltd Noncontact communication apparatus, portable information processing terminal and noncontact communication method
WO2007138690A1 (en) * 2006-05-31 2007-12-06 Hitachi, Ltd. Noncontact type electronic device and semiconductor integrated circuit device mounted on same
JP2020101027A (en) * 2018-12-25 2020-07-02 アイシン精機株式会社 Door lock/unlock system and door handle for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526852A (en) * 2000-02-04 2003-09-09 ギーゼッケ ウント デフリエント ゲーエムベーハー Transponder suitable for contactless smart card
JP2007067494A (en) * 2005-08-29 2007-03-15 Nec Saitama Ltd Noncontact communication apparatus, portable information processing terminal and noncontact communication method
WO2007138690A1 (en) * 2006-05-31 2007-12-06 Hitachi, Ltd. Noncontact type electronic device and semiconductor integrated circuit device mounted on same
JP4759053B2 (en) * 2006-05-31 2011-08-31 株式会社日立製作所 Non-contact type electronic device and semiconductor integrated circuit device mounted thereon
JP2020101027A (en) * 2018-12-25 2020-07-02 アイシン精機株式会社 Door lock/unlock system and door handle for vehicle

Similar Documents

Publication Publication Date Title
US11101696B2 (en) Wireless power feeding system, wireless power transmitter, and wireless power receiver
JP5670869B2 (en) Wireless power transmission system
US7528725B2 (en) Passive dynamic antenna tuning circuit for a radio frequency identification reader
KR101169185B1 (en) Non-contact power supply system
US6473028B1 (en) Detection of the distance between an electromagnetic transponder and a terminal
US7919886B2 (en) Power receiving device and power transfer system
US6650226B1 (en) Detection, by an electromagnetic transponder reader, of the distance separating it from a transponder
US7109934B2 (en) Rectifier utilizing a grounded antenna
CN102823147B (en) Monitoring device and a method for wireless data and power transmission in a monitoring device
US8536982B2 (en) Automatic tuning for RFID systems by changing capacitor values in case of an error
US20090323381A1 (en) Adaptable power supply circuit
CN101198970B (en) Transponder with an improved voltage limiter circuit and operation method
US20120223592A1 (en) Method for driving power supply system
JPH11510597A (en) Radio frequency interface device for transponder
JP2011022923A (en) Contactless ic card and wireless system
JP3968948B2 (en) Detection of distance from electromagnetic transponder
JP3940939B2 (en) Data carrier
JPH1145319A (en) Data carrier
CN213876801U (en) Radio frequency identification label
JP4067638B2 (en) Data carrier system and interrogator for data carrier system
JP3862112B2 (en) Data carrier
CN100373392C (en) Power supply processing interface in passive radio frequency identification system
JP3006784B2 (en) Mobile station identification device by radio
CN100490340C (en) A circuit framework capable of supplying stable pulse
GB2308948A (en) Data Transfer Circuit

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005