JPH11341522A - Stereoscopic image photographing device - Google Patents
Stereoscopic image photographing deviceInfo
- Publication number
- JPH11341522A JPH11341522A JP10141149A JP14114998A JPH11341522A JP H11341522 A JPH11341522 A JP H11341522A JP 10141149 A JP10141149 A JP 10141149A JP 14114998 A JP14114998 A JP 14114998A JP H11341522 A JPH11341522 A JP H11341522A
- Authority
- JP
- Japan
- Prior art keywords
- distance
- image
- cameras
- subject
- convergence angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Stereoscopic And Panoramic Photography (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は写真用カメラ、ビデ
オカメラ等に適用される立体画像撮影装置に係り、特
に、両眼視差を利用して立体感を伴う映像を作り出すた
めの撮影装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional image photographing apparatus applied to a photographic camera, a video camera, and the like, and more particularly to a photographing apparatus for producing a three-dimensional image using binocular parallax.
【0002】[0002]
【従来の技術】2つの撮影光学系(カメラ)を用いて同
じ被写体を撮影し、各カメラで取り込んだ映像を左眼用
画像、及び右眼用画像として利用することで立体画像を
得る方法は、従来から数多く提案されている。一般に、
左右のカメラのレンズ光軸を平行に設置した場合、被写
体までの距離(L)と両カメラのレンズ間距離(d0 )
の比がd0 /L=1/30〜1/50程度であることが
好ましいとされており、被写体が遠方にある場合は良好
な撮影を行うことができる。2. Description of the Related Art A method of obtaining a stereoscopic image by photographing the same subject using two photographing optical systems (cameras) and using the images captured by each camera as an image for the left eye and an image for the right eye is known. There have been many proposals. In general,
When the lens optical axes of the left and right cameras are set in parallel, the distance to the subject (L) and the distance between the lenses of both cameras (d 0 )
Ratio has been and is preferably about d 0 / L = 1 / 30~1 / 50, when the object is far away can perform good shooting.
【0003】しかし、近距離撮影においては、左右のレ
ンズ間隔を近づけるには物理的に限界があるため、平行
光軸のままでは立体撮影が困難となる。仮に、平行光軸
のまま近距離撮影を可能にするには、受光面における像
位置のシフト量が大きくなるため、像がイメージサーク
ルからはみ出さないように非常に大きな光学系を用いな
ければならない。However, in short-distance photography, there is a physical limit in reducing the distance between the left and right lenses, so that it is difficult to perform stereoscopic photography with the parallel optical axis. To enable short-distance photography with the parallel optical axis, the amount of shift of the image position on the light receiving surface becomes large, so an extremely large optical system must be used so that the image does not protrude from the image circle. .
【0004】かかる課題解決の観点から、例えば、特開
平8−223606号公報、特開平6−105339号
公報、特開平5−336548号公報、或いは特開平5
−197045号公報に開示されているように、2台の
カメラで被写体を正しく捉えるために、被写体までの距
離に応じて左右のカメラの光軸を被写体に向ける方法も
提案されている。From the viewpoint of solving the problems, for example, Japanese Patent Application Laid-Open Nos. 8-223606, 6-105339, 5-336548, and 5
As disclosed in Japanese Patent Application Laid-Open No. 197945, a method has been proposed in which the optical axes of the left and right cameras are directed toward the subject in accordance with the distance to the subject in order to correctly capture the subject with two cameras.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記各
公報に示されている方法は、単に、被写体までの距離に
応じて左右のカメラの輻輳角を適宜変更するに留まり、
輻輳による左右画像の歪みについては何ら言及されてい
ない。図8に示すように、単純に左右のカメラ60、6
2に輻輳角(α)を持たせて方形の被写体64を撮影す
ると、図9に示すように、左右の画像に奥行きと関係の
ない像の歪みが生じ、立体視が困難となる。このような
歪みのある立体視画像を観察すると、見る者が疲労を感
じるという欠点がある。特に、近距離撮影における輻輳
角は比較的大きいので、左右画像の歪みが極めて問題に
なる。However, the methods disclosed in the above publications merely change the convergence angles of the right and left cameras according to the distance to the subject.
No mention is made of distortion of the left and right images due to convergence. As shown in FIG. 8, the left and right cameras 60, 6
When a square subject 64 is photographed with 2 having a convergence angle (α), image distortion irrespective of depth occurs in the left and right images, as shown in FIG. 9, making stereoscopic vision difficult. Observing such a distorted stereoscopic image has the disadvantage that the viewer feels tired. In particular, since the angle of convergence in short-range shooting is relatively large, distortion of the left and right images becomes extremely problematic.
【0006】本発明はこのような事情に鑑みてなされた
もので、被写体までの距離にかかわらず、左右像の歪み
が少ない良質の立体画像を得ることができる立体画像撮
影装置を提供することを目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a three-dimensional image photographing apparatus capable of obtaining a high-quality three-dimensional image with little left and right image distortion regardless of the distance to the subject. Aim.
【0007】[0007]
【課題を解決する為の手段】前記目的を達成する為に請
求項1記載の発明は、2台のカメラを備えた立体画像撮
影装置において、輻輳角に起因する画像の歪みを低減す
る歪み補正手段を設けたことを特徴とする。本発明によ
れば、輻輳角を持たせた2台のカメラで共通の被写体を
撮影する場合、各カメラで取得される画像の歪みを補正
手段によって輻輳角に応じて補正するので、歪みの無い
左右画像を得ることができる。これにより、良好な立体
画像を作成できる。According to one aspect of the present invention, there is provided a stereoscopic image photographing apparatus having two cameras, the distortion correction for reducing image distortion caused by a convergence angle. Means are provided. According to the present invention, when photographing a common subject with two cameras having a convergence angle, the distortion of an image acquired by each camera is corrected by the correction unit according to the convergence angle, so that there is no distortion. Left and right images can be obtained. Thereby, a good stereoscopic image can be created.
【0008】請求項2に記載の発明は、請求項1に係る
発明のより具体的な形態を提案すべく、画像光を電気信
号に変換する撮像手段を有する2台のカメラを備えた立
体画像撮影装置において、少なくとも一方のカメラのレ
ンズ光軸の方向を変化させることにより輻輳角を変更す
る輻輳角可変機構と、カメラで取得した画像信号を処理
する手段であって、輻輳角に応じて画像の歪みを低減す
る補正を行う画像信号処理手段と、を設けたことを特徴
とする。According to a second aspect of the present invention, in order to propose a more specific form of the first aspect of the present invention, a three-dimensional image provided with two cameras having image pickup means for converting image light into an electric signal. In a photographing device, a convergence angle variable mechanism that changes a convergence angle by changing a direction of a lens optical axis of at least one camera, and a unit that processes an image signal acquired by the camera, and an image is formed according to the convergence angle. And image signal processing means for performing correction to reduce distortion of the image signal.
【0009】本発明に係る立体画像撮影装置は、被写体
を示す画像光を電子映像に変換するカメラを利用してお
り、これらカメラで取得した画像データを画像信号処理
手段によって事後的に画像処理することで2つの画像の
歪みを補正している。これにより、左右像の歪みが少な
い良質の立体画像を得ることができる。この場合、特
に、請求項3記載の如く、輻輳角可変機構に電動駆動手
段を設けると共に、被写体までの距離を検出する検出手
段と、前記検出手段で得た被写体距離に応じて前記電動
駆動手段を制御する制御手段と、を付加し、被写体距離
に応じて輻輳角を自動調節する形態が好ましい。A three-dimensional image photographing apparatus according to the present invention utilizes a camera for converting image light showing a subject into an electronic image, and performs image processing of image data acquired by these cameras afterward by image signal processing means. This corrects the distortion between the two images. As a result, it is possible to obtain a high-quality three-dimensional image with little distortion of the left and right images. In this case, in particular, as in claim 3, the convergence angle variable mechanism is provided with an electric driving means, a detecting means for detecting a distance to a subject, and the electric driving means according to the subject distance obtained by the detecting means. And a control means for controlling the angle of convergence, and automatically adjusting the convergence angle according to the subject distance.
【0010】請求項4に記載の発明は、請求項1に係る
発明を具体化した他の形態を提案すべく、2台のカメラ
を備えた立体画像撮影装置において、アオリ機構を有し
たカメラを用い、各カメラの受光面を互いに平行に維持
したまま、前記アオリ機構を利用してレンズ光軸を被写
体に向けて傾けることにより、輻輳角に起因する画像の
歪みを低減するようにしたことを特徴とする。According to a fourth aspect of the present invention, in order to propose another embodiment embodying the first aspect of the present invention, in a stereoscopic image photographing apparatus having two cameras, a camera having a tilt mechanism is provided. By using the tilt mechanism to tilt the lens optical axis toward the subject while maintaining the light receiving surfaces of the cameras parallel to each other, image distortion due to the convergence angle is reduced. Features.
【0011】請求項4に係る立体画像撮影装置は、レン
ズ光軸と受光面の関係を変更自在なアオリ機構を有した
カメラを搭載しており、アオリ機構によって、レンズの
光軸方向を水平面内で調整することで輻輳角を与える。
このとき、両カメラの受光面は互いに平行に保たれるの
で、歪みのない画像を取得することができる。この場
合、特に、請求項5記載の如く、アオリ機構に電動駆動
手段を設けると共に、被写体までの距離を検出する検出
手段と、前記検出手段で得た被写体距離に応じて前記電
動駆動手段を制御する制御手段と、を付加し、被写体距
離に応じて輻輳角を自動調節する形態が好ましい。According to a fourth aspect of the present invention, there is provided a three-dimensional image photographing apparatus including a camera having a tilt mechanism capable of changing a relationship between a lens optical axis and a light receiving surface. The angle of convergence is given by adjusting with.
At this time, since the light receiving surfaces of both cameras are kept parallel to each other, an image without distortion can be obtained. In this case, in particular, the tilt mechanism is provided with an electric driving means, and the detecting means for detecting the distance to the subject and the electric driving means are controlled in accordance with the subject distance obtained by the detecting means. And a control means for automatically adjusting the convergence angle according to the subject distance.
【0012】立体画像撮影装置に用いられるアオリ機構
を有したカメラは、写真フイルムに被写体像を記録する
銀塩カメラでもよいし、請求項6に記載の如く、画像光
を電気信号に変換する撮像手段を用いるカメラでもよ
い。請求項3又は5に係る立体画像撮影装置のように、
輻輳角を自動調節する機能を有している場合、制御の一
態様として、請求項7に記載の如く、被写体までの距離
が所定距離よりも遠い場合には、2台のカメラのレンズ
光軸を平行に維持し、所定距離よりも近距離の被写体を
撮影する場合に各カメラのレンズ光軸を傾けて輻輳角を
与えるように前記電動駆動手段を制御することが考えら
れる。The camera having the tilt mechanism used in the three-dimensional image photographing apparatus may be a silver halide camera for recording a subject image on a photographic film, or an image pickup apparatus for converting image light into an electric signal. A camera using means may be used. Like the stereoscopic image photographing device according to claim 3 or 5,
When the function of automatically adjusting the convergence angle is provided, as one mode of control, when the distance to the subject is longer than a predetermined distance, the lens optical axes of the two cameras are set as described in claim 7. It is conceivable to control the electric driving means so as to provide a convergence angle by inclining the lens optical axis of each camera when photographing a subject at a distance shorter than a predetermined distance while maintaining the distance in parallel.
【0013】上述した請求項1〜7何れか1の請求項に
記載の立体画像撮影装置について、更に、請求項8に記
載したように、2台のカメラのレンズ間距離を調節する
レンズ間隔可変機構を付加することが好ましい。特に、
請求項9に記載したように、レンズ間隔可変機構に第2
の電動駆動手段を設けると共に、検出手段で得た被写体
距離に応じて前記第2の電動駆動手段を制御する第2の
制御手段を設け、輻輳角及びレンズ間距離を自動調節す
る形態が好ましい。[0013] In the stereoscopic image photographing apparatus according to any one of claims 1 to 7, the variable lens spacing for adjusting the distance between the lenses of the two cameras as described in claim 8. It is preferable to add a mechanism. Especially,
According to the ninth aspect of the present invention, the lens spacing variable mechanism has a second
It is preferable that the electric driving means is provided and the second control means for controlling the second electric driving means is provided in accordance with the object distance obtained by the detecting means, so that the convergence angle and the distance between the lenses are automatically adjusted.
【0014】この請求項9に係る立体画像撮影装置の制
御の一態様として、請求項10に記載の如く、被写体距
離が所定の距離値よりも遠方の範囲の場合は、2台のカ
メラのレンズ光軸を平行に維持して被写体距離に応じて
レンズ間距離の調節を行い、前記所定の距離値よりも近
距離側の被写体を撮影する場合に、各カメラのレンズ光
軸を傾けて輻輳角を与えるように制御することが考えら
れる。As one mode of control of the three-dimensional image photographing apparatus according to the ninth aspect, as described in the tenth aspect, when the subject distance is a range farther than a predetermined distance value, the lenses of two cameras are used. When the distance between the lenses is adjusted in accordance with the object distance while maintaining the optical axis in parallel, and when photographing an object closer than the predetermined distance value, the lens optical axis of each camera is inclined to converge the angle of convergence. It is conceivable to control so as to give
【0015】被写体距離を検出する手段の一態様とし
て、請求項11に記載したように、撮影系たる2台のカ
メラを利用し、レンズ間距離に相当する基線長と、被写
体に向けたカメラのレンズ光軸の方向で規定される輻輳
角と、に基づいて被写体までの距離を求める手段を採用
することが考えられる。これにより、別途測距手段を設
ける必要がない。As one mode of the means for detecting the subject distance, as described in claim 11, two cameras serving as a photographing system are used, and a base line length corresponding to a distance between lenses and a camera directed toward the subject are used. It is conceivable to employ means for determining the distance to the subject based on the convergence angle defined by the direction of the lens optical axis. Thus, there is no need to provide a separate distance measuring means.
【0016】[0016]
【発明の実施の形態】以下添付図面に従って本発明に係
る立体画像撮影装置の好ましい実施の形態について詳説
する。図1は本発明の実施の形態に係る立体画像撮影装
置の全体構成図である。この立体画像撮影装置10は、
主として、撮像装置に相当する2台のカメラ12、14
と、両カメラ12、14を回動及びスライド自在に支持
するカメラ支持装置16と、レンズ調節装置18と、画
像信号を処理する画像処理回路20と、制御装置22と
から構成される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a stereoscopic image photographing apparatus according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is an overall configuration diagram of a stereoscopic image photographing apparatus according to an embodiment of the present invention. This three-dimensional image photographing apparatus 10
Mainly, two cameras 12 and 14 corresponding to an imaging device
And a camera support device 16 for rotatably and slidably supporting the cameras 12 and 14, a lens adjusting device 18, an image processing circuit 20 for processing image signals, and a control device 22.
【0017】カメラ12、14の詳細な構造は図示しな
いが、2台のカメラ12、14は同一の光学系を有し、
それぞれ同一仕様の撮影レンズと、撮像手段たる固体撮
像素子(CCD)とを備えている。なお、撮像手段は、
CCDに限らず他の形式の撮像素子でもよく、また撮像
管でもよい。撮影レンズは、複数枚のレンズが組み合わ
されて成り、光量を調節する絞り機構、像面を光軸方向
に移動調節するフォーカス調節機構、及び撮影倍率(焦
点距離)を可変調節するズーム機構を備えている。Although the detailed structure of the cameras 12 and 14 is not shown, the two cameras 12 and 14 have the same optical system,
Each is provided with a photographic lens having the same specifications and a solid-state image pickup device (CCD) as an image pickup means. In addition, the imaging means,
Not only a CCD but also other types of imaging devices or an imaging tube may be used. The photographing lens is formed by combining a plurality of lenses, and includes a diaphragm mechanism for adjusting the amount of light, a focus adjusting mechanism for moving and adjusting the image plane in the optical axis direction, and a zoom mechanism for variably adjusting the photographing magnification (focal length). ing.
【0018】また、これら絞り機構、フォーカス調節機
構、及びズーム機構には、それぞれ対応するモータ等の
電動駆動手段が設けられており、制御装置22によって
前記各電動駆動手段を含むレンズ調節装置18が制御さ
れ、カメラ12、14の絞り、フォーカス(焦点)、及
びズーム(焦点距離)等の調節が行われる。撮影レンズ
を介してCCDの受光面に結像された画像光は、CCD
によってその光量に応じた量の信号電荷に変換される。
こうして蓄積された信号電荷は、CCD駆動回路から加
えられる駆動パルスに基づいて順次転送され、信号電荷
に応じた電圧信号として読み出される。そして、CCD
から読み出された信号は画像処理回路20に加えられ
る。Each of the aperture mechanism, the focus adjustment mechanism, and the zoom mechanism is provided with a corresponding electric driving means such as a motor, and the control device 22 controls the lens adjusting device 18 including the electric driving means. Under the control, adjustment of the aperture, focus (focus), and zoom (focal length) of the cameras 12 and 14 is performed. The image light formed on the light receiving surface of the CCD through the taking lens is
Thus, the signal charge is converted into an amount of signal charge corresponding to the amount of light.
The signal charges thus accumulated are sequentially transferred based on a driving pulse applied from a CCD driving circuit, and are read out as a voltage signal corresponding to the signal charges. And CCD
Are read out from the image processing circuit 20.
【0019】カメラ支持装置16は、回転テーブル2
4、25とスライドテーブル26とから成り、各カメラ
12、14はそれぞれ回転テーブル24、25を介して
水平面内で回動自在に保持されると共に、スライドテー
ブル26により図1上で左右方向に移動自在に支持され
る。図中左側のカメラ12が左眼用カメラ、右側のカメ
ラ14が右眼用カメラに相当しており、これら左右のカ
メラ12、14は、カメラ支持装置16によって水平面
に対する高さが一致するように並べて配置される。回転
テーブル24、25及びスライドテーブル26はそれぞ
れ図示せぬ電動駆動手段を有し、制御装置22によって
各カメラ12、14の向き(レンズ光軸の方向)及び、
両カメラ間の距離(レンズ間距離)が制御される。The camera support device 16 includes the rotary table 2
4 and 25 and a slide table 26. The cameras 12 and 14 are rotatably held in a horizontal plane via rotary tables 24 and 25, respectively, and are moved left and right in FIG. Freely supported. The left camera 12 in the drawing corresponds to a left-eye camera, and the right camera 14 corresponds to a right-eye camera. These left and right cameras 12 and 14 are aligned by a camera support device 16 so that their heights with respect to a horizontal plane match. They are arranged side by side. Each of the rotary tables 24 and 25 and the slide table 26 has an electric driving unit (not shown), and the control device 22 controls the directions of the cameras 12 and 14 (the directions of the lens optical axes) and
The distance between the two cameras (the distance between the lenses) is controlled.
【0020】画像処理回路20は、CDSクランプ回路
やゲイン調整回路等のアナログ処理回路の他、A/D変
換器、輝度信号生成回路、色差信号生成回路、圧縮/伸
長回路等のデジタル処理回路を含む。画像処理回路20
はカメラ12、14から受入した画像信号を適宜処理し
て被写体像を示す画像データを生成する。特に、この画
像処理回路20は、2つのカメラ12、14で得た画像
の歪みを補正する画像補正処理機能を具備している。こ
の歪み補正の方法は後述する。The image processing circuit 20 includes, in addition to analog processing circuits such as a CDS clamp circuit and a gain adjustment circuit, digital processing circuits such as an A / D converter, a luminance signal generation circuit, a color difference signal generation circuit, and a compression / decompression circuit. Including. Image processing circuit 20
Generates image data representing a subject image by appropriately processing the image signals received from the cameras 12 and 14. In particular, the image processing circuit 20 has an image correction processing function of correcting distortion of images obtained by the two cameras 12 and 14. The method of this distortion correction will be described later.
【0021】画像処理回路20で処理されたデータは、
デコード化した後、モニタ28に供給される。こうし
て、各カメラ12、14が捉えた映像がモニタ28の画
面に表示される。図示せぬレリーズスイッチの押圧操作
等によって発っせられる撮影開始信号の受入前は、モニ
タ28にプレビュー画像(本撮像の前にモニタリングし
ている確認用の動画又は間欠画)が表示され、撮影開始
信号が受入するとモニタ28の画面が静止(フリーズ)
する。そして、撮影開始信号の受入に呼応して、各カメ
ラ12、14のCCDから読み出された画像信号は、画
像処理回路20で所定の処理を経た後、必要に応じて圧
縮処理され、メモリ30等の記録媒体に記録される。The data processed by the image processing circuit 20 is
After decoding, it is supplied to the monitor 28. Thus, the images captured by the cameras 12 and 14 are displayed on the screen of the monitor 28. Before receiving a shooting start signal generated by pressing a release switch (not shown) or the like, a preview image (confirmation moving image or intermittent image monitored before actual shooting) is displayed on monitor 28, and shooting is started. When the signal is received, the screen of the monitor 28 freezes (freezes)
I do. In response to the reception of the photographing start signal, the image signals read from the CCDs of the cameras 12 and 14 undergo predetermined processing in the image processing circuit 20 and then are compressed as necessary, and And the like.
【0022】なお、記録媒体の形態は、メモリカードや
ICカードなど種々の形態が可能であり、着脱自在な外
部記録媒体に限らず内蔵メモリでもよい。また、撮影開
始信号はリモコンや外部接続機器などのように立体画像
撮影装置10の外部から加えられる場合もある。上述の
記録処理が完了すると、画面のフリーズを解除して動画
又は間欠画表示に戻る。The recording medium can be in various forms such as a memory card and an IC card, and is not limited to a detachable external recording medium but may be a built-in memory. Further, the shooting start signal may be applied from outside the three-dimensional image shooting device 10 such as a remote controller or an externally connected device. When the above-described recording processing is completed, the freeze of the screen is released, and the display returns to the moving image or the intermittent image display.
【0023】また、メモリ30に保存した画像データは
制御装置22の制御に基づいて読み出しが可能であり、
読み出された画像データは解凍処理された後、画像処理
回路20を介してモニタ28に出力される。こうして、
モニタ28には再生画像が表示される。制御装置22
は、各回路を総括制御するものであり、回転テーブル2
4、25及びスライドテーブル26の駆動を制御してカ
メラ12、14のレンズ光軸の方向やレンズ間隔を調節
すると共に、所定のアルゴリズムに従って露出値、フォ
ーカス位置等の各種演算を行い、自動露光制御(A
E)、オートフォーカス(AF)、オートストロボ、オ
ートホワイトバランス等の制御を行う。また、制御装置
22はレリーズスイッチやモードスイッチその他の操作
部から入力される各種入力信号に基づいて、該当する回
路を制御する。The image data stored in the memory 30 can be read out under the control of the control device 22.
After the read image data is decompressed, it is output to the monitor 28 via the image processing circuit 20. Thus,
A reproduced image is displayed on the monitor 28. Control device 22
Is a general control of each circuit.
4, 25 and the drive of the slide table 26 are controlled to adjust the direction of the optical axis of the lenses of the cameras 12 and 14 and the lens interval. (A
E), control of auto focus (AF), auto strobe, auto white balance, and the like. The control device 22 controls a corresponding circuit based on various input signals input from a release switch, a mode switch, and other operation units.
【0024】本実施の形態では、カメラ12、14で得
た映像信号に基づいて被写体輝度を検出し、これに応じ
て露光制御を行っているが、別途、測光センサを設けて
もよい。また、制御装置22は、画像処理回路20から
受入するデータに基づいて、被写体像の鮮鋭度を示す焦
点評価値を演算し、その焦点評価値を利用してフォーカ
ス位置を算出する。そして、算出したフォーカス位置に
従ってレンズ調節装置18を制御してカメラ12、14
の焦点調節を行う。In the present embodiment, the brightness of the subject is detected based on the video signals obtained by the cameras 12 and 14, and the exposure control is performed according to the detected brightness. However, a photometric sensor may be separately provided. Further, the control device 22 calculates a focus evaluation value indicating the sharpness of the subject image based on the data received from the image processing circuit 20, and calculates a focus position using the focus evaluation value. Then, the lens control device 18 is controlled in accordance with the calculated focus position to control the cameras 12 and 14.
Focus adjustment.
【0025】なお、オートフォーカス手段は、様々な形
態が可能であり、上述のように焦点評価値を利用する方
法の他、AFセンサなど公知の測距手段を用いてもよい
し、各カメラ12、14のレンズ光軸の方向及びカメラ
間距離(基線長)から三角測量の原理で被写体距離を算
出することも可能である。図2は、被写体距離に応じて
決定される輻輳角及びレンズ間距離の関係の一例を示す
グラフ図である。制御装置22は、測距手段(検出手
段)で検出した被写体距離に応じて輻輳角とレンズ間距
離を図2のようなテーブルデータに従って、両者を連動
させて調節し、左右像の差が最小となるように制御す
る。It should be noted that the autofocus means can take various forms. In addition to the method using the focus evaluation value as described above, a known distance measuring means such as an AF sensor may be used. It is also possible to calculate the subject distance based on the principle of triangulation from the directions of the lens optical axes and the distance between cameras (base line length). FIG. 2 is a graph illustrating an example of a relationship between a convergence angle and a distance between lenses determined according to a subject distance. The control device 22 adjusts the convergence angle and the distance between the lenses in accordance with the object distance detected by the distance measuring means (detecting means) in accordance with the table data as shown in FIG. Is controlled so that
【0026】即ち、被写体距離が近距離側になるにつれ
てカメラ12、14を互いに近づける方向に移動し、レ
ンズ間距離を小さくする。しかし、2台のカメラ12、
14を近づけることができる範囲には限界があり、カメ
ラの大きさ等の物理的制約によって規定される最小値
(dmin )よりもレンズ間隔を狭めることはできない。
従って、レンズ間距離が前記最小値(dmin )に設定さ
れる被写体距離(L1 )よりも近距離側で撮影を行う場
合は、輻輳角をより一層大きく与えるように回転テーブ
ル24、25を制御する。That is, as the subject distance becomes closer, the cameras 12 and 14 are moved in a direction to approach each other, and the distance between the lenses is reduced. However, two cameras 12,
There is a limit to the range in which 14 can be brought closer, and the lens interval cannot be made smaller than the minimum value (dmin) defined by physical constraints such as the size of the camera.
Therefore, when shooting is performed at a shorter distance than the subject distance (L 1 ) in which the distance between the lenses is set to the minimum value (dmin), the rotation tables 24 and 25 are controlled so as to give a larger convergence angle. I do.
【0027】図2では、無限遠から所定の距離値
(L1 )までの区間、レンズ間距離を次第に狭めると共
に、輻輳角を徐々に(直線的に)大きくしているが、こ
のような制御に限らず、ある距離値(例えばL1 )まで
は輻輳角を与えずにレンズ光軸を平行に維持し、その規
定の距離値(L1 )よりも近距離の領域となった場合に
輻輳角を与え、以後、被写体距離に応じて輻輳角を調節
するようにしてもよい。In FIG. 2, in the section from infinity to a predetermined distance value (L 1 ), the distance between the lenses is gradually reduced, and the convergence angle is gradually (linearly) increased. Not limited to this, the lens optical axis is maintained parallel without giving a convergence angle up to a certain distance value (for example, L 1 ), and the convergence angle is set when the distance becomes shorter than the specified distance value (L 1 ). After that, the convergence angle may be adjusted according to the subject distance.
【0028】続いて、図1に示した立体画像撮像装置に
おける左右画像の歪みを補正する手段について述べる。
図3に示すように、輻輳角αを持たせた状態で左右のカ
メラ12、14で方形の被写体32を撮影した場合、各
カメラ12から得られる画像は図4に示すようになる。
即ち、左眼用カメラ12のCCD12Aで撮影した画像
(L画像)は、図4左上段に示したように被写体32の
右側が縦方向に縮小した像歪みを有し、右眼用カメラ1
4のCCD14Aで撮影した画像(R画像)は、図4右
上段に示したように被写体32の左側が縦方向に縮小し
た像歪みを有している。このままでは、奥行きと関係の
ない像の歪みの為に立体視が困難である。Next, means for correcting distortion of the left and right images in the stereoscopic image pickup apparatus shown in FIG. 1 will be described.
As shown in FIG. 3, when a rectangular subject 32 is photographed by the left and right cameras 12 and 14 with the convergence angle α, an image obtained from each camera 12 is as shown in FIG.
That is, the image (L image) captured by the CCD 12A of the left-eye camera 12 has image distortion in which the right side of the subject 32 is reduced in the vertical direction as shown in the upper left part of FIG.
The image (R image) captured by the CCD 14A of No. 4 has image distortion in which the left side of the subject 32 is reduced in the vertical direction as shown in the upper right part of FIG. In this state, stereoscopic vision is difficult due to image distortion irrelevant to depth.
【0029】従って、本例では、これら両カメラ12、
14で得た画像データを画像処理回路20において、図
4の中段に示すように、それぞれ画面水平方向の画素位
置に応じて縦方向拡大処理する台形補正を実行して被写
体像を修正する。そして、この修正した画像データから
図4の下段に示すように、被写体像を含む方形の領域
(画面)に切り出し処理する。こうして、歪みの殆ど無
い左右画像を得ている。Therefore, in the present embodiment, these two cameras 12,
In the image processing circuit 20, the image data obtained in step 14 is subjected to a trapezoidal correction for performing a vertical enlargement process in accordance with the pixel position in the horizontal direction of the screen, as shown in the middle part of FIG. Then, as shown in the lower part of FIG. 4, a process of cutting out the corrected image data into a rectangular area (screen) including the subject image is performed. Thus, a left and right image with almost no distortion is obtained.
【0030】次に、上記の如く構成された立体画像撮像
装置の作用を説明する。図5は、被写体距離を検出する
検出手段に相当する測距手段が撮影系とは独立に設けら
れている場合の処理の流れを示すフローチャートであ
る。先ず、測距手段によって撮影対象となる最短被写体
までの距離(L)を測定する(ステップS110)。そ
して、この測定結果に基づいて、図2に示したテーブル
データを参照して、レンズ間距離に相当する基線長
(d)と輻輳角(α)を求め、レンズ間距離とレンズ光
軸の方向を調節する(ステップS112)。また、ステ
ップS110で得た被写体距離(L)に基づき、各カメ
ラ12、14のレンズ系のピントを調節する(ステップ
S114)。Next, the operation of the three-dimensional image pickup apparatus configured as described above will be described. FIG. 5 is a flowchart showing the flow of processing in a case where a distance measuring means corresponding to a detecting means for detecting a subject distance is provided independently of the photographing system. First, the distance (L) to the shortest subject to be photographed is measured by the distance measuring means (step S110). Then, based on the measurement result, the base line length (d) and the convergence angle (α) corresponding to the inter-lens distance are obtained by referring to the table data shown in FIG. 2, and the inter-lens distance and the direction of the lens optical axis are obtained. Is adjusted (step S112). Further, based on the subject distance (L) obtained in step S110, the focus of the lens system of each camera 12, 14 is adjusted (step S114).
【0031】こうして、左右のカメラ12、14で画像
取込を実行し(ステップS116)、取得した画像デー
タについて図4で説明したように、L、α、及びレンズ
画角(焦点距離)に基づいて歪みを低減するような画像
補正処理を行う(ステップS118)。これにより、輻
輳角(α)を付けても左右像の歪みがなく、自然な立体
視が可能となる。また、従来、平行光軸のまま近距離撮
影するためには、受光面のシフト量が大きくなってイメ
ージサークルをはみ出すおそれがあったが、本発明によ
れば、イメージサークルに余裕のないレンズ系でも使用
することができるという利点がある。In this way, the left and right cameras 12 and 14 execute image capture (step S116), and the acquired image data is determined based on L, α, and the lens angle of view (focal length) as described with reference to FIG. An image correction process for reducing distortion is performed (step S118). Thereby, even when the convergence angle (α) is added, the left and right images are not distorted, and natural stereoscopic viewing is possible. Further, conventionally, in order to perform a close-up shooting with the parallel optical axis, the shift amount of the light receiving surface may be large and the image circle may be protruded. However, according to the present invention, the lens system having no room in the image circle However, there is an advantage that it can be used.
【0032】図6には、2つの撮像系(カメラ12、1
4)を利用して測距を行う場合の例が示されている。こ
の場合、先ず、レンズ間隔に相当する基線長を所定の値
(d 0 )にセットし(ステップS210)、左右のカメ
ラ12、14のレンズ光軸を平行にセットする(ステッ
プS212)。次いで、各カメラ12、14のピントを
所定の位置(初期設定位置)に固定する(ステップS2
14)。FIG. 6 shows two image pickup systems (cameras 12, 1).
An example in which distance measurement is performed by using 4) is shown. This
In the case of, first, the base line length corresponding to the lens interval is set to a predetermined value.
(D 0) (Step S210), the left and right turtles
Set the optical axes of the lenses 12 and 14 in parallel (step
S212). Then, focus each camera 12,14
Fix to a predetermined position (initial setting position) (Step S2
14).
【0033】かかる初期設定を整えた後、両カメラ1
2、14のレンズ光軸の方向を段階的に変化させ、輻輳
角を所定量づつ変化させながら、左右像の差分が最小と
なる輻輳角(α0 )を求める(ステップS216)。そ
して、基線長d0 及び輻輳角α 0 から被写体距離(L)
を演算により、又はテーブルデータを参照して求める
(ステップS218)。こうして、最短被写体までの距
離(L)を検出した後は、図5で説明したステップS1
12〜S118の処理と同様の処理(ステップS220
〜S226)を行う。これにより、輻輳角(α)を付け
ても左右像の歪みが補正され、良質な立体画像を得るこ
とができる。After setting the initial settings, the two cameras 1
Convergence by changing the direction of the lens optical axis of 2, 14 step by step
While changing the angle by a predetermined amount, the difference between the left and right images is minimized.
Convergence angle (α0) Is obtained (step S216). So
And the baseline length d0And convergence angle α 0To subject distance (L)
By calculation or by referring to table data
(Step S218). Thus, the distance to the shortest subject
After detecting the separation (L), step S1 described in FIG.
Processing similar to the processing of 12 to S118 (step S220)
To S226). This gives the convergence angle (α)
The distortion of the left and right images is corrected even if the
Can be.
【0034】次に、本発明の第2の実施の形態について
説明する。図1で説明した実施の形態においては、輻輳
角に起因する左右画像の歪みを画像信号の処理によって
補正する例を述べたが、画像処理を利用しない形態も可
能である。即ち、図7に示すように、アオリ機構を利用
して2台のカメラ42、44のCCD42A、44Aの
受光面を平行に保ったまま、レンズ光軸を傾ける態様も
考えられる。この第2の実施の形態に用いられるカメラ
42、44は撮影レンズ46、48の光軸とCCD42
A、44Aの受光面との関係を変更自在なアオリ機構5
2、54を有している。アオリ機構の詳細な構造は図示
しないが、各カメラ42、44にはアオリ機構を駆動す
るモータ等の電動駆動手段が設けられており、制御装置
(図7中不図示)を介して制御される電動駆動手段の駆
動力によって撮影レンズ46、48の光軸方向を水平面
内で変更できるようになっている。Next, a second embodiment of the present invention will be described. In the embodiment described with reference to FIG. 1, an example has been described in which the distortion of the left and right images caused by the convergence angle is corrected by processing the image signal. However, a mode in which image processing is not used is also possible. That is, as shown in FIG. 7, a mode in which the optical axes of the lenses are tilted while the light receiving surfaces of the CCDs 42A and 44A of the two cameras 42 and 44 are kept parallel by using a tilting mechanism. Cameras 42 and 44 used in the second embodiment are provided with optical axes of photographing lenses 46 and 48 and a CCD 42.
Tilt mechanism 5 that can change the relationship between A and 44A with the light receiving surface
2, 54. Although the detailed structure of the tilt mechanism is not shown, each of the cameras 42 and 44 is provided with an electric driving means such as a motor for driving the tilt mechanism, and is controlled via a control device (not shown in FIG. 7). The optical axis directions of the photographing lenses 46 and 48 can be changed in a horizontal plane by the driving force of the electric driving means.
【0035】また、各カメラ42、44は図示せぬスラ
イドテーブルに移動自在に支持されており、図1で説明
した例と同様に、被写体距離(L)に応じてレンズ間距
離の調節が可能となっている。かかる構成の立体画像撮
像装置によれば、輻輳角(α)が変更されても左右のカ
メラ42、44のCCD42A、44Aの受光面は平行
のまま維持されており、画像取得の段階で歪みのない左
右画像を取得することができる。従って、画像処理によ
る補正が不要である。The cameras 42 and 44 are movably supported by a slide table (not shown), and the distance between the lenses can be adjusted according to the subject distance (L), as in the example described with reference to FIG. It has become. According to the stereoscopic image capturing apparatus having such a configuration, even when the convergence angle (α) is changed, the light receiving surfaces of the CCDs 42A and 44A of the left and right cameras 42 and 44 are maintained in parallel, and the distortion is reduced at the image acquisition stage. No left and right images can be acquired. Therefore, correction by image processing is unnecessary.
【0036】上記説明では、被写体を示す画像光をCC
D等の撮像手段を用いて電気信号に変換するカメラ(電
子カメラ)を搭載した立体画像撮影装置を例に述べた
が、本発明は、画像光を写真フイルムその他の感光材料
に記録するカメラ(銀塩カメラ)を用いた立体画像撮影
装置にも適用できる。また、上記各実施の形態では、被
写体距離に応じて、レンズ間隔や輻輳角を自動調節する
例を述べたが、手動で調節する態様やレンズ間隔の調節
機能を省略する態様も可能である。更に、本発明は静止
画像を撮影する装置のみならず、ビデオカメラの如く、
動画を撮影する装置にも適用できる。In the above description, the image light indicating the subject is represented by CC
Although a three-dimensional image capturing apparatus equipped with a camera (electronic camera) that converts an electric signal into an electrical signal using an image capturing means such as D has been described as an example, the present invention relates to a camera that records image light on a photographic film or other photosensitive material ( It can also be applied to a stereoscopic image photographing apparatus using a silver halide camera. Further, in each of the above-described embodiments, an example has been described in which the lens interval and the convergence angle are automatically adjusted according to the subject distance. However, a mode in which the lens interval and the function of adjusting the lens interval are omitted may be employed. Further, the present invention is not limited to a device for capturing a still image,
The present invention can also be applied to a device for shooting a moving image.
【0037】[0037]
【発明の効果】以上説明したように本発明に係る立体画
像撮影装置によれば、輻輳角に応じて画像の歪みを補正
する手段を設けたので、輻輳角を与えても左右像の歪み
の少ない良質の立体画像を得ることできる。As described above, according to the three-dimensional image photographing apparatus of the present invention, the means for correcting the image distortion according to the convergence angle is provided. A few high-quality stereoscopic images can be obtained.
【図1】本発明の実施の形態に係る立体画像撮影装置の
全体構成図FIG. 1 is an overall configuration diagram of a stereoscopic image photographing apparatus according to an embodiment of the present invention.
【図2】被写体距離に応じて決定される輻輳角及びレン
ズ間距離の関係の一例を示すグラフ図FIG. 2 is a graph illustrating an example of a relationship between a convergence angle and a distance between lenses determined according to a subject distance;
【図3】本実施の形態に係る立体画像撮影装置で被写体
を撮影する様子を示す図FIG. 3 is a diagram showing a state where a subject is photographed by the stereoscopic image photographing apparatus according to the present embodiment;
【図4】左右画像の歪み補正方法を説明する為に用いた
概念図FIG. 4 is a conceptual diagram used to explain a method for correcting distortion of right and left images.
【図5】撮影系とは独立に測距手段が設けられている立
体画像撮影装置における処理の流れを示すフローチャー
トFIG. 5 is a flowchart showing the flow of processing in a stereoscopic image photographing apparatus provided with a distance measuring means independently of the photographing system.
【図6】2つの撮影系(カメラ)を利用して測距を行う
を立体画像撮影装置の処理の流れを示すフローチャートFIG. 6 is a flowchart showing a flow of processing of a stereoscopic image photographing apparatus for performing distance measurement using two photographing systems (cameras);
【図7】本発明の第2の実施の形態を示す要部構成図FIG. 7 is a main configuration diagram showing a second embodiment of the present invention.
【図8】従来の立体画像撮影装置で被写体を撮影する様
子を示す図FIG. 8 is a diagram showing a state in which a subject is photographed by a conventional stereoscopic image photographing apparatus.
【図9】図8に示した従来の立体画像撮影装置で取得し
た左右画像を示す図9 is a diagram showing left and right images acquired by the conventional stereoscopic image photographing device shown in FIG.
10…立体画像撮影装置 12、14、42、44、60、62…カメラ 12A、14A、42A、44A…CCD(撮像手段) 16…カメラ支持装置 18…レンズ調節装置 20…画像処理回路(歪み補正手段、画像信号処理手
段) 22…制御装置(制御手段、第2の制御手段) 25…回転テーブル(輻輳角可変機構) 26…スライドテーブル(レンズ間隔可変機構) 52、54…アオリ機構(歪み補正手段)DESCRIPTION OF SYMBOLS 10 ... Stereoscopic imaging apparatus 12, 14, 42, 44, 60, 62 ... Camera 12A, 14A, 42A, 44A ... CCD (imaging means) 16 ... Camera support apparatus 18 ... Lens adjustment apparatus 20 ... Image processing circuit (distortion correction) Means, image signal processing means) 22: control device (control means, second control means) 25: rotary table (convergence angle variable mechanism) 26: slide table (lens interval variable mechanism) 52, 54: tilt mechanism (distortion correction) means)
Claims (11)
において、 輻輳角に起因する画像の歪みを低減する歪み補正手段を
設けたことを特徴とする立体画像撮影装置。1. A three-dimensional image photographing apparatus comprising two cameras, wherein a distortion correcting means for reducing image distortion caused by a convergence angle is provided.
有する2台のカメラを備えた立体画像撮影装置におい
て、 少なくとも一方のカメラのレンズ光軸の方向を変化させ
ることにより輻輳角を変更する輻輳角可変機構と、 カメラで取得した画像信号を処理する手段であって、輻
輳角に応じて画像の歪みを低減する補正を行う画像信号
処理手段と、 を設けたことを特徴とする立体画像撮影装置。2. A stereoscopic image photographing apparatus comprising two cameras having image pickup means for converting image light into an electric signal, wherein a convergence angle is changed by changing a direction of a lens optical axis of at least one of the cameras. A stereoscopic image, comprising: a convergence angle variable mechanism; and an image signal processing means for processing image signals acquired by the camera, the image signal processing means performing correction for reducing image distortion according to the convergence angle. Shooting equipment.
けられ、 被写体までの距離を検出する検出手段と、 前記検出手段で得た被写体距離に応じて前記電動駆動手
段を制御する制御手段と、 を具備し、被写体距離に応じて輻輳角を自動調節するこ
とを特徴とする請求項2記載の立体画像撮影装置。3. An electric drive means is provided in the convergence angle variable mechanism, a detection means for detecting a distance to a subject, and a control means for controlling the electric drive means in accordance with the subject distance obtained by the detection means. The stereoscopic image photographing apparatus according to claim 2, further comprising: automatically adjusting a convergence angle according to a subject distance.
において、 アオリ機構を有したカメラを用い、各カメラの受光面を
互いに平行に維持したまま、前記アオリ機構を利用して
レンズ光軸を被写体に向けて傾けることにより、輻輳角
に起因する画像の歪みを低減するようにしたことを特徴
とする立体画像撮影装置。4. A three-dimensional image photographing apparatus having two cameras, wherein a camera having a tilt mechanism is used, and while the light receiving surfaces of the cameras are kept parallel to each other, a lens optical axis is utilized by using the tilt mechanism. A stereoscopic image photographing apparatus characterized in that the image distortion caused by the angle of convergence is reduced by tilting the camera toward the subject.
れ、 被写体までの距離を検出する検出手段と、 前記検出手段で得た被写体距離に応じて前記電動駆動手
段を制御する制御手段と、 を具備し、被写体距離に応じて輻輳角を自動調節するこ
とを特徴とする請求項4記載の立体画像撮影装置。5. An electric drive means provided in the tilt mechanism, a detection means for detecting a distance to a subject, and a control means for controlling the electric drive means in accordance with the subject distance obtained by the detection means. 5. The three-dimensional image photographing apparatus according to claim 4, further comprising: automatically adjusting a convergence angle according to a subject distance.
変換する撮像手段を有するカメラが使用され、前記撮像
手段の受光面を互いに平行に維持したままレンズ光軸を
傾けることにより、輻輳角に起因する画像の歪みを低減
するようにしたことを特徴とする請求項4又は5記載の
立体画像撮影装置。6. A camera having an image pickup means for converting image light into an electric signal is used as the camera, and the convergence angle is reduced by inclining the lens optical axis while keeping the light receiving surfaces of the image pickup means parallel to each other. The three-dimensional image photographing apparatus according to claim 4, wherein the resulting image distortion is reduced.
定距離よりも遠い場合には、2台のカメラのレンズ光軸
を平行に維持し、所定距離よりも近距離の被写体を撮影
する場合に各カメラのレンズ光軸を傾けて輻輳角を与え
るように前記電動駆動手段を制御することを特徴とする
請求項3又は5記載の立体画像撮影装置。7. When the distance to the subject is longer than a predetermined distance, the control means maintains the lens optical axes of the two cameras in parallel and shoots a subject at a shorter distance than the predetermined distance. 6. The three-dimensional image photographing apparatus according to claim 3, wherein the electric drive unit is controlled so as to give a convergence angle by tilting a lens optical axis of each camera.
レンズ間隔可変機構を備えたことを特徴とする請求項1
〜7何れか1の請求項に記載の立体画像撮影装置。8. The apparatus according to claim 1, further comprising a lens spacing variable mechanism for adjusting a distance between the lenses of the two cameras.
The three-dimensional image photographing device according to claim 1.
像装置において、2台のカメラのレンズ間距離を調節す
るレンズ間隔可変機構を具備すると共に、該レンズ間隔
可変機構に第2の電動駆動手段が設けられ、 前記検出手段で得た被写体距離に応じて前記第2の電動
駆動手段を制御する第2の制御手段を備えたことを特徴
とする立体画像撮影装置。9. The three-dimensional image pickup device according to claim 3, further comprising a lens spacing variable mechanism for adjusting a distance between lenses of the two cameras, wherein the lens spacing variable mechanism includes a second lens spacing variable mechanism. A three-dimensional image photographing apparatus comprising: an electric driving unit; and a second control unit that controls the second electric driving unit according to a subject distance obtained by the detection unit.
の範囲の場合は、2台のカメラのレンズ光軸を平行に維
持して被写体距離に応じてレンズ間距離の調節を行い、
前記所定の距離値よりも近距離側の被写体を撮影する場
合に、各カメラのレンズ光軸を傾けて輻輳角を与えるよ
うに制御されることを特徴とする請求項9記載の立体画
像撮影装置。10. When the subject distance is in a range farther than a predetermined distance value, the lens optical axes of the two cameras are kept parallel to adjust the inter-lens distance according to the subject distance.
10. The stereoscopic image photographing apparatus according to claim 9, wherein when photographing an object closer to the subject than the predetermined distance value, the lens optical axis of each camera is tilted to give a convergence angle. .
ズ間距離に相当する基線長と、被写体に向けたカメラの
レンズ光軸の方向で規定される輻輳角と、に基づいて被
写体までの距離を求める手段から成ることを特徴とする
請求項3又は5記載の立体画像撮影装置。11. The detecting means according to claim 1, wherein said detecting means detects a base length corresponding to a distance between the lenses of the two cameras and a convergence angle defined by a direction of a lens optical axis of the camera toward the subject. 6. The three-dimensional image photographing apparatus according to claim 3, further comprising means for calculating a distance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10141149A JPH11341522A (en) | 1998-05-22 | 1998-05-22 | Stereoscopic image photographing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10141149A JPH11341522A (en) | 1998-05-22 | 1998-05-22 | Stereoscopic image photographing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11341522A true JPH11341522A (en) | 1999-12-10 |
Family
ID=15285294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10141149A Pending JPH11341522A (en) | 1998-05-22 | 1998-05-22 | Stereoscopic image photographing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11341522A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002034054A (en) * | 2000-07-14 | 2002-01-31 | Sony Corp | Image processing system and recording medium |
JP2002247603A (en) * | 2001-02-16 | 2002-08-30 | Canon Inc | Stereoscopic photographing optical device and stereoscopic photographing system |
JP2004264492A (en) * | 2003-02-28 | 2004-09-24 | Sony Corp | Photographing method and imaging apparatus |
JP2006184434A (en) * | 2004-12-27 | 2006-07-13 | Fuji Photo Film Co Ltd | Stereoscopic image photographic device and method |
JP2007151125A (en) * | 2005-11-28 | 2007-06-14 | Samsung Electronics Co Ltd | Apparatus and method for processing 3d video signal |
JP2008524673A (en) * | 2004-12-06 | 2008-07-10 | エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート | Stereo camera image distortion correction apparatus and method |
JP2008180808A (en) * | 2007-01-23 | 2008-08-07 | Funai Electric Co Ltd | Stereoscopic imaging apparatus |
JP2008198228A (en) * | 2002-11-12 | 2008-08-28 | Namco Bandai Games Inc | Method of preparing printed material for stereoscopic viewing and printed material for stereoscopic viewing |
JP2010011055A (en) * | 2008-06-26 | 2010-01-14 | Olympus Corp | Device and method for displaying stereoscopic vision image |
JP2010541513A (en) * | 2007-10-08 | 2010-12-24 | ステレオピア カンパニー リミテッド | One-source multi-use (OSMU) type stereo camera and method for producing stereo image content thereof |
JP2011503649A (en) * | 2007-11-07 | 2011-01-27 | バイノクル | Camera holding module and relief (stereoscopic image) imaging device |
WO2011050593A1 (en) * | 2009-10-30 | 2011-05-05 | 深圳市掌网立体时代视讯技术有限公司 | Automatic convergence tracking method and system for stereoscopic shooting |
WO2012002017A1 (en) * | 2010-06-30 | 2012-01-05 | 富士フイルム株式会社 | Image capture device, program, and image capture method |
WO2012002021A1 (en) * | 2010-06-30 | 2012-01-05 | 富士フイルム株式会社 | Multi-viewpoint imaging control device, multi-viewpoint imaging control method and multi-viewpoint imaging control program |
US8155432B2 (en) | 2006-12-01 | 2012-04-10 | Fujifilm Corporation | Photographing apparatus |
US20120092338A1 (en) * | 2010-10-15 | 2012-04-19 | Casio Computer Co., Ltd. | Image composition apparatus, image retrieval method, and storage medium storing program |
US8189100B2 (en) * | 2006-07-25 | 2012-05-29 | Qualcomm Incorporated | Mobile device with dual digital camera sensors and methods of using the same |
US8249335B2 (en) | 2002-11-12 | 2012-08-21 | Namco Bandai Games Inc. | Method of making printed material for stereoscopic viewing, and printed material for stereoscopic viewing |
WO2012169318A1 (en) | 2011-06-09 | 2012-12-13 | 富士フイルム株式会社 | Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device |
CN103119515A (en) * | 2010-06-16 | 2013-05-22 | 奇内图斯株式会社 | Device for optical axis alignment for image capturing and method for aligning an optical axis |
WO2014021134A1 (en) * | 2012-07-30 | 2014-02-06 | オリンパス株式会社 | Image capture device and image capture method |
CN103792667A (en) * | 2012-10-30 | 2014-05-14 | 财团法人工业技术研究院 | Stereo camera device, automatic correction device and correction method |
US20140221748A1 (en) * | 2011-10-14 | 2014-08-07 | Olympus Corporation | Stereoscopic endoscope device |
US8933996B2 (en) | 2010-06-30 | 2015-01-13 | Fujifilm Corporation | Multiple viewpoint imaging control device, multiple viewpoint imaging control method and computer readable medium |
US8995750B2 (en) | 2010-09-30 | 2015-03-31 | Casio Computer Co., Ltd. | Image composition apparatus, image retrieval method, and storage medium storing program |
JP2015210271A (en) * | 2014-04-29 | 2015-11-24 | ▲ゆ▼創科技股▲ふん▼有限公司 | Portable three-dimensional scanner and method of generating three-dimensional scan result corresponding to object |
-
1998
- 1998-05-22 JP JP10141149A patent/JPH11341522A/en active Pending
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002034054A (en) * | 2000-07-14 | 2002-01-31 | Sony Corp | Image processing system and recording medium |
JP2002247603A (en) * | 2001-02-16 | 2002-08-30 | Canon Inc | Stereoscopic photographing optical device and stereoscopic photographing system |
US8249335B2 (en) | 2002-11-12 | 2012-08-21 | Namco Bandai Games Inc. | Method of making printed material for stereoscopic viewing, and printed material for stereoscopic viewing |
JP2008198228A (en) * | 2002-11-12 | 2008-08-28 | Namco Bandai Games Inc | Method of preparing printed material for stereoscopic viewing and printed material for stereoscopic viewing |
JP2011102988A (en) * | 2002-11-12 | 2011-05-26 | Namco Bandai Games Inc | Image creation system |
JP2004264492A (en) * | 2003-02-28 | 2004-09-24 | Sony Corp | Photographing method and imaging apparatus |
JP2008524673A (en) * | 2004-12-06 | 2008-07-10 | エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート | Stereo camera image distortion correction apparatus and method |
JP2006184434A (en) * | 2004-12-27 | 2006-07-13 | Fuji Photo Film Co Ltd | Stereoscopic image photographic device and method |
JP2007151125A (en) * | 2005-11-28 | 2007-06-14 | Samsung Electronics Co Ltd | Apparatus and method for processing 3d video signal |
US8189100B2 (en) * | 2006-07-25 | 2012-05-29 | Qualcomm Incorporated | Mobile device with dual digital camera sensors and methods of using the same |
US8155432B2 (en) | 2006-12-01 | 2012-04-10 | Fujifilm Corporation | Photographing apparatus |
JP2008180808A (en) * | 2007-01-23 | 2008-08-07 | Funai Electric Co Ltd | Stereoscopic imaging apparatus |
JP2010541513A (en) * | 2007-10-08 | 2010-12-24 | ステレオピア カンパニー リミテッド | One-source multi-use (OSMU) type stereo camera and method for producing stereo image content thereof |
JP2011503649A (en) * | 2007-11-07 | 2011-01-27 | バイノクル | Camera holding module and relief (stereoscopic image) imaging device |
JP2010011055A (en) * | 2008-06-26 | 2010-01-14 | Olympus Corp | Device and method for displaying stereoscopic vision image |
WO2011050593A1 (en) * | 2009-10-30 | 2011-05-05 | 深圳市掌网立体时代视讯技术有限公司 | Automatic convergence tracking method and system for stereoscopic shooting |
CN103119515A (en) * | 2010-06-16 | 2013-05-22 | 奇内图斯株式会社 | Device for optical axis alignment for image capturing and method for aligning an optical axis |
JP5539514B2 (en) * | 2010-06-30 | 2014-07-02 | 富士フイルム株式会社 | Imaging apparatus, program, and imaging method |
JP4880096B1 (en) * | 2010-06-30 | 2012-02-22 | 富士フイルム株式会社 | Multi-view shooting control device, multi-view shooting control method, and multi-view shooting control program |
CN102550015A (en) * | 2010-06-30 | 2012-07-04 | 富士胶片株式会社 | Multi-viewpoint imaging control device, multi-viewpoint imaging control method and multi-viewpoint imaging control program |
CN102550015B (en) * | 2010-06-30 | 2016-06-08 | 富士胶片株式会社 | Multiple views imaging control device and multiple views filming control method |
WO2012002017A1 (en) * | 2010-06-30 | 2012-01-05 | 富士フイルム株式会社 | Image capture device, program, and image capture method |
WO2012002021A1 (en) * | 2010-06-30 | 2012-01-05 | 富士フイルム株式会社 | Multi-viewpoint imaging control device, multi-viewpoint imaging control method and multi-viewpoint imaging control program |
US8933996B2 (en) | 2010-06-30 | 2015-01-13 | Fujifilm Corporation | Multiple viewpoint imaging control device, multiple viewpoint imaging control method and computer readable medium |
US8995750B2 (en) | 2010-09-30 | 2015-03-31 | Casio Computer Co., Ltd. | Image composition apparatus, image retrieval method, and storage medium storing program |
US9280847B2 (en) | 2010-10-15 | 2016-03-08 | Casio Computer Co., Ltd. | Image composition apparatus, image retrieval method, and storage medium storing program |
US20120092338A1 (en) * | 2010-10-15 | 2012-04-19 | Casio Computer Co., Ltd. | Image composition apparatus, image retrieval method, and storage medium storing program |
WO2012169318A1 (en) | 2011-06-09 | 2012-12-13 | 富士フイルム株式会社 | Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device |
US20140221748A1 (en) * | 2011-10-14 | 2014-08-07 | Olympus Corporation | Stereoscopic endoscope device |
US9510736B2 (en) * | 2011-10-14 | 2016-12-06 | Olympus Corporation | Stereoscopic endoscope device having mechanism that changes an angle between optical axes of two imaging sensors |
WO2014021134A1 (en) * | 2012-07-30 | 2014-02-06 | オリンパス株式会社 | Image capture device and image capture method |
CN103792667A (en) * | 2012-10-30 | 2014-05-14 | 财团法人工业技术研究院 | Stereo camera device, automatic correction device and correction method |
US9445080B2 (en) | 2012-10-30 | 2016-09-13 | Industrial Technology Research Institute | Stereo camera apparatus, self-calibration apparatus and calibration method |
JP2015210271A (en) * | 2014-04-29 | 2015-11-24 | ▲ゆ▼創科技股▲ふん▼有限公司 | Portable three-dimensional scanner and method of generating three-dimensional scan result corresponding to object |
US9955141B2 (en) | 2014-04-29 | 2018-04-24 | Eys3D Microelectronics, Co. | Portable three-dimensional scanner and method of generating a three-dimensional scan result corresponding to an object |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11341522A (en) | Stereoscopic image photographing device | |
US8384767B2 (en) | Stereoscopic image pickup apparatus and method of adjusting optical axis | |
JP4406937B2 (en) | Imaging device | |
EP2590421B1 (en) | Single-lens stereoscopic image capture device | |
US8564686B2 (en) | Imaging apparatus, imaging apparatus body, and shading correcting method | |
JP4533735B2 (en) | Stereo imaging device | |
JP6187571B2 (en) | Imaging device | |
JP2001142166A (en) | 3d camera | |
JP5216640B2 (en) | Imaging apparatus and method | |
JP2011101240A (en) | Stereoscopic photographing device and photographing control method | |
JP2011259168A (en) | Stereoscopic panoramic image capturing device | |
JP2008205569A (en) | Imaging apparatus and method | |
JP2006162991A (en) | Stereoscopic image photographing apparatus | |
JP2002077947A (en) | Method for correcting stereoscopic image and stereoscopic image apparatus using the same | |
JP5667304B2 (en) | Stereo imaging device | |
JP2010103949A (en) | Apparatus, method and program for photographing | |
JP5611469B2 (en) | Stereoscopic imaging apparatus and method | |
JP3091628B2 (en) | Stereoscopic video camera | |
JP2011217311A (en) | Imaging apparatus and method of controlling the same | |
JP2010135984A (en) | Compound-eye imaging apparatus and imaging method | |
JP2002365524A (en) | Autofocus device and imaging device using the same | |
JP2011217334A (en) | Imaging apparatus and method of controlling the same | |
JP3551932B2 (en) | Distance measuring device and imaging device using the same | |
JP2011217333A (en) | Imaging apparatus and method of controlling the same | |
JP2005070077A (en) | Digital camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040727 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060815 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070208 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070329 |