JPH1130275A - Laminated rubber support body - Google Patents
Laminated rubber support bodyInfo
- Publication number
- JPH1130275A JPH1130275A JP18266597A JP18266597A JPH1130275A JP H1130275 A JPH1130275 A JP H1130275A JP 18266597 A JP18266597 A JP 18266597A JP 18266597 A JP18266597 A JP 18266597A JP H1130275 A JPH1130275 A JP H1130275A
- Authority
- JP
- Japan
- Prior art keywords
- damper member
- center cap
- seismic isolation
- laminated rubber
- damper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Bridges Or Land Bridges (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
- Vibration Dampers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば地震、機械
振動、或いは交通振動等により、構造物、各種機器類及
び美術工芸品類等に入力される振動の加速度を低減させ
る免震・防震支承に使用される積層ゴム支承体に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation / seismic isolation bearing for reducing the acceleration of vibrations input to structures, various devices, arts and crafts, etc. due to, for example, earthquakes, mechanical vibrations, or traffic vibrations. It relates to a laminated rubber bearing used.
【0002】[0002]
【従来の技術、及び発明が解決しようとする課題】例え
ば、建築物、橋、タンク等の構造物、及び電子計算機、
医療機器、保安機器、精密製造機器、分析解析機器等の
機器類、或いは美術工芸品類などに加わる振動の加速度
を低減する免震・防震支承体として、例えば図13(A)
に略示するように、鋼板などの硬質板b1とゴム板b2
とを交互に積層した免震部材bの中空部cに、鉛プラグ
等のダンパー部材dを封入した積層ゴム支承体aが知ら
れており、前記免震部材bによって、構造物の重量を支
持するとともに基礎から構造物等へ作用する作用力を緩
衝し、またダンパー部材dによって、前記作用力が免震
部材bにより緩衝された後に生ずる構造物の振動エネル
ギーを吸収して構造物自体の振動を減衰させる。2. Description of the Related Art For example, structures such as buildings, bridges, tanks, and computers,
Devices such as medical equipment, security equipment, precision manufacturing equipment, analytical analysis equipment, etc., or seismic isolation / seismic isolation bearings that reduce the acceleration of vibration applied to arts and crafts, for example, FIG. 13 (A)
As shown schematically, a hard plate b1 such as a steel plate and a rubber plate b2
A laminated rubber bearing body a in which a damper member d such as a lead plug is sealed in a hollow portion c of a seismic isolation member b in which the seismic isolation members b are alternately laminated, and the weight of the structure is supported by the seismic isolation member b And damping the acting force acting on the structure from the foundation, and also absorbs the vibration energy of the structure generated after the acting force is damped by the seismic isolation member b by the damper member d, and vibrates the structure itself. Attenuate.
【0003】又ダンパー部材dを封入した前記積層ゴム
支承体aでは、封入前における前記中空部cの体積と、
封入されるダンパー部材dの体積との比率が、振動エネ
ルギーの吸収性(減衰性能)に大きく関与し、例えば中
空部cの体積に満たない体積のダンパー部材dを封入し
た時には、免震部材b等とダンパー部材dとの間に隙間
が発生することとなり、免震部材bの剪断変形がダンパ
ー部材dに正確に伝達されず、減衰性能を著しく低下さ
せる問題がある。Further, in the laminated rubber bearing body a in which the damper member d is enclosed, the volume of the hollow portion c before the encapsulation is:
The ratio of the volume of the damper member d to the volume of the damper member d greatly affects the absorption (damping performance) of vibration energy. For example, when the volume of the damper member d is less than the volume of the hollow portion c, the seismic isolation member b A gap is generated between the damper member d and the like, and the shear deformation of the seismic isolation member b is not accurately transmitted to the damper member d, and there is a problem that the damping performance is significantly reduced.
【0004】しかし、前記中空部cの体積とダンパー部
材dの体積とが等しく、前記隙間が発生しない場合にお
いても、免震部材bの剪断変形時、前記免震部材bとダ
ンパー部材dとの間に滑りが発生し伝達ロスを招くなど
所望の減衰性能が得られ難いことが判明した。However, even when the volume of the hollow portion c and the volume of the damper member d are equal and the gap does not occur, even when the seismic isolation member b is sheared and deformed, the vibration of the seismic isolation member b and the damper member d is reduced. It has been found that it is difficult to obtain a desired damping performance, for example, slippage occurs and transmission loss is caused.
【0005】従って、本発明者は、封入前における中空
部cの体積よりむしろ大きい体積のダンパー部材dを封
入させ、このダンパー部材dの一部を免震部材bの内周
面における硬質板b1、b1間に食い込ませることによ
って、免震部材bとの滑りを確実に抑制し、高性能の減
衰特性を発揮させうることを究明し得た。そしてこのた
めには、充填に際し、隙間が発生することなくかつダン
パー部材dの食い込み量を高精度で管理でき、しかも充
填されたダンパー部材dを中空部c内で高内圧で確実に
封止しうる新規な構造が必要となる。Accordingly, the present inventor encloses a damper member d having a larger volume than the volume of the hollow portion c before the enclosing, and a part of the damper member d is hard plate b1 on the inner peripheral surface of the seismic isolation member b. , B1 to ensure that slippage with the seismic isolation member b is suppressed and that high-performance damping characteristics can be exhibited. For this purpose, at the time of filling, a gap does not occur and the amount of biting of the damper member d can be controlled with high precision, and the filled damper member d is securely sealed at a high internal pressure in the hollow portion c. New structures are needed.
【0006】なお前記特開昭62−225666号公
報、及び実開昭4−46247号公報には、前記図13
(A) に示す如く、免震部材b両端に設ける構造物固定用
の固定板eによって、中空部cを直接閉止するものが提
案されている。このものは、通常、未加硫の免震部材b
を固定板e、e間で加圧加熱する接着加硫によって免震
部材bと固定板eとを一体結合させる際に、予め免震部
材b内にセットされたダンパー部材dの中空部c内への
封じ込めが同時に行われる。その結果、中空部cの体積
が接着加硫の際の加圧によって大きくバラ付くととも
に、冷却した際には、この中空部c及びダンパー部材d
の各体積が変化する。従って、ダンパー部材dの食い込
み量を高精度で管理できないばかりか、免震部材bとダ
ンパー部材dとの間に隙間の発生を招来するという恐れ
がある。[0006] Japanese Unexamined Patent Publication No. 62-225666 and Japanese Unexamined Utility Model Publication No. 4-46247 disclose the aforementioned FIG.
As shown in (A), a structure in which a hollow portion c is directly closed by a fixing plate e for fixing a structure provided at both ends of a seismic isolation member b has been proposed. This is usually a non-vulcanized seismic isolation member b
When the seismic isolation member b and the fixing plate e are integrally joined by adhesive vulcanization by pressurizing and heating the fixing plates e and e, the hollow c of the damper member d set in the seismic isolation member b in advance Containment at the same time. As a result, the volume of the hollow portion c greatly varies due to the pressurization during the adhesive vulcanization, and when cooled, the hollow portion c and the damper member d
Each volume changes. Therefore, not only can the bite amount of the damper member d not be controlled with high precision, but also a gap may be generated between the seismic isolation member b and the damper member d.
【0007】他方特開昭61−176776号公報に
は、図13(B) に略示するように、固定板eに中空部c
に通じるネジ孔e1を設け、このネジ孔e1から挿入さ
れたダンパー部材dを、ネジ孔e1に螺合するキャップ
fによって封じ込めるものが提案されている。しかし、
特に中空部cより大きい体積のダンパー部材dを圧入す
る際には、ダンパー部材dの復元力による突き上げ力が
大であるため、キャップfのネジ止めではダンパー部材
dを高内圧で封じ込めることは困難である。しかも圧入
の際のキャップfの螺入に伴い、ダンパー部材dに捻れ
が発生するほか、キャップfとダンパー部材dとの間に
削れえぐれ等の損傷を発生し、ダンパー部材dの強度、
耐久性、及び減衰性能を阻害する。又ネジ孔e1の谷径
を中空部cの直径と等しくしたときには、ダンパー部材
dの挿入時にネジ山との接触を招くなどネジ孔e1を損
傷させ、逆にネジ孔山径を中空部cの直径と等しくした
ときには、固定板eより下方に入り込むキャップfのネ
ジ部が免震部材bを損傷させるという問題もある。On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 61-176776 discloses, as schematically shown in FIG.
A screw hole e1 leading to the screw hole e1 is provided, and a damper member d inserted from the screw hole e1 is sealed by a cap f screwed into the screw hole e1. But,
In particular, when a damper member d having a larger volume than the hollow portion c is press-fitted, it is difficult to seal the damper member d with a high internal pressure by screwing the cap f, since the restoring force of the damper member d is large. It is. Moreover, with the screwing of the cap f at the time of press-fitting, the damper member d is twisted, and the cap f and the damper member d are damaged by scraping and chipping.
Impairs durability and damping performance. When the root diameter of the screw hole e1 is made equal to the diameter of the hollow portion c, the screw hole e1 is damaged by, for example, causing contact with the screw thread when the damper member d is inserted. When the diameter is equal to the diameter, there is also a problem that the threaded portion of the cap f that enters below the fixing plate e damages the seismic isolation member b.
【0008】そこで本発明のうち請求項1記載の発明
は、押下げによりダンパー部材を中空部に充填しうるセ
ンターキャップを溶接によって固定することを基本とし
て、ダンパー部材に捻れ削れなどを生じることなく充填
でき、しかもダンパー部材の充填量の調整を容易に行い
うるため、充填時の隙間の発生を確実に防止しうる他、
特にダンパー部材の食い込み量を高精度で管理でき、さ
らにはダンパー部材を高内圧で確実に封止しうる積層ゴ
ム支承体の提供を目的としている。Therefore, the invention according to claim 1 of the present invention is based on fixing a center cap capable of filling a hollow portion with a damper member by pressing down by welding without causing torsion or the like of the damper member. Filling is possible, and the filling amount of the damper member can be easily adjusted, so that the occurrence of a gap at the time of filling can be reliably prevented.
In particular, it is an object of the present invention to provide a laminated rubber bearing body capable of managing a biting amount of a damper member with high accuracy and further securely sealing the damper member at a high internal pressure.
【0009】又請求項2記載の発明は、センターキャッ
プの溶接熱による免震部材のゴム材への悪影響を排除し
つつ、必要な溶着強度を確保しうる積層ゴム支承体の提
供を目的としている。Another object of the present invention is to provide a laminated rubber bearing which can secure a necessary welding strength while eliminating an adverse effect on a rubber material of a seismic isolation member due to welding heat of a center cap. .
【0010】又請求項3記載の発明は、センターキャッ
プとダンパー部材との間の滑りを効果的に抑制でき、減
衰性能をさらに向上しうる積層ゴム支承体の提供を目的
としている。Another object of the present invention is to provide a laminated rubber bearing which can effectively suppress the slip between the center cap and the damper member and can further improve the damping performance.
【0011】[0011]
【課題を解決するための手段】前記目的を達成するため
に、本発明のうちで請求項1記載の発明は、2つの構造
体の間に介在しその間を免震する積層ゴム支承体であっ
て、前記構造体に固定される支持具間に、ゴム材からな
るシート状の変形部と硬質材からなるシート状の耐変形
部とを交互に積層した免震用の積層基体に、その変形
部、耐変形部を通りしかも前記支持具によって閉止され
る中空部を形成する空洞部を設けた免震部材、及び前記
中空部に配される振動エネルギー吸収用のダンパー部材
を具えるとともに、前記支持具は、少なくともその一方
が基板と、この基板に設けた透孔に遊嵌され押し下げら
れることにより前記ダンパー部材を前記中空部に充填す
るセンターキャップとからなり、このセンターキャップ
の外周外向き縁又は、基板の透孔の内周外向き縁に、溶
接用の面取りを形成したことを特徴としたものでありま
す。According to one aspect of the present invention, there is provided a laminated rubber bearing which is interposed between two structures and is seismically isolated therebetween. A laminated base for seismic isolation in which a sheet-shaped deformed portion made of a rubber material and a sheet-shaped deformable portion made of a hard material are alternately stacked between supports fixed to the structure, And a seismic isolation member provided with a hollow portion that passes through the deformation-resistant portion and forms a hollow portion closed by the support, and a damper member for absorbing vibration energy disposed in the hollow portion. The supporter includes at least one of a substrate and a center cap that fills the hollow portion with the damper member by being loosely fitted and pressed into a through hole provided in the substrate, and an outer peripheral edge of the center cap. Or The inner peripheral outward edge of the through hole of the substrate, it is proposed that is characterized by the formation of the chamfer for welding.
【0012】又請求項2記載の発明は、前記面取りを、
センターキャップの高さの10〜30%とすることを特
徴としたものであります。According to a second aspect of the present invention, the chamfer is
It is characterized by 10-30% of the height of the center cap.
【0013】又請求項3記載の発明は、前記センターキ
ャップのダンパー部材に向く内向き面に突起を設けたこ
とを特徴としたものであります。The invention according to claim 3 is characterized in that a projection is provided on an inward surface of the center cap facing the damper member.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態を、図
示例とともに説明する。図1、2において積層ゴム支承
体1は、例えば基礎である下の構造体2Bと建築物等で
ある上の構造物2Aとにそれぞれ固定される上下の支持
具3A、3Bを具えるとともに、この支持具3A、3B
間に、免震部材5とダンパー部材6とを設けている。Embodiments of the present invention will be described below with reference to the drawings. In FIGS. 1 and 2, the laminated rubber support 1 includes upper and lower supports 3A and 3B fixed to a lower structure 2B as a foundation and an upper structure 2A as a building, respectively. This support 3A, 3B
The seismic isolation member 5 and the damper member 6 are provided between them.
【0015】前記支持具3A、3Bは、その少なくとも
一方、本例では、双方の支持具3A、3Bを、各構造物
2A、2Bにボルトなどの固定金具を用いて固定される
板状の基板7と、この基板7の中央に設けた透孔8に遊
嵌されることにより該透孔8を閉止するセンターキャッ
プ9とで形成している。なお透孔8は、前記センターキ
ャップ9が嵌り込む大径部分8aの内側に、段差面8b
を介して小径部分8cを設けている。At least one of the supports 3A, 3B is a plate-like substrate in which, in this example, both supports 3A, 3B are fixed to each of the structures 2A, 2B using a fixing fitting such as a bolt. 7 and a center cap 9 which is loosely fitted in a through hole 8 provided in the center of the substrate 7 to close the through hole 8. The through hole 8 has a stepped surface 8b inside the large diameter portion 8a into which the center cap 9 is fitted.
The small-diameter portion 8c is provided through the opening.
【0016】又センターキャップ9は、図3に示すよう
に、大径部分8aに遊嵌する円板状の基体18を有し、
該基体18の外周外向き縁E1及び前記透孔8の内周外
向き縁E2の何れか一方、又は双方に、本例では、基体
18の外周外向き縁E1に、溶接用の面取り19を形成
している。又前記基体18は、ダンパー部材6に向く内
向き面18Sに、ダンパー部材6を押し下げることによ
りこのダンパー部材6内に埋入する突起23を1以上、
好ましくは複数設けている。該突起23は、前記埋入を
容易とするために、先端先細のコーン状とすることが好
ましい。その突出高さは0.5mm以上あれば良く、又
突出高さの上限は、3mm程度以下として破断損傷を抑
制することが好ましい。As shown in FIG. 3, the center cap 9 has a disk-shaped base 18 which is loosely fitted to the large diameter portion 8a.
A chamfer 19 for welding is provided on one or both of the outer peripheral edge E1 of the base 18 and the inner peripheral outer edge E2 of the through hole 8, and in this example, on the outer peripheral edge E1 of the base 18. Has formed. The base 18 has one or more projections 23 embedded in the damper member 6 by pressing down the damper member 6 on an inward surface 18S facing the damper member 6.
Preferably, a plurality is provided. The projection 23 is preferably formed in a cone shape with a tapered tip in order to facilitate the embedding. The protrusion height may be 0.5 mm or more, and the upper limit of the protrusion height is preferably about 3 mm or less to suppress breakage damage.
【0017】又前記免震部材5は、ゴム材からなるシー
ト状の変形部10と硬質材からなるシート状の耐変形部
11とを交互に積層した免震用の積層基体12からな
り、この積層基体12には、前記変形部10と耐変形部
11とを貫通して上下にのびることにより前記透孔8に
連通する空洞部13が形成される。該空洞部13は、前
記小径部分8cと断面略同一形状をなし、この空洞部1
3と小径部分8cとによって、ダンパー部材6が充填さ
れる一連の中空部14を形成している。The seismic isolation member 5 comprises a laminated base 12 for seismic isolation in which sheet-like deformed portions 10 made of rubber material and sheet-shaped deformable portions 11 made of hard material are alternately laminated. A cavity 13 is formed in the laminated base 12 so as to extend vertically through the deformable portion 10 and the deformation-resistant portion 11 and communicate with the through hole 8. The hollow portion 13 has substantially the same cross section as the small diameter portion 8c.
3 and the small diameter portion 8c form a series of hollow portions 14 into which the damper member 6 is filled.
【0018】前記耐変形部11は、例えば鋼板などの剛
性を有する金属製の板体からなり、本例では前記空洞部
形成用の孔部を中心に透設した例えば円板状に形成され
る。又変形部10としては、各種ゴム材料が使用できる
が、機械的強度、弾性率の長期安定性、変形能力の長期
安定性、耐クリープ性などに優れるものが必要であり、
例えば天然ゴム(NR)、クロロプレンゴム(CR)などが好ま
しく使用される。又変形部10の厚さT1は、耐変形部
11の厚さT2より大、通常1.3〜2.0倍程度であ
って、本例では、T1=4.2mm,T2=2.5mm
のものを使用している。The deformation-resistant portion 11 is made of a rigid metal plate, such as a steel plate. In this embodiment, the deformation-resistant portion 11 is formed in a disk shape through the hole for forming the cavity, for example. . Various rubber materials can be used as the deformed portion 10, but those having excellent mechanical strength, long-term stability of elastic modulus, long-term stability of deformability, and creep resistance are required.
For example, natural rubber (NR), chloroprene rubber (CR) and the like are preferably used. The thickness T1 of the deformable portion 10 is larger than the thickness T2 of the deformable portion 11, usually about 1.3 to 2.0 times. In this example, T1 = 4.2 mm and T2 = 2.5 mm.
I'm using
【0019】又前記基板7と積層基体12との間、及び
積層基体12の変形部10と耐変形部11との間は、積
層後の前記変形部10のゴム加硫及び/又は接着剤を用
いて一体かつ強固に結合される。なお本例では、前記積
層基体12の外周には、変形部10及び耐変形部11を
被覆することによって、免震部材5を腐食、損傷などか
ら保護する耐候性に優れる例えばゴム製の保護層15を
形成している。The rubber vulcanization and / or adhesive of the deformed portion 10 after lamination is applied between the substrate 7 and the laminated base 12 and between the deformed portion 10 and the deformation resistant portion 11 of the laminated base 12. It is integrally and firmly connected by using. In this example, the outer periphery of the laminated base 12 is covered with the deformable portion 10 and the deformable portion 11, thereby protecting the seismic isolation member 5 from corrosion, damage, and the like. 15 are formed.
【0020】前記ダンパー部材6は、塑性変形容易な金
属材、例えば鉛からなる直柱状体であり、前記中空部1
4内に、実質的に間隔を有することなく密に充填(封
入)される。The damper member 6 is a straight columnar body made of a metal material which is easily plastically deformed, for example, lead.
4 is tightly filled (enclosed) with substantially no space.
【0021】この時、ダンパー部材6の前記空洞部13
に封入される体積VLは、ダンパー部材6の封入前にお
ける、空洞部13の体積VAの1.0倍より大かつ1.
05倍以下としている。より詳しく説明すると、封入前
における空洞部13の内周面は、図4(A) に示すよう
に、前記変形部10の内側面と耐変形部11の内側面と
が実質的に整一した、本例では、横断面円形の直筒状を
なし、又この横断面形状と前記小径部分8cの横断面形
状とが一致している。At this time, the cavity 13 of the damper member 6 is
Is larger than 1.0 times the volume VA of the cavity 13 before the damper member 6 is sealed, and 1.
05 or less. More specifically, as shown in FIG. 4 (A), the inner peripheral surface of the cavity 13 before the sealing is substantially aligned with the inner surface of the deformable portion 10 and the inner surface of the deformable portion 11. In this example, the cross section is a straight cylindrical shape having a circular cross section, and the cross section shape matches the cross section shape of the small diameter portion 8c.
【0022】他方、封入後にあっては、VL>VA で
あることによって、ダンパー部材6は、空洞部13の内
周面を押圧し、図4(B) に示すように、前記体積の差
(VL−VA)に相当する量のダンパー部材6が、軟質
となる変形部10に食い込むことになる。このダンパー
部材6の食い込み部分6aは、波線状の輪郭線をなすと
ともに、硬質の耐変形部11間で挟まれて拘束されるた
め、封入後の空洞部13とダンパー部材6との間の滑り
が確実に抑制され、免震部材5の剪断変形がダンパー部
材6に伝達ロスを招くことなく正確に伝えられることに
より、減衰性能を大巾に向上できる。On the other hand, after the sealing, since VL> VA, the damper member 6 presses the inner peripheral surface of the hollow portion 13, and as shown in FIG. The amount of the damper member 6 corresponding to (VL-VA) bites into the soft deformable portion 10. The biting portion 6a of the damper member 6 has a wavy contour and is restrained by being sandwiched between the hard deformation-resistant portions 11, so that the slippage between the hollow portion 13 and the damper member 6 after sealing is performed. Is reliably suppressed, and the shearing deformation of the seismic isolation member 5 is accurately transmitted to the damper member 6 without causing a transmission loss, so that the damping performance can be greatly improved.
【0023】なお前記ダンパー部材6の体積VLが、封
入前の空洞部13の体積VAの1.0倍以下の時には、
前記食い込みが発生しないため、図5に略示するよう
に、免震部材5とダンパー部材6との伝達ロスが増大し
て、減衰性能を大きく低下させる。逆に1.05倍を越
えると、減衰性能は高く維持されるものの、ダンパー部
材6の食い込み量が過大となって、変形部10と耐変形
部11との間の接着剥離を誘発させるとともに、耐変形
部材11に曲がり、捻れ等の変形を招き、強度、耐久性
を減じるとともに、免震部材5における振動緩衝効果を
低下させる。従って、体積VLの上限は、体積VAの
1.040倍以下、さらには1.035倍以下が好まし
く、又下限は、体積VAの1.010倍以上、さらには
1.020倍以上が好ましい。When the volume VL of the damper member 6 is not more than 1.0 times the volume VA of the hollow portion 13 before sealing,
Since the bite does not occur, as shown schematically in FIG. 5, the transmission loss between the seismic isolation member 5 and the damper member 6 increases, and the damping performance is greatly reduced. On the other hand, when it exceeds 1.05 times, although the damping performance is maintained high, the amount of penetration of the damper member 6 becomes excessive and induces the adhesion peeling between the deformed portion 10 and the deformable portion 11, and This causes the deformation-resistant member 11 to bend and deform, such as torsion, thereby reducing strength and durability, and lowering the vibration damping effect of the seismic isolation member 5. Therefore, the upper limit of the volume VL is preferably 1.040 times or less, more preferably 1.035 times or less of the volume VA, and the lower limit is preferably 1.010 times or more, more preferably 1.020 times or more of the volume VA.
【0024】又ダンパー部材6の食い込み部分6aを形
成するためには、充填時時、ダンパー部材6を長さ方向
に圧縮して半径方向に膨張させることが必要となる。す
なわち、ダンパー部材6の充填は、図6に示すように、
予めセンターキャップ9の固着によって透孔8の一端
(例えば下端)を閉止した積層基体12を、加圧機Mの
下部ヘッドM1上に載置するとともに、この中空部14
内に、ダンパー部材6を挿入する。この挿入される圧縮
前のダンパー部材6は、その断面形状を、圧縮前の空洞
部13の断面形状と略相似形とした、本例では直柱体を
なし、かつ圧縮前のダンパー部材6の直径Dを、圧縮前
の空洞部13の直径DRの0.9倍以上かつ1.0倍よ
りも小としている。これによって、空洞部13の内周面
に損傷を与えることなく容易に挿入できる。なおダンパ
ー部材6等の断面形状は、本例の如き円形以外に、例え
ば4角形、5角形等の多角形を含む非円形であっても良
く、この時、断面における最大巾を以て直径と呼ぶ。な
お圧縮前のダンパー部材6には、挿入容易とするため
に、その一端又は両端に、面取り部を形成しても良い
が、封入後もこの面取り部が残存するため、面取り部を
設ける場合には、C5.0mm以下とすることが好まし
い。In order to form the biting portion 6a of the damper member 6, it is necessary to compress the damper member 6 in the length direction and expand it in the radial direction at the time of filling. That is, the filling of the damper member 6 is performed as shown in FIG.
The laminated base 12 whose one end (for example, the lower end) of the through hole 8 is previously closed by fixing the center cap 9 is placed on the lower head M1 of the pressing machine M, and
The damper member 6 is inserted therein. The cross-sectional shape of the inserted damper member 6 before compression is substantially similar to the cross-sectional shape of the hollow portion 13 before compression. In this example, the damper member 6 has a straight columnar shape. The diameter D is 0.9 times or more and smaller than 1.0 times the diameter DR of the hollow portion 13 before compression. Thereby, it can be easily inserted without damaging the inner peripheral surface of the cavity 13. The cross-sectional shape of the damper member 6 and the like may be a non-circular shape including a polygon such as a quadrangle or a pentagon, in addition to the circular shape as in the present embodiment. In this case, the maximum width in the cross-section is called a diameter. In addition, in order to facilitate insertion, the chamfered portion may be formed at one end or both ends of the damper member 6 before compression. However, since the chamfered portion remains even after sealing, when the chamfered portion is provided. Is preferably C5.0 mm or less.
【0025】なお、前記直径Dが直径DRの1.0倍以
上では、挿入時、空洞部13の内周面においてダンパー
部材6が変形部10を削るなどの損傷を招き、この損傷
が核となって変形部10と耐変形部11との剥離を誘発
するなど強度、耐久性を低下させる。又0.9倍未満の
時には、圧縮によりダンパー部材6を半径方向に膨張さ
せる率が不必要に増大するため、圧縮行程の作業性を著
しく阻害し、又均一な膨張を得られ難くする。従って、
前記直径Dは、直径DRより0.5〜1.0mmの範囲
で小とするのが好ましい。If the diameter D is not less than 1.0 times the diameter DR, the damper member 6 may damage the deformed portion 10 on the inner peripheral surface of the hollow portion 13 during insertion, and this damage may cause damage to the nucleus. As a result, the strength and durability are reduced, such as inducing delamination of the deformed portion 10 and the deformable portion 11. When the ratio is less than 0.9, the rate of expanding the damper member 6 in the radial direction by compression is unnecessarily increased, so that the workability in the compression stroke is significantly impaired, and uniform expansion is hardly obtained. Therefore,
The diameter D is preferably smaller than the diameter DR in the range of 0.5 to 1.0 mm.
【0026】又ダンパー部材6は、圧縮時に屈曲変形し
易く、このために圧縮前のダンパー部材6は、その高さ
hを前記直径Dの1.0〜3.0倍の範囲とするのが良
い。The damper member 6 is easily bent and deformed during compression. For this reason, the height h of the damper member 6 before compression is set to be in a range of 1.0 to 3.0 times the diameter D. good.
【0027】又挿入されたダンパー部材6上面には、上
のセンターキャップ9が載置され、前記加圧機Mの上部
ヘッドM2の下降に伴うセンターキャップ9の押し下げ
とともに、ダンパー部材6が圧縮され中空部14内に充
填される。このようにセンターキャップ9を用いてダン
パー部材6を圧縮するため、センターキャップ9とダン
パー部材6との境界面が密に整合して、この間での隙間
の発生を確実に防止できる。しかも前記突起23がダン
パー部材6内に埋入できるため、剪断変形時の境界面で
の滑りが抑制され、さらに高性能の減衰性能が発揮でき
る。On the upper surface of the inserted damper member 6, an upper center cap 9 is placed. As the upper head M2 of the pressurizing machine M is lowered, the center cap 9 is pressed down, and the damper member 6 is compressed and hollow. Filled in the part 14. Since the damper member 6 is compressed using the center cap 9 in this manner, the boundary surface between the center cap 9 and the damper member 6 is closely aligned, and the generation of a gap therebetween can be reliably prevented. Moreover, since the protrusions 23 can be embedded in the damper member 6, slippage at the boundary surface during shear deformation is suppressed, and further high-performance damping performance can be exhibited.
【0028】又前記圧縮では、前記ダンパー部材6の圧
縮歪(縦歪)を半径方向への膨張(横歪)に、全長に亘
って略均一に変換することが必要であり、従って、本例
では、最終充填圧力に至る間に、加圧及びその後の応力
緩和の2以上のサイクルを繰り返し、徐々に圧縮してい
る。より詳しくは、前記センターキャップ9が基板7内
に嵌り合い前記段差8bに当接する固定位置までの間の
圧縮を、例えば複数段階に分けて行うものであり、図7
(A) に略示するように、初期(第1)の強制加圧によっ
て所定長さの圧縮を行う第1の加圧ステップ16Aの
後、この圧縮高さを維持する第1の応力緩和ステップ1
7Aを行い、内部応力が緩和されて縦歪が横歪に変換さ
れるまで待機する。In the compression, it is necessary to convert the compressive strain (longitudinal strain) of the damper member 6 into radial expansion (lateral strain) substantially uniformly over the entire length. In this method, two or more cycles of pressurization and subsequent stress relaxation are repeated until the final filling pressure is reached, and the material is gradually compressed. More specifically, the compression between the center cap 9 and the fixed position where the center cap 9 is fitted into the substrate 7 and abuts on the step 8b is performed in, for example, a plurality of steps.
As schematically shown in (A), after a first pressurizing step 16A in which a predetermined length of compression is performed by an initial (first) forced pressurization, a first stress relaxation step in which this compression height is maintained 1
Perform 7A and wait until the internal stress is relaxed and the longitudinal strain is converted to a transverse strain.
【0029】この加圧ステップ16と応力緩和ステップ
17とからなるサイクルを2以上、例えば3サイクル行
い、最終(第3)の加圧ステップ16Cにより前記セン
ターキャップ9が固定位置に配された後の最終(第3)
の応力緩和ステップ17Cにより、応力緩和が平衡状態
に達しているかを確認する。この確認は、圧力降下が1
分間に0であることによって行う。なお各加圧ステップ
16においても前記応力緩和の速度を考慮し、圧縮速度
を充分に低速(例えば1500kgf/cm2 ・sec 以下)
で行うことが好ましく、又最終充填圧力は、1600kg
f/cm2 以下とすることが好ましい。なお圧縮速度が2
000kgf/cm2 ・sec を越えると、中空部14の上端
近傍にダンパー部材6のかしめ状部分が形成され易く、
圧縮を不均一化するおそれがある。又最終充填圧力が2
000kgf/cm2 より大の時、積層基体12の耐変形
部に曲がり、捻れ等の変形を招く。The cycle consisting of the pressurizing step 16 and the stress relaxing step 17 is performed two or more times, for example, three cycles, and after the center cap 9 is arranged at the fixed position by the final (third) pressurizing step 16C. Final (third)
The stress relaxation step 17C confirms whether the stress relaxation has reached an equilibrium state. This check confirms that the pressure drop is 1
Performed by being 0 per minute. In each pressurizing step 16, the compression speed is sufficiently low in consideration of the stress relaxation speed (for example, 1500 kgf / cm 2 · sec or less).
And the final filling pressure is 1600 kg
f / cm 2 or less is preferable. The compression speed is 2
If it exceeds 000 kgf / cm 2 · sec, a caulked portion of the damper member 6 is likely to be formed near the upper end of the hollow portion 14,
The compression may be uneven. And the final filling pressure is 2
When it is larger than 000 kgf / cm 2 , the laminated base 12 bends in the deformation-resistant portion, causing deformation such as twisting.
【0030】又前記固定位置のセンターキャップ9と基
板7との間を溶接によって固定し、中空部14上端を閉
じることによってダンパー部材6を封入する。Further, the gap between the center cap 9 and the substrate 7 at the fixed position is fixed by welding, and the upper end of the hollow portion 14 is closed to enclose the damper member 6.
【0031】前記センターキャップ9には、前述の如
く、基体18の外周外向き縁E1に、溶接用の面取り1
9が、その全周に亘り形成され、この面取り19と基板
7との間の溝状部20に溶接材21が入り込むことによ
って一体に固定される。なお溶接として、溶接棒等の溶
接材を用いるアーク溶接などの種々の溶接手段が使用で
きる。As described above, the center cap 9 has a chamfer 1 for welding on the outer peripheral edge E1 of the base 18.
9 is formed over the entire circumference, and is integrally fixed by the welding material 21 entering the groove 20 between the chamfer 19 and the substrate 7. Various welding means such as arc welding using a welding material such as a welding rod can be used for welding.
【0032】なおダンパー部材6は、前記免震部材5に
おけるゴム材等の復元力によって押し戻され、前記セン
ターキャップ9を押し上げる向きの大なる力を発生す
る。従って、センターキャップ9の溶着によって、この
押し上げを阻止し、高内圧でのダンパー部材6の封入
を、確実かつ安定に行いうる。The damper member 6 is pushed back by the restoring force of the rubber material or the like in the seismic isolation member 5, and generates a large force for pushing up the center cap 9. Therefore, this pushing up is prevented by welding the center cap 9, and the damper member 6 can be reliably and stably sealed at a high internal pressure.
【0033】ここで、前記面取り19の深さTaは、セ
ンターキャップ9の高さTbの10%以上かつ30%以
下とすることが好ましく、10%未満では、溶着強度が
不充分であり押し上げを阻止が確実に保証されず、逆に
30%を越えると、溶接の熱によって免震部材5のゴム
材が劣化するなど、強度、性能、耐久性をそれぞれ低下
する。従って、その下限は15%以上さらには20%以
上が好ましく、又上限は25%以下が好ましい。Here, the depth Ta of the chamfer 19 is preferably not less than 10% and not more than 30% of the height Tb of the center cap 9, and if it is less than 10%, the welding strength is insufficient and the pushing up is not possible. If the blocking is not reliably ensured, and if it exceeds 30%, the strength, performance, and durability of the seismic isolation member 5 deteriorate, for example, due to the deterioration of the rubber material of the seismic isolation member 5 due to the heat of welding. Therefore, the lower limit is preferably 15% or more, more preferably 20% or more, and the upper limit is preferably 25% or less.
【0034】又面取り19は、図8(A) 、(B) に示すよ
うに、前記透孔8の内周外向き縁E2に、さらには外周
外向き縁E1と透孔8の内周外向き縁E2との双方に形
成しても良い。As shown in FIGS. 8 (A) and 8 (B), the chamfer 19 is formed on the outer peripheral edge E2 of the through hole 8 and further on the outer peripheral edge E1 and the outer peripheral edge of the through hole 8. It may be formed on both the facing edge E2.
【0035】又前記ダンパー部材6が、指定の減衰性能
を発揮するためには、前記ダンパー部材6は、前記封入
状態において少なくとも前記空洞部13に配される部分
が、連続した一体品であることが必要である。言い換え
れば、図9に示すように、小径部分8cに配される部分
では、ダンパー部材6は、空洞部13に配されるダンパ
ー主部25Aと断面同形の1枚以上の薄板状の部材片2
5Bで構成されていても良い。従ってセンターキャップ
9を前記固定位置まで押し進した際に、ダンパー部材6
の封入量が不足と判明したときには、一旦センターキャ
ップ9を取り外しこの部材片25Bを追加することによ
って、隙間の発生をなくしかつ食い込み部6aを高精度
で管理、形成できる。In order for the damper member 6 to exhibit a specified damping performance, the damper member 6 must have a continuous integral part at least in the cavity 13 in the sealed state. is necessary. In other words, as shown in FIG. 9, in the portion arranged in the small-diameter portion 8 c, the damper member 6 includes one or more thin plate-like member pieces 2 having the same cross section as the damper main portion 25 A arranged in the cavity 13.
5B. Therefore, when the center cap 9 is pushed to the fixed position, the damper member 6
When it is determined that the sealing amount is insufficient, once the center cap 9 is removed and the member piece 25B is added, the occurrence of a gap can be eliminated and the biting portion 6a can be managed and formed with high precision.
【0036】ここで、封入前における、空洞部13の体
積をVA、空洞部13の直径をDR、空洞部13の高さ
をHLとしたとき、 VA=π・DR2 ・HL/4 … 式(1) で表される。すなわち、VAは、積層ゴム基体12の形
成時の寸法によって決定される。又封入後に空洞部13
に封入されるダンパー部材6の体積VLは、封入時のダ
ンパー部材6の有効直径をDo としたとき、 VL=(1.0〜1.05)・VA … 式(2) で表される。すなわちダンパー部材6の食い込み量VL
−VAを(0〜0.05)・VAの範囲で設定すること
によって、有効直径Do が決定される。又前記空洞部1
3に封入されるダンパー部材6の、封入前における直径
をD、長さをh′、ダンパー部材6のポアソン比(縦歪
/横歪)をνとしたとき、 ν={(Do −D)/Do }/{(h′−HL)/HL} --- 式(3) で表される。なおダンパー部材6の材料を設定したと
き、例えば鉛にあってはポアソン比νは、0.44であ
り、又直径Dを前記DRの0.9倍〜1.0倍の範囲で
選択することにより、この選択値に応じて前記式(1) 〜
(3) によって、高さh′等の寸法が設定できる。なお、
材料となるダンパー部材6の全体積は、前記体積VLに
加えて、前記小径部分8cに充填される体積V V=π・DR2 ・(h1+h2)/4 が必要である。従って、実質的には、材料となるダンパ
ー部材6の全長hは、h′+DR2 ・(h1+h2)/
D2 となる。ここでh1、h2は、それぞれ、小径部分
8cの長さである。Here, assuming that the volume of the cavity 13 before filling is VA, the diameter of the cavity 13 is DR, and the height of the cavity 13 is HL, VA = π · DR 2 · HL / 4 It is represented by (1). That is, VA is determined by the dimensions when the laminated rubber base 12 is formed. In addition, cavity 13 after encapsulation
The volume VL of the damper member 6 enclosed by the following formula is expressed by the following formula: VL = (1.0 to 1.05) · VA where Do is the effective diameter of the damper member 6 at the time of the enclosure. That is, the bite amount VL of the damper member 6
By setting -VA in the range of (0-0.05) .VA, the effective diameter Do is determined. The cavity 1
Assuming that the diameter of the damper member 6 sealed in 3 before enclosing is D, the length is h ', and the Poisson's ratio (longitudinal strain / lateral strain) of the damper member 6 is ν, ν = {(Do−D) / Do} / {(h'-HL) / HL} --- It is represented by Formula (3). When the material of the damper member 6 is set, for example, in the case of lead, the Poisson's ratio ν is 0.44, and the diameter D is selected in the range of 0.9 to 1.0 times the DR. According to the above formulas (1) to
According to (3), dimensions such as the height h 'can be set. In addition,
The total volume of the damper member 6 which is a material needs to be the volume V V = π · DR 2 · (h1 + h2) / 4 filled in the small diameter portion 8c in addition to the volume VL. Therefore, substantially, the total length h of the damper member 6 as a material is h ′ + DR 2 · (h1 + h2) /
The D 2. Here, h1 and h2 are the lengths of the small diameter portion 8c, respectively.
【0037】なお、前記中空部14の内周面には、図1
1(A) に示すように、微小振動緩衝用の内ゴム層22を
形成してもよい。この時にも同様に、ダンパー部材6
は、図11(B) の如く、封入後、耐変形部11間で半径
方向に食い込む食い込み部6aを波状に形成できる。The inner peripheral surface of the hollow portion 14 is
As shown in FIG. 1 (A), an inner rubber layer 22 for buffering minute vibrations may be formed. At this time, similarly, the damper member 6
As shown in FIG. 11 (B), after encapsulation, a biting portion 6a that bites in the radial direction between the deformation resistant portions 11 can be formed in a wavy shape.
【0038】又支持具3を基板7とセンターキャップ9
とで形成し、かつこの基板7とセンターキャップ9との
少なくとも一方に形成した面取り19を用いて溶着する
本願の構造は、体積比VL/VAが1.0未満の時、或
いは1.0の時にも採用可能であるが、特に1.0より
大とした時に、最適に前記効果を発揮できる。Further, the support 3 is composed of the substrate 7 and the center cap 9.
And welded using the chamfer 19 formed on at least one of the substrate 7 and the center cap 9 when the volume ratio VL / VA is less than 1.0, or when the volume ratio VL / VA is less than 1.0. Although it can be adopted at times, the above-mentioned effect can be optimally exhibited, especially when the value is larger than 1.0.
【0039】[0039]
【実施例】図1、2に示す構造をなす、積層ゴム支承体
を表1の仕様に基づき試作し、48時間放置した後の各
試作品におけるセンターキャップ9の浮上がり(押上
げ)の有無を、目視により確認するとともに、解体によ
ってダンパー部材における食い込み部の形成の有無を確
認した。EXAMPLE A laminated rubber bearing having the structure shown in FIGS. 1 and 2 was prototyped based on the specifications in Table 1, and the presence or absence of lifting (push-up) of the center cap 9 in each prototype after being left for 48 hours. Was visually confirmed, and the presence or absence of a biting portion in the damper member was confirmed by disassembly.
【0040】なお実施例1〜4及び比較例品1、2の積
層ゴム支承体の寸法は、φ240mm(外径)×110mm
(高さ)であり、又実施例品5〜9の積層ゴム支承体の
寸法は、φ600mm(外径)×252mm(高さ)であっ
た。The dimensions of the laminated rubber bearings of Examples 1 to 4 and Comparative Examples 1 and 2 were φ240 mm (outer diameter) × 110 mm.
(Height), and the dimensions of the laminated rubber supports of Examples 5 to 9 were φ600 mm (outer diameter) × 252 mm (height).
【0041】[0041]
【表1】 [Table 1]
【0042】表1の如く、実施例1〜9の積層ゴム支承
体にはセンターキャップ9の浮上がりがなく、又ダンパ
ー部材の周面に、波状の食い込み部が形成されるなど、
ダンパー部材の高内圧の封入が安定かつ確実に行われて
いるのがわかる。As shown in Table 1, the laminated rubber bearings of Examples 1 to 9 do not have the center cap 9 lifted up, and the corrugated biting portion is formed on the peripheral surface of the damper member.
It can be seen that the high internal pressure of the damper member is stably and reliably sealed.
【0043】又実施例1の積層ゴム支承体に横方向力
(水平方向力)Fが生じた場合の、この横方向力Fと横
変位(水平方向変位)δとの関係を図12に、実線で示
すとともに、比VL/VAが1.00とした比較例3に
おける横方向力Fと横変位(水平方向変位)δとの関係
を同図に破線で示す。なお曲線内の面積が大なほど、振
動エネルギーの吸収効果が高いことを意味し、実施例1
が比較例3より減衰性能に優れているのがわかる。FIG. 12 shows the relationship between the lateral force (horizontal force) δ and the lateral displacement (horizontal displacement) δ when a lateral force (horizontal force) F is generated in the laminated rubber bearing member of the first embodiment. In addition to the solid line, the relationship between the lateral force F and the lateral displacement (horizontal displacement) δ in Comparative Example 3 in which the ratio VL / VA is 1.00 is shown by a broken line in FIG. The larger the area in the curve, the higher the effect of absorbing vibration energy is.
It can be seen that is superior to Comparative Example 3 in the damping performance.
【0044】又実施例1〜4、及び比較例1〜2の作成
時における加圧工程を図7(A) 〜(F) に示す。図7(A)
〜(F) に示す如く、比VL/VAが大きくなるほど、応
力緩和時間が長くなり、圧縮行程に長い時間が必要であ
ることがわかる。又応力緩和による相対的な圧力降下量
は、図10に示すように、又比VL/VAが大きくなる
ほど、入力された強制圧力値に対する圧力降下が大きく
なっている。FIGS. 7 (A) to 7 (F) show the pressurizing steps during the preparation of Examples 1 to 4 and Comparative Examples 1 and 2. FIG. 7 (A)
As shown in (F), it can be seen that as the ratio VL / VA increases, the stress relaxation time becomes longer, and a longer time is required for the compression stroke. As shown in FIG. 10, the relative pressure drop due to stress relaxation is such that the larger the ratio VL / VA, the larger the pressure drop with respect to the input forced pressure value.
【0045】[0045]
【発明の効果】叙上の如く本発明の積層ゴム支承体は、
支持具を基板とセンターキャップとで形成し、かつこの
基板とセンターキャップとの少なくとも一方に形成した
面取りを用いて溶着しているため、ダンパー部材に捻れ
削れなどを生じることなく充填でき、しかも充填時の隙
間の発生を確実に防止しうる他、特にダンパー部材の食
い込み量を高精度で管理でき、さらにはダンパー部材を
高内圧で確実に封止しうる。As described above, the laminated rubber bearing of the present invention
Since the support is formed by the substrate and the center cap and is welded by using the chamfer formed on at least one of the substrate and the center cap, the damper member can be filled without twisting or the like, and the filling can be performed. In addition to reliably preventing the occurrence of gaps at the time, the amount of bite of the damper member can be controlled with high precision, and the damper member can be reliably sealed at a high internal pressure.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の一実施例の積層ゴム支承体を示す断面
図である。FIG. 1 is a sectional view showing a laminated rubber bearing according to one embodiment of the present invention.
【図2】平面図である。FIG. 2 is a plan view.
【図3】センターキャップの溶接状態を説明する斜視図
である。FIG. 3 is a perspective view illustrating a welding state of a center cap.
【図4】(A) は封入前における免震部材とダンパー部材
との関係を示す断面図、(B) は封入後における免震部材
とダンパー部材との関係を示す断面図である。FIG. 4A is a cross-sectional view showing a relationship between a seismic isolation member and a damper member before enclosing, and FIG. 4B is a cross-sectional view showing a relationship between the seismic isolation member and a damper member after enclosing.
【図5】比比VL/VAと振動エネルギ−吸収性との関
係を示す略図である。FIG. 5 is a schematic diagram showing a relationship between a specific ratio VL / VA and vibration energy-absorptivity.
【図6】ダンパー部材の封入の工程を説明する断面図で
ある。FIG. 6 is a cross-sectional view illustrating a step of enclosing a damper member.
【図7】(A) 〜(F) は、それぞれ実施例1〜4及び比較
例1〜2の作成時における加圧工程を説明する線図であ
る。FIGS. 7A to 7F are diagrams illustrating a pressurizing step at the time of preparing Examples 1 to 4 and Comparative Examples 1 and 2, respectively.
【図8】(A) 、(B) は、面取りの他の例を示す断面図で
ある。FIGS. 8A and 8B are cross-sectional views showing another example of chamfering.
【図9】ダンパー部材の他の例を示す断面図である。FIG. 9 is a sectional view showing another example of the damper member.
【図10】応力緩和による相対的な圧力降下量と比VL
/VAとの関係を示す線図である。FIG. 10 shows relative pressure drop and ratio VL due to stress relaxation.
FIG. 3 is a diagram showing a relationship with / VA.
【図11】(A) は免震部材の他の例における、封入前の
免震部材とダンパー部材との関係を示す断面図、(B) は
封入後の関係を示す断面図である。11A is a cross-sectional view showing a relationship between a seismic isolation member and a damper member before encapsulation in another example of the seismic isolation member, and FIG. 11B is a cross-sectional view showing a relation after encapsulation.
【図12】積層ゴム支承体に作用する横方向力Fと横変
位(水平方向変位)δとの関係を示す線図である。FIG. 12 is a diagram showing a relationship between a lateral force F acting on a laminated rubber bearing body and a lateral displacement (horizontal displacement) δ.
【図13】(A) 、(B) は従来の積層ゴム支承体を説明す
る断面図である。13A and 13B are cross-sectional views illustrating a conventional laminated rubber bearing.
2A、2B 構造体 3A、3B 支持具 5 免震部材 6 ダンパー部材 7 基板 8 透孔 9 センターキャップ 10 変形部 11 耐変形部 12 積層基体 13 空洞部 14 中空部 19 面取り 23 突起 E1 センターキャップの外周外向き縁 E2 透孔の内周外向き縁 2A, 2B Structure 3A, 3B Support 5 Seismic isolation member 6 Damper member 7 Substrate 8 Through hole 9 Center cap 10 Deformation part 11 Deformation resistant part 12 Laminated base 13 Cavity part 14 Hollow part 19 Chamfer 23 Projection E1 Outer periphery of center cap Outward edge E2 Outward edge of through hole
Claims (3)
る積層ゴム支承体であって、 前記構造体に固定される支持具間に、ゴム材からなるシ
ート状の変形部と硬質材からなるシート状の耐変形部と
を交互に積層した免震用の積層基体に、その変形部、耐
変形部を通りしかも前記支持具によって閉止される中空
部を形成する空洞部を設けた免震部材、及び前記中空部
に配される振動エネルギー吸収用のダンパー部材を具え
るとともに、 前記支持具は、少なくともその一方が基板と、この基板
に設けた透孔に遊嵌され押し下げられることにより前記
ダンパー部材を前記中空部に充填するセンターキャップ
とからなり、このセンターキャップの外周外向き縁又
は、基板の透孔の内周外向き縁に、溶接用の面取りを形
成した積層ゴム支承体。1. A laminated rubber bearing interposed between two structures and seismically isolated between the two structures, wherein a sheet-shaped deformed portion made of a rubber material and a rigid member are interposed between supports fixed to the structures. A laminated body for seismic isolation, in which sheet-shaped deformation-resistant portions made of a material are alternately stacked, is provided with a cavity portion that passes through the deformation portion and the deformation-resistant portion and forms a hollow portion closed by the support. In addition to a seismic isolation member and a damper member for absorbing vibration energy provided in the hollow portion, at least one of the support members is loosely fitted into a substrate and a through-hole provided in the substrate and pushed down. And a center cap that fills the hollow portion with the damper member. The laminated rubber bearing body has a chamfer for welding formed on an outer peripheral edge of the center cap or an inner peripheral outer edge of the through hole of the substrate. .
10〜30%であることを特徴とする請求項1記載の積
層ゴム支承体。2. The laminated rubber bearing according to claim 1, wherein the chamfer is 10 to 30% of the height of the center cap.
向く内向き面に、ダンパー部材を押し下げる突起を設け
たことを特徴とする請求項1記載の積層ゴム支承体。3. The laminated rubber bearing according to claim 1, wherein the center cap is provided with a projection for pushing down the damper member on an inward surface facing the damper member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18266597A JPH1130275A (en) | 1997-07-08 | 1997-07-08 | Laminated rubber support body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18266597A JPH1130275A (en) | 1997-07-08 | 1997-07-08 | Laminated rubber support body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1130275A true JPH1130275A (en) | 1999-02-02 |
Family
ID=16122302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18266597A Pending JPH1130275A (en) | 1997-07-08 | 1997-07-08 | Laminated rubber support body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1130275A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001027283A (en) * | 1999-07-12 | 2001-01-30 | Bridgestone Corp | Laminated rubber support body |
JP2001050322A (en) * | 1999-08-10 | 2001-02-23 | Showa Electric Wire & Cable Co Ltd | Manufacture for laminated rubber supporting body |
JP2009115176A (en) * | 2007-11-06 | 2009-05-28 | Oiles Ind Co Ltd | Laminated rubber bearing body |
-
1997
- 1997-07-08 JP JP18266597A patent/JPH1130275A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001027283A (en) * | 1999-07-12 | 2001-01-30 | Bridgestone Corp | Laminated rubber support body |
JP2001050322A (en) * | 1999-08-10 | 2001-02-23 | Showa Electric Wire & Cable Co Ltd | Manufacture for laminated rubber supporting body |
JP2009115176A (en) * | 2007-11-06 | 2009-05-28 | Oiles Ind Co Ltd | Laminated rubber bearing body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4593502A (en) | Energy absorbers | |
AU620587B2 (en) | Improvements in or relating to energy absorbers | |
JPS6117984B2 (en) | ||
JPH06101740A (en) | Lamination rubber support | |
JPH0571566A (en) | Isolator-installed assembly | |
JPH11159573A (en) | Manufacture of laminated rubber support body | |
KR20130043855A (en) | Lead rubber bearing for controlling stability of bridge | |
JP2010190409A (en) | Seismic isolation device and building | |
JPH1130275A (en) | Laminated rubber support body | |
CN107217586A (en) | Lead for retractable pencil damps pot rubber bearing and its damping method | |
CN108999308B (en) | A sliding shock absorber of a graded shock absorber | |
JP2009008181A (en) | Manufacturing method for base isolation device embedded with plug | |
JP3710237B2 (en) | Laminated rubber bearing with lead plug | |
JPH1129986A (en) | Laminated rubber bearing body and its manufacture | |
JP6148045B2 (en) | Double-sided slide support device for structures | |
JPH09105440A (en) | Base isolation device | |
CN217001130U (en) | Bolt-free friction damping device | |
JP2650153B2 (en) | Seismic isolation device | |
JPH09105441A (en) | Base isolation device | |
JPS62228729A (en) | Vibration energy absorbing device | |
JP7502202B2 (en) | Manufacturing method of seismic isolation device | |
JP2006242240A (en) | Energy absorbing device | |
JPS62220734A (en) | Vibrational energy absorbing device | |
JP3503712B2 (en) | Lead encapsulated laminated rubber | |
KR100964299B1 (en) | Detachable lead seal with wedge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20040329 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Effective date: 20060606 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A977 | Report on retrieval |
Effective date: 20060531 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061010 |