[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11306606A - Manufacture of optical recording medium - Google Patents

Manufacture of optical recording medium

Info

Publication number
JPH11306606A
JPH11306606A JP11516398A JP11516398A JPH11306606A JP H11306606 A JPH11306606 A JP H11306606A JP 11516398 A JP11516398 A JP 11516398A JP 11516398 A JP11516398 A JP 11516398A JP H11306606 A JPH11306606 A JP H11306606A
Authority
JP
Japan
Prior art keywords
recording
recording layer
atom
layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11516398A
Other languages
Japanese (ja)
Inventor
Kunihisa Nagino
邦久 薙野
Toshinaka Nonaka
敏央 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11516398A priority Critical patent/JPH11306606A/en
Publication of JPH11306606A publication Critical patent/JPH11306606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the amplitude of a recording signal and to obtain a stable recording/reproducing characteristic by specifying the sum of the content of a Ge atom and a Te atom incorporated in a recording layer, heating/melting the recording layer and making it a crystal state. SOLUTION: The regenerative signal amplitude is enlarged by incorporating the Ge atom in the recording layer by 30 atomic % or above, and a crystallization speed is adjusted by containing the Te atom and changing a composition ratio between the Ge atom and the Te atom. At this time, the sum of the content of the Ge atom and the Te atom is made an 80 atomic %, and a change in an erase rate at an initial overwrite time is suppressed to obtain the stable recording/reproducing characteristic. Further, the recording layer is heated to a melting point or above from an amorphous state just after a film is formed to be melted, and is cooled at a speed lower than a critical cooling speed to be crystalized and to be initialized. At the time, the necessity always melting the high melting point components in the recording layer excepting the Ge, Te atoms isn't eliminated within the range of not imparting a negative effect to a recording/erasing characteristic.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光の照射により、
情報の記録、消去、再生が可能である光情報記録媒体に
関するものである。特に、本発明は、記録情報の消去、
書換機能を有し、情報信号を高速かつ、高密度に記録可
能な光ディスクなどの書換可能相変化型光記録媒体に関
するものである。
BACKGROUND OF THE INVENTION The present invention relates to
The present invention relates to an optical information recording medium capable of recording, erasing, and reproducing information. In particular, the present invention provides a method for erasing recorded information,
The present invention relates to a rewritable phase-change optical recording medium such as an optical disk having a rewritable function and capable of recording an information signal at high speed and at high density.

【0002】[0002]

【従来の技術】Ge原子とTe原子の含有量の和が80
原子パーセント以上である記録層は、通常、相変化記録
媒体に用いられる記録層であるGe2Sb2Te5より
も、結晶相と非晶相との光学特性の差(屈折率、消衰係
数の差)が大きく、記録された信号の振幅が大きいとい
う利点がある。このため、高密度記録(狭トラックピッ
チ化、高線密度化)を行った際でも、より大きなC/N
比が得られるという利点がある。つまり、Ge原子とT
e原子の含有量の和が80原子パーセント以上である記
録層は、高密度記録を行いやすいという利点がある。
2. Description of the Related Art The sum of the contents of Ge atoms and Te atoms is 80.
A recording layer having an atomic percentage or more is generally different from a recording layer used for a phase change recording medium in that the difference in optical properties (refractive index and extinction coefficient) between a crystalline phase and an amorphous phase is higher than that of Ge 2 Sb 2 Te 5. ), And the recorded signal has a large amplitude. For this reason, even when high-density recording (narrow track pitch, high linear density) is performed, a larger C / N
There is the advantage that a ratio can be obtained. That is, Ge atom and T
A recording layer having a total content of e atoms of 80 atomic percent or more has an advantage that high-density recording can be easily performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、Ge原
子とTe原子の含有量の和が80原子パーセント以上で
ある記録層を用いた光記録媒体は、最初の数回〜十数回
のオーバーライト時には、消去率が変化し、安定した記
録再生特性を得ることができないという問題がある。
However, an optical recording medium using a recording layer in which the sum of the content of Ge atoms and Te atoms is 80 atomic percent or more is not suitable for the first several to ten-odd overwrites. In addition, there is a problem that the erasing rate changes and stable recording / reproducing characteristics cannot be obtained.

【0004】本発明の目的は、上記の課題を解決し、記
録された信号の振幅が大きく、かつ、初回記録時から安
定した記録再生特性を持つ光記録媒体を提供することに
ある。
An object of the present invention is to solve the above-mentioned problems and to provide an optical recording medium having a large amplitude of a recorded signal and having stable recording / reproducing characteristics from the first recording.

【0005】[0005]

【課題を解決するための手段】本発明は、基板上に形成
された記録層に光を照射することによって、情報の記
録、消去、再生が可能であり、情報の記録及び消去が、
該記録層の非晶相と結晶相の間の相変化により行われる
光記録媒体の製造方法であって、該記録層におけるGe
原子とTe原子の含有量の和が80原子パーセント以上
であり、かつ、該記録層を成膜直後の非晶状態から、加
熱溶融させた後に、結晶状態へ変えることを特徴とする
光記録媒体の製造方法である。
According to the present invention, information can be recorded, erased, and reproduced by irradiating a recording layer formed on a substrate with light.
A method for producing an optical recording medium, which is performed by a phase change between an amorphous phase and a crystalline phase of the recording layer, the method comprising:
An optical recording medium wherein the sum of the contents of atoms and Te atoms is 80 atomic percent or more, and the recording layer is changed from an amorphous state immediately after film formation to a crystalline state after being heated and melted; It is a manufacturing method of.

【0006】[0006]

【発明の実施の形態】従来の書換可能相変化型光記録媒
体の初期化方法は、スパッタリング法などにより基板上
に非晶質状態で形成された記録層に、Arレーザー光、
半導体レーザー光、ハロゲンランプ光などを照射して、
加熱し、結晶化せしめる(特開平2−5246号公報)
ものであるが、本発明では、記録層を融点以上に加熱す
ることにより、記録層を溶融させた後、臨界冷却速度よ
り低い速度で冷却することにより、結晶質に変化させて
初期化する。記録層を融点以上に加熱する方法として
は、記録層にレーザー光を照射、加熱するというものが
ある。この際、耐熱性の高くない基板を用いる場合は、
基板に熱ダメージを与えないことが重要である。これ
は、スポット径を小さくした低パワーのDC光を照射す
ることで達成できるが、生産性の点から有利な方法とし
て、大きなスポット径の高パワーのパルス光を照射する
方法も用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A conventional method for initializing a rewritable phase-change optical recording medium is as follows. A recording layer formed in an amorphous state on a substrate by a sputtering method or the like is coated with an Ar laser beam.
Irradiate semiconductor laser light, halogen lamp light, etc.,
Heat and crystallize (JP-A-2-5246)
According to the present invention, the recording layer is heated to a temperature equal to or higher than the melting point so that the recording layer is melted, and then cooled at a speed lower than the critical cooling rate, whereby the recording layer is changed to crystalline and initialized. As a method for heating the recording layer to a temperature equal to or higher than the melting point, there is a method in which the recording layer is irradiated with a laser beam and heated. At this time, when using a substrate that does not have high heat resistance,
It is important that the substrate not be thermally damaged. This can be achieved by irradiating low power DC light with a small spot diameter, but a method of irradiating high power pulse light with a large spot diameter can also be used as an advantageous method from the viewpoint of productivity. .

【0007】本発明の初期化前の記録層の状態は、非晶
質と結晶質いずれでも、またはそれらが混合したもので
もよい。
The state of the recording layer before the initialization according to the present invention may be either amorphous or crystalline, or a mixture thereof.

【0008】本発明の記録層の組成は結晶相と非晶相の
光学定数が大きく異なるために、再生信号振幅を大きく
できることから、Geが30原子%以上含まれているこ
とが好ましい。
The composition of the recording layer of the present invention preferably contains 30 atomic% or more of Ge because the amplitude of the reproduced signal can be increased because the optical constants of the crystalline phase and the amorphous phase are significantly different.

【0009】本発明の記録層では、Ge原子とTe原子
の組成比を変えることにより、結晶化速度を調整するこ
とができる。組成比調整が容易という点からGeとTe
のみからなることが好ましいが、N、O、Pd、Ag、
In、Sb、Se、Pt、Au、Cu、Nb、Ga、P
b、Bi、V、W、Cr、Zr、などの原子を少量含ん
でもよい。
In the recording layer of the present invention, the crystallization speed can be adjusted by changing the composition ratio of Ge atoms and Te atoms. Ge and Te are easy to adjust the composition ratio.
Preferably comprises only N, O, Pd, Ag,
In, Sb, Se, Pt, Au, Cu, Nb, Ga, P
It may contain a small amount of atoms such as b, Bi, V, W, Cr, Zr, and the like.

【0010】本発明においては、記録消去特性に負の影
響を与えない範囲であれば、Ge、Te以外の記録層中
の高融点成分は初期化時には必ずしも溶融させる必要は
ない。
In the present invention, the high melting point component in the recording layer other than Ge and Te does not necessarily need to be melted at the time of initialization as long as the recording and erasing characteristics are not adversely affected.

【0011】本発明で用いる光記録媒体は、基板上に形
成された記録層のみからなるものでもよいが、記録層や
基板の保護のために基板、第一誘電体層、記録層、第二
誘電体層の順に2つの誘電体層を記録層に接して設けた
ものが好ましい。また、良好な記録再生特性を得るため
に、第二誘電体層の上に反射層などを設けたものでよ
い。さらには、第一誘電体層、第二誘電体層のいずれと
もそれぞれが2層以上の誘電体層からなっていてもよ
く、第二誘電体層と反射層の間に光吸収効果のある金
属、半導体などからなる層を設けてもよい。
The optical recording medium used in the present invention may be composed of only a recording layer formed on a substrate. However, in order to protect the recording layer and the substrate, the substrate, the first dielectric layer, the recording layer, It is preferable that two dielectric layers are provided in contact with the recording layer in the order of the dielectric layers. In addition, in order to obtain good recording / reproducing characteristics, a reflective layer or the like may be provided on the second dielectric layer. Further, each of the first dielectric layer and the second dielectric layer may be composed of two or more dielectric layers, and a metal having a light absorbing effect is provided between the second dielectric layer and the reflective layer. , A layer made of a semiconductor or the like may be provided.

【0012】本発明に用いる光記録媒体は以下の方法な
どにより製造することができる。記録層、誘電体層、金
属層などを基板上に形成する方法としては、真空中での
薄膜形成法、例えば真空蒸着法、イオンプレーティング
法、スパッタリング法などがあげられる。特に組成、膜
厚のコントロールが容易であることから、スパッタリン
グ法が好ましい。形成する記録層などの厚さの制御は、
水晶振動子膜厚計などで、堆積状態をモニタリングする
ことで、容易に行える。
The optical recording medium used in the present invention can be manufactured by the following method. Examples of a method for forming a recording layer, a dielectric layer, a metal layer, and the like on a substrate include a method of forming a thin film in a vacuum, such as a vacuum evaporation method, an ion plating method, and a sputtering method. In particular, the sputtering method is preferable because the composition and the film thickness can be easily controlled. Control of the thickness of the recording layer to be formed
It can be easily performed by monitoring the deposition state with a quartz crystal film thickness meter or the like.

【0013】記録層などの形成は、基板を固定したま
ま、あるいは移動、回転した状態のどちらでもよい。膜
厚の面内の均一性に優れることから、基板を自転させた
り、さらには公転を組み合わせてもよい。
The formation of the recording layer or the like may be performed while the substrate is fixed, or may be moved or rotated. Since the in-plane uniformity of the film thickness is excellent, the substrate may be rotated on its own or combined with revolution.

【0014】また、反射層などを形成した後、傷、変形
の防止などのため、ZnS、SiO2、これらの混合物
などの誘電体層あるいは紫外線硬化樹脂などの樹脂保護
層などを必要に応じて設けてもよい。また、反射層など
を形成した後、あるいはさらに前述の樹脂保護層を形成
した後、2枚の基板を対向して、接着材で張り合わせて
もよい。さらには、レーザーが入射する基板面に樹脂ハ
ードコート層を設けてもよく、この層の形成は、第一誘
電体層などの形成前でも、反射層などの形成後に行って
もよい。
After the formation of the reflection layer, a dielectric layer such as ZnS, SiO 2 , a mixture thereof, or a resin protective layer such as an ultraviolet-curing resin is formed as necessary to prevent scratches and deformation. It may be provided. After the formation of the reflection layer or the like, or after the formation of the above-mentioned resin protective layer, the two substrates may be opposed to each other and bonded with an adhesive. Further, a resin hard coat layer may be provided on the substrate surface on which the laser is incident, and this layer may be formed before the formation of the first dielectric layer or the like or after the formation of the reflection layer or the like.

【0015】本発明の第1及び第2誘電体層には、記録
時に基板、記録層などが熱によって変形し記録特性が劣
化することを防止するなど、基板、記録層を熱から保護
する効果のみでなく、光学的な干渉効果により、再生時
の信号コントラストを改善する効果がある。
The first and second dielectric layers of the present invention have an effect of protecting the substrate and the recording layer from heat, such as preventing the substrate and the recording layer from being deformed by heat during recording and deteriorating the recording characteristics. In addition, there is an effect that the signal contrast at the time of reproduction is improved by the optical interference effect.

【0016】第1誘電体層の厚さd1は、基板や記録層
から剥離し難く、クラックなどの欠陥が生じ難いことか
ら、通常50nm以上400nm以下である。記録再生
信号の高コントラスト化による高キャリア対ノイズ比
(C/N)化を図るためには、さらに好ましくは、d1
は記録、再生に用いる光の波長λに対して0.25λ/
n1≦d1≦0.70λ/n1である。n1は第一誘電
体層の屈折率の実部。
The thickness d1 of the first dielectric layer is usually 50 nm or more and 400 nm or less because it is difficult to peel off from the substrate or the recording layer and hardly cause defects such as cracks. In order to increase the carrier-to-noise ratio (C / N) by increasing the contrast of the recording / reproducing signal, it is more preferable that d1
Is 0.25λ / wavelength λ of light used for recording and reproduction.
n1 ≦ d1 ≦ 0.70λ / n1. n1 is the real part of the refractive index of the first dielectric layer.

【0017】第一誘電体層および第二誘電体層として
は、ZnS、SiO2、窒化シリコン、酸化アルミニウ
ムなどの無機薄膜がある。特にZnSの薄膜、Si、G
e、Al、Ti、Zr、Ta、Ceなどの金属の酸化物
の薄膜、Si、Alなどの窒化物の薄膜、Ti、Zr、
Hfなどの炭化物の薄膜及びこれらの化合物の混合物の
膜が、耐熱性が高いことから好ましい。また、これらに
炭素や、MgF2などのフッ化物を混合したものも、膜
の残留応力が小さいことから好ましい。特にZnSとS
iO2の混合膜あるいは、ZnSとSiO2と炭素の混合
膜は、記録、消去の繰り返しによっても、記録感度、C
/N、消去率などの劣化が起きにくいことから好まし
く、特にZnSとSiO2と炭素の混合膜が好ましい。
ZnSとSiO2のモル比がZnS/SiO2=85/1
5〜65/35であり、(ZnS+SiO2)とCのモ
ル比が(ZnS+SiO2)/C=99/1〜80/2
0であることが好ましい。
As the first dielectric layer and the second dielectric layer, there are inorganic thin films such as ZnS, SiO 2 , silicon nitride, and aluminum oxide. Especially ZnS thin film, Si, G
e, a thin film of a metal oxide such as Al, Ti, Zr, Ta, and Ce; a thin film of a nitride such as Si and Al;
A thin film of a carbide such as Hf and a film of a mixture of these compounds are preferable because of high heat resistance. Further, those obtained by mixing carbon or a fluoride such as MgF 2 with these are also preferable because the residual stress of the film is small. Especially ZnS and S
A mixed film of iO 2 or a mixed film of ZnS, SiO 2 and carbon has a recording sensitivity and C
/ N, the erasure ratio, etc. are less likely to occur, and a mixed film of ZnS, SiO 2 and carbon is particularly preferable.
The molar ratio between ZnS and SiO 2 is ZnS / SiO 2 = 85/1.
A 5~65 / 35, (ZnS + SiO 2) and C molar ratio of (ZnS + SiO 2) / C = 99 / 1~80 / 2
It is preferably 0.

【0018】反射層には、初期化および記録時に記録層
に発生する熱を逃がす効果と光学干渉による再生信号特
性向上の効果のふたつがある。
The reflective layer has two effects, that is, an effect of releasing heat generated in the recording layer during initialization and recording, and an effect of improving reproduction signal characteristics due to optical interference.

【0019】反射層の材質としては、光反射性を有する
Al、Auなどの金属、及びこれらを主成分とし、T
i、Cr、Hfなどの添加元素を含む合金及びAl、A
uなどの金属にAl、Siなどの金属窒化物、金属酸化
物、金属カルコゲン化物などの金属化合物を混合したも
のなどがあげられる。Al、Auなどの金属、及びこれ
らを主成分とする合金は、光反射性が高く、かつ熱伝導
率を高くできることから好ましい。前述の合金の例とし
て、AlにSi、Mg、Cu、Pd、Ti、Cr、H
f、Ta、Nb、Mnなどの少なくとも1種の元素を合
計で5原子%以下、1原子%以上加えたもの、あるい
は、AuにCr、Ag、Cu、Pd、Pt、Niなどの
少なくとも1種の元素を合計で20原子%以下1原子%
以上加えたものなどがある。特に、材料の価格が安くで
きることから、Alを主成分とする合金が好ましく、と
りわけ、耐腐食性が良好なことから、AlにTi、C
r、Ta、Hf、Zr、Mn、Pdから選ばれる少なく
とも1種以上の金属を合計で5原子%以下0.5原子%
以上添加した合金が好ましい。とりわけ、耐腐食性が良
好でかつヒロックなどの発生が起こりにくいことから、
反射層を添加元素を合計で0.5原子%以上3原子%未
満含む、Al−Hf−Pd合金、Al−Hf合金、Al
−Ti合金、Al−Ti−Hf合金、Al−Cr合金、
Al−Ta合金、Al−Ti−Cr合金、Al−Si−
Mn合金のいずれかのAlを主成分とする合金で構成す
ることが好ましい。
As a material of the reflection layer, a metal such as Al or Au having light reflectivity, or a material containing these as a main component,
Alloys containing additional elements such as i, Cr, Hf and Al, A
Examples thereof include a mixture of a metal such as u and a metal compound such as a metal nitride such as Al and Si, a metal oxide, and a metal chalcogenide. Metals such as Al and Au and alloys containing these as main components are preferable because of their high light reflectivity and high thermal conductivity. As an example of the above-mentioned alloy, Al, Si, Mg, Cu, Pd, Ti, Cr, H
At least one element such as f, Ta, Nb, Mn or the like added in a total of 5 at% or less and 1 at% or more, or at least one of Au, Cr, Ag, Cu, Pd, Pt, Ni, etc. Element total 20 atomic% or less 1 atomic%
These are the ones added above. Particularly, an alloy containing Al as a main component is preferable because the price of the material can be reduced.
at least one metal selected from the group consisting of r, Ta, Hf, Zr, Mn, and Pd in a total of 5 atomic% or less and 0.5 atomic%.
The alloys added above are preferred. In particular, because corrosion resistance is good and hillocks do not easily occur,
Al-Hf-Pd alloy, Al-Hf alloy, Al containing a reflective layer containing a total of 0.5 to 3 atomic% of additional elements
-Ti alloy, Al-Ti-Hf alloy, Al-Cr alloy,
Al-Ta alloy, Al-Ti-Cr alloy, Al-Si-
It is preferable to use any one of the Mn alloys mainly containing Al.

【0020】本発明の基板の材料としては、透明な各種
の合成樹脂、透明ガラスなどが使用できる。ほこり、基
板の傷などの影響をさけるために、透明基板を用い、集
束した光ビームで基板側から記録を行うことが好まし
く、この様な透明基板材料としては、ガラス、ポリカー
ボネート、ポリメチル・メタクリレート、ポリオレフィ
ン樹脂、エポキシ樹脂、ポリイミド樹脂などがあげられ
る。特に、光学的複屈折が小さく、吸湿性が小さく、成
形が容易であることからポリカーボネート樹脂、アモル
ファス・ポリオレフィン樹脂が好ましい。
As the material of the substrate of the present invention, various transparent synthetic resins, transparent glass and the like can be used. In order to avoid the influence of dust and scratches on the substrate, it is preferable to use a transparent substrate and perform recording from the substrate side with a focused light beam.As such a transparent substrate material, glass, polycarbonate, polymethyl methacrylate, Polyolefin resin, epoxy resin, polyimide resin and the like can be mentioned. In particular, a polycarbonate resin and an amorphous polyolefin resin are preferable because they have low optical birefringence, low hygroscopicity, and are easy to mold.

【0021】基板の厚さは特に限定するものではない
が、0.01mm〜5mmが実用的である。0.01m
m未満では、基板側から集束した光ビームで記録する場
合でも、ごみの影響を受け易くなり、5mm以上では、
対物レンズの開口数を大きくすることが困難になり、照
射光ビームスポットサイズが大きくなるため、記録密度
をあげることが困難になる。基板はフレキシブルなもの
であっても良いし、リジッドなものであっても良い。フ
レキシブルな基板は、テープ状、シート状、カード状で
使用する。リジッドな基板は、カード状、あるいはディ
スク状で使用する。また、これらの基板は、記録層など
を形成した後、2枚の基板を用いて、エアーサンドイッ
チ構造、エアーインシデント構造、密着貼合せ構造とし
てもよい。
The thickness of the substrate is not particularly limited, but is practically 0.01 mm to 5 mm. 0.01m
If it is less than m, even when recording with a light beam focused from the substrate side, it is easily affected by dust, and if it is 5 mm or more,
It becomes difficult to increase the numerical aperture of the objective lens, and the spot size of the irradiation light beam becomes large, so that it becomes difficult to increase the recording density. The substrate may be flexible or rigid. The flexible substrate is used in the form of a tape, a sheet, or a card. The rigid substrate is used in the form of a card or a disk. In addition, these substrates may be formed into an air sandwich structure, an air incident structure, or a close bonding structure using two substrates after forming a recording layer or the like.

【0022】[0022]

【実施例】以下、本発明を実施例に基づいて説明する。 (分析,測定方法)反射層、記録層の組成は、ICP発
光分析(セイコー電子工業(株)製)により確認した。
記録層、誘電体層、反射層の形成中の膜厚は、水晶振動
子膜厚計によりモニターした。また各層の厚さは、走査
型あるいは透過型電子顕微鏡で断面を観察することによ
り測定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. (Analysis and Measurement Method) The compositions of the reflective layer and the recording layer were confirmed by ICP emission analysis (manufactured by Seiko Instruments Inc.).
The film thickness during the formation of the recording layer, the dielectric layer, and the reflective layer was monitored with a quartz crystal film thickness meter. The thickness of each layer was measured by observing the cross section with a scanning or transmission electron microscope.

【0023】消去率の測定は、まず、グルーブに、線速
度6m/秒の条件で、対物レンズの開口数0.6、半導
体レーザの波長680nmの光学ヘッドを使用して、
4.8MHzの信号(デューティー40%)の信号を記
録した。このときの記録パワーと消去パワーは、各ディ
スクで最適な値とした。ここで、いったんこの信号のキ
ャリアをスペクトラムアナライザを用い、バンド幅30
KHzの条件で測定した。次に、半導体レーザーのパワ
ーを各ディスクに最適な消去パワーに設定し、先ほどの
信号が、記録してあるトラックをこのままのパワーでD
C照射しながら、一度だけトレースした(以降DC消去
と呼ぶ)。そして、先ほどの信号の消え残りのキャリア
を測定した。上記の、記録した際のキャリアと、消え残
りのキャリアの差をDC消去比とした。
The measurement of the erasing rate is performed by first using an optical head having a numerical aperture of an objective lens of 0.6 and a wavelength of 680 nm of a semiconductor laser on a groove under a condition of a linear velocity of 6 m / sec.
A signal of 4.8 MHz (duty 40%) was recorded. At this time, the recording power and the erasing power were set to optimal values for each disk. Here, once the carrier of this signal is measured using a spectrum analyzer and the bandwidth is 30
It was measured under the condition of KHz. Next, the power of the semiconductor laser is set to the optimum erasing power for each disk.
Trace was performed only once while irradiating C (hereinafter referred to as DC erase). Then, the remaining carrier of the signal was measured. The above-described difference between the carrier at the time of recording and the remaining carrier was defined as a DC erase ratio.

【0024】(実施例1)厚さ0.6mm、直径12c
m、1.2μmピッチ(ランド幅0.6μm、グルーブ
幅0.6μm)のスパイラルグルーブ付きポリカーボネ
ート製基板を毎分30回転で回転させながら、スパッタ
を行った。
(Example 1) Thickness 0.6 mm, diameter 12c
Sputtering was performed while rotating a polycarbonate substrate with spiral grooves having a pitch of m, 1.2 μm (land width 0.6 μm, groove width 0.6 μm) at 30 revolutions per minute.

【0025】まず、真空容器内を1×10-3Paまで排
気した後、2×10-1PaのArガス雰囲気中でSiO
2を20mol%添加したZnSをスパッタし、基板上
に膜厚105nmの第1誘電体層を形成した。続いて、
GeTeからなるターゲットをスパッタして、厚さ20
nm、組成Ge50.0Sb50.0の記録層を得た。さらに第
2誘電体層として第1誘電体層と同じZnS・SiO2
をスパッタして、16nm形成し、この上に、AlHf
Pd合金をスパッタして膜厚150nmの反射層を形成
し、本発明の光記録媒体を得た。
First, the inside of the vacuum vessel is evacuated to 1 × 10 -3 Pa, and then SiO 2 is evacuated in an Ar gas atmosphere of 2 × 10 -1 Pa.
ZnS to which 20 mol% of 2 was added was sputtered to form a first dielectric layer having a thickness of 105 nm on the substrate. continue,
Sputtering a target made of GeTe to a thickness of 20
A recording layer having a composition of Ge 50.0 Sb 50.0 nm was obtained. Furthermore, the same ZnS.SiO 2 as the first dielectric layer is used as the second dielectric layer.
Is sputtered to form a 16 nm layer, on which AlHf
A Pd alloy was sputtered to form a reflective layer having a thickness of 150 nm, and an optical recording medium of the present invention was obtained.

【0026】スパッタ後、この記録媒体のスパッタ面に
保護コートを施した。この状態では、記録層は、まだ非
晶質状態のままである。
After the sputtering, a protective coat was applied to the sputtered surface of the recording medium. In this state, the recording layer is still in an amorphous state.

【0027】得られたディスクを、光ディスクドライブ
にのせ、まず、レーザーパワー11.5mWで一度だけ
DC照射し、記録層を加熱して、いったん溶融させた。
その後、同じトラックをレーザーパワー6.5mWで一
度だけDC照射し、該トラックの記録層を結晶化した。
The obtained disk was placed on an optical disk drive, and DC irradiation was first performed only once with a laser power of 11.5 mW to heat and temporarily melt the recording layer.
Thereafter, the same track was subjected to DC irradiation only once with a laser power of 6.5 mW to crystallize the recording layer of the track.

【0028】その後、記録パワー/消去パワーを11.
5/6.5mWに設定し、上記の信号を一度だけ記録
し、C/Nを測定したところ、57dBと必要上十分な
値が得られた。さらに、この部分をDC消去してそのD
C消去比を測定したところ、必要上十分な、27dBの
DC消去比を得ることが出来た。
Thereafter, the recording power / erasing power is set to 11.
The above signal was recorded only once at 5 / 6.5 mW, and the C / N was measured. As a result, a necessary and sufficient value of 57 dB was obtained. Further, this part is DC-erased and its D
When the C erase ratio was measured, a necessary and sufficient DC erase ratio of 27 dB could be obtained.

【0029】(実施例2)実施例1と同様にして、記録
層をスパッタする際に、GeTeからなるターゲットの
上にSb2Te3のペレットを配置し、組成Ge40Sb8
Te52からなる記録層を得た。
Example 2 In the same manner as in Example 1, when sputtering the recording layer, pellets of Sb 2 Te 3 were placed on a target made of GeTe, and the composition was Ge 40 Sb 8.
To obtain a recording layer composed of Te 52.

【0030】実施例1と同様な初期化過程を行い、測定
を行ったところ、必要上十分な56dBのC/Nと、2
8dBのDC消去比を得ることが出来た。
The same initialization process as in Example 1 was performed and the measurement was performed.
A DC erasing ratio of 8 dB was obtained.

【0031】(比較例1)保護コートまでの工程は、実
施例1と同様にしてディスクを得た。得られたディスク
を、光ディスクドライブにのせ、レーザーパワー6.5
mWで一度だけDC照射し、記録層を溶融させることな
く、該トラックの記録層を結晶化した。
Comparative Example 1 A disk was obtained in the same manner as in Example 1 except for the steps up to the protective coating. The obtained disk is placed on an optical disk drive and the laser power is 6.5.
DC irradiation was performed only once at mW to crystallize the recording layer of the track without melting the recording layer.

【0032】その後、記録パワー/消去パワーを11.
5/6.5mWに設定し、上記の信号を一度だけ記録
し、C/Nを測定したところ57dBのC/Nが得られ
た。しかし、DC消去してそのDC消去比を測定したと
ころ、DC消去比は14dBと低く、実用には適さない
とわかった。
Thereafter, the recording power / erasing power is set to 11.
The above signal was recorded only once at 5 / 6.5 mW, and the C / N was measured. As a result, a C / N of 57 dB was obtained. However, when DC erasing was performed and the DC erasing ratio was measured, the DC erasing ratio was found to be as low as 14 dB, which was not suitable for practical use.

【0033】(比較例2)保護コートまでの工程は実施
例1と同様にしてディスクを得た。得られた光ディスク
を、レーザー波長830nm、ビーム径0.85×55
μmの光学ヘッドを有する、初期化装置を用い、DC光
を照射して、全面の記録層を結晶化させ初期化した。こ
の初期化の際には、記録層がいったん溶融することはな
い。
Comparative Example 2 A disk was obtained in the same manner as in Example 1 except for the steps up to the protective coating. The obtained optical disk was subjected to a laser wavelength of 830 nm and a beam diameter of 0.85 × 55.
The recording layer on the entire surface was crystallized and initialized by irradiating DC light using an initialization device having an optical head of μm. During this initialization, the recording layer does not melt once.

【0034】このディスクのC/NとDC消去比を比較
例1と同様に測定したところ、C/Nは57dBの値が
得られたが、DC消去比は、13dBと低く、実用には
適さないとわかった。
When the C / N and DC erasure ratio of this disk were measured in the same manner as in Comparative Example 1, a value of 57 dB was obtained for the C / N, but the DC erasure ratio was as low as 13 dB, which was suitable for practical use. I knew it wasn't.

【0035】(比較例3)保護コートの工程までは、実
施例2と同様にしてディスクを得た。比較例2と同様に
初期化を行い、C/NとDC消去比を測定した。C/N
については、56dBの値が得られたが、DC消去比を
測定したところ15dBと低く、実用には適さないとわ
かった。
Comparative Example 3 A disk was obtained in the same manner as in Example 2 up to the step of protective coating. Initialization was performed in the same manner as in Comparative Example 2, and the C / N and DC erase ratio were measured. C / N
Was 56 dB, but the DC erasure ratio was measured to be as low as 15 dB, which proved to be unsuitable for practical use.

【0036】(比較例4)記録層の組成をGe2Sb2
5にした以外は、実施例1と同様にしてディスクを得
た。初期化は、レーザーパワー10.5mWで一度だけ
DC照射し、記録層を加熱して、いったん溶融させた。
その後、同じトラックをレーザーパワー4.5mWで一
度だけDC照射し、該トラックの記録層を結晶化した以
外は実施例1と同様に初期化を行った。
Comparative Example 4 The composition of the recording layer was Ge 2 Sb 2 T
except that the e 5, thereby obtaining the disks in the same manner as in Example 1. In the initialization, DC irradiation was performed only once with a laser power of 10.5 mW, and the recording layer was heated and once melted.
Thereafter, the same track was subjected to DC irradiation only once at a laser power of 4.5 mW, and initialization was performed in the same manner as in Example 1 except that the recording layer of the track was crystallized.

【0037】その後、記録パワー/消去パワーを10.
5/4.5mWに設定し、上記の信号を一度だけ記録
し、C/Nを測定したところ、51dBと小さく、実用
には適さないことがわかった。
Thereafter, the recording power / erasing power is set to 10.
The above signal was recorded only once at a setting of 5 / 4.5 mW, and the C / N was measured. As a result, it was found to be as small as 51 dB, which was not suitable for practical use.

【0038】[0038]

【発明の効果】本発明の光記録媒体の初期化方法によれ
ば、以下の効果が得られた。記録された信号の振幅が大
きく、かつ、初回記録時から、数回〜十数回オーバーラ
イト時まで安定して高い消去率を得ることができた。
According to the method for initializing an optical recording medium of the present invention, the following effects are obtained. The amplitude of the recorded signal was large, and a high erasing rate could be stably obtained from the first recording to the overwriting several to ten and several times.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成された記録層に光を照射す
ることによって、情報の記録、消去、再生が可能であ
り、情報の記録及び消去が、該記録層の非晶相と結晶相
の間の相変化により行われる光記録媒体の製造方法であ
って、該記録層におけるGe原子とTe原子の含有量の
和が80原子パーセント以上であり、かつ、該記録層を
成膜直後の非晶状態から、加熱溶融させた後に、結晶状
態へ変えることを特徴とする光記録媒体の製造方法。
A recording layer formed on a substrate is irradiated with light so that information can be recorded, erased, and reproduced. The recording and erasing of information can be performed in an amorphous phase and a crystalline phase of the recording layer. Wherein the sum of the contents of Ge atoms and Te atoms in the recording layer is 80 atomic percent or more, and the recording layer is formed immediately after film formation. A method for producing an optical recording medium, wherein the method changes from an amorphous state to a crystalline state after heating and melting.
【請求項2】 記録層が、少なくともGeを30原子パ
ーセント以上含む請求項1記載の光記録媒体の製造方
法。
2. The method according to claim 1, wherein the recording layer contains at least 30 atomic percent of Ge.
【請求項3】 光記録媒体が透明基板上に、少なくとも
第1誘電体層、記録層および第2誘電体層をこの順に積
層した構造を有する請求項1記載の光記録媒体の製造方
法。
3. The method for manufacturing an optical recording medium according to claim 1, wherein the optical recording medium has a structure in which at least a first dielectric layer, a recording layer, and a second dielectric layer are laminated in this order on a transparent substrate.
【請求項4】 光記録媒体が透明基板上に、少なくとも
第1誘電体層、記録層、第2誘電体層および反射層をこ
の順に積層した構造を有する請求項1記載の光記録媒体
の製造方法。
4. The method of manufacturing an optical recording medium according to claim 1, wherein the optical recording medium has a structure in which at least a first dielectric layer, a recording layer, a second dielectric layer, and a reflective layer are laminated in this order on a transparent substrate. Method.
JP11516398A 1998-04-24 1998-04-24 Manufacture of optical recording medium Pending JPH11306606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11516398A JPH11306606A (en) 1998-04-24 1998-04-24 Manufacture of optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11516398A JPH11306606A (en) 1998-04-24 1998-04-24 Manufacture of optical recording medium

Publications (1)

Publication Number Publication Date
JPH11306606A true JPH11306606A (en) 1999-11-05

Family

ID=14655905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11516398A Pending JPH11306606A (en) 1998-04-24 1998-04-24 Manufacture of optical recording medium

Country Status (1)

Country Link
JP (1) JPH11306606A (en)

Similar Documents

Publication Publication Date Title
JP2001184725A (en) Optical information recording medium
JPH08190734A (en) Optical recording medium
JP3163943B2 (en) Optical recording medium
JPH07161071A (en) Optical recording medium
JP3211537B2 (en) Optical recording medium
JPH11306606A (en) Manufacture of optical recording medium
JP3173177B2 (en) Optical recording medium and manufacturing method thereof
JPH07262613A (en) Optical recording medium
JPH07262607A (en) Optical recording medium
JPH1139709A (en) Optical recording medium
JP3216552B2 (en) Optical recording medium and manufacturing method thereof
JPH11232698A (en) Medium for optical information recording and manufacture thereof
JPH06127135A (en) Optical record medium
JPH1064128A (en) Optical recording medium and its production
JPH10172180A (en) Optical recording medium
JPH09223332A (en) Optical recording medium
JPH1079144A (en) Manufacture of optical recording medium
JP2002157786A (en) Optical recording medium
JP2000067463A (en) Optical recording medium
JPH06191160A (en) Optical recording medium
JP2000182286A (en) Manufacture of optical recording medium
JPH10255338A (en) Production of optical recording medium
JPH11339332A (en) Manufacture of optical recording medium
JPH0540961A (en) Optical recording medium
JP2000339759A (en) Optical recording medium