JPH06191160A - Optical recording medium - Google Patents
Optical recording mediumInfo
- Publication number
- JPH06191160A JPH06191160A JP5263519A JP26351993A JPH06191160A JP H06191160 A JPH06191160 A JP H06191160A JP 5263519 A JP5263519 A JP 5263519A JP 26351993 A JP26351993 A JP 26351993A JP H06191160 A JPH06191160 A JP H06191160A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- recording
- recording medium
- dielectric layer
- optical recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光の照射により、情報
の記録、消去、再生が可能である光情報記録媒体に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording medium capable of recording, erasing and reproducing information by irradiating light.
【0002】特に、本発明は、記録情報の消去、書換機
能を有し、情報信号を高速かつ、高密度に記録可能な光
ディスク、光カード、光テープなどの書換可能相変化型
光記録媒体に関するものである。In particular, the present invention relates to a rewritable phase-change type optical recording medium such as an optical disk, an optical card, an optical tape having a recording information erasing / rewriting function and capable of recording an information signal at high speed and high density. It is a thing.
【0003】[0003]
【従来の技術】従来の書換可能相変化型光記録媒体の技
術は、以下のごときものである。2. Description of the Related Art The conventional techniques for rewritable phase change type optical recording media are as follows.
【0004】これらの光記録媒体は、テルルなどを主成
分とする記録層を有し、記録時は、結晶状態の記録層に
集束したレーザー光パルスを短時間照射し、記録層を部
分的に溶融する。溶融した部分は熱拡散により急冷さ
れ、固化し、アモルファス状態の記録マークが形成され
る。この記録マークの光線反射率は、結晶状態より低
く、光学的に記録信号として再生可能である。These optical recording media have a recording layer containing tellurium as a main component, and at the time of recording, a focused laser light pulse is irradiated to the recording layer in a crystalline state for a short time to partially cover the recording layer. To melt. The melted portion is rapidly cooled by thermal diffusion and solidified to form a recording mark in an amorphous state. The light reflectance of this recording mark is lower than that of the crystalline state, and it can be optically reproduced as a recording signal.
【0005】また、消去時には、記録マーク部分にレー
ザー光を照射し、記録層の融点以下、結晶化温度以上の
温度に加熱することによって、アモルファス状態の記録
マークを結晶化し、もとの未記録状態にもどす。Further, at the time of erasing, the recording mark portion is irradiated with a laser beam and heated to a temperature below the melting point of the recording layer and above the crystallization temperature to crystallize the recording mark in an amorphous state, and the original unrecorded state. Return to the state.
【0006】これらの書換型相変化光記録媒体の記録層
の材料としては、Ge2 Sb2 Te5 などの合金(N.Ya
mada et al, Proc.Int.Symp.on Optical Memory 1987 p
61-66 )が知られている。As a material for the recording layer of these rewritable phase change optical recording media, alloys such as Ge 2 Sb 2 Te 5 (N.Ya
mada et al, Proc. Int. Symp.on Optical Memory 1987 p
61-66) is known.
【0007】これらTe合金を記録層とした光記録媒体
では、結晶化速度が速く、照射パワーを変調するだけ
で、円形の1ビームによる高速のオーバーライトが可能
である。これらの記録層を使用した光記録媒体では、通
常、記録層の両面に耐熱性と透光性を有する誘電体層を
設け、記録時に記録層に変形、開口が発生することを防
いでいる。さらに、光ビーム入射方向と反対側の誘電体
層に、光反射性のAlなどの金属反射層を設け、光学的
な干渉効果により、再生時の信号コントラストを改善す
ると共に、冷却効果により、非晶状態の記録マークの形
成を容易にし、かつ消去特性、繰り返し特性を改善する
技術が知られている。特に、記録層及び記録層と反射層
の間の誘電体層を各々20nm程度に薄く構成した「急
冷構造」では、誘電体層を200nm程度に厚くした
「徐冷構造」に比べ、書換の繰返しによる記録特性の劣
化が少なく、また消去パワーのパワー・マージンが広い
点で優れている(T.Ohota et al,Japanese Jounal of A
pplied Physics, Vol 28(1989)Suppl. 28-3 pp123 - 12
8)。Optical recording media using these Te alloys as recording layers have a high crystallization rate, and high speed overwriting with a circular single beam is possible only by modulating the irradiation power. In an optical recording medium using these recording layers, a dielectric layer having heat resistance and translucency is usually provided on both surfaces of the recording layer to prevent deformation and opening of the recording layer during recording. Further, a metal reflective layer such as a light-reflective metal such as Al is provided on the dielectric layer on the side opposite to the light beam incident direction to improve the signal contrast at the time of reproduction by an optical interference effect, and at the same time, a non-reflecting effect by a cooling effect. There is known a technique for facilitating the formation of recording marks in a crystalline state and improving the erasing characteristic and the repeating characteristic. In particular, in the "quenching structure" in which the recording layer and the dielectric layer between the recording layer and the reflecting layer are each thinned to about 20 nm, compared with the "slow cooling structure" in which the dielectric layer is thickened to about 200 nm, rewriting is repeated. It is excellent in that the recording characteristics are not deteriorated by the recording and the erasing power has a wide power margin (T.Ohota et al, Japanese Jounal of A
pplied Physics, Vol 28 (1989) Suppl. 28-3 pp123-12
8).
【0008】前述のGe2 Sb2 Te5 などのTe−G
e−Sbの3元系合金を記録層とする急冷構造の書換可
能相変化型光記録媒体における課題は、記録、消去ある
いは書換の繰返し、すなわち溶融、固化の繰り返しによ
り、記録膜の膜厚の変動や、微細な開口の発生が生じ易
く、繰返記録耐久性が不十分なことである。Te-G such as Ge 2 Sb 2 Te 5 mentioned above
A problem in a rewritable phase change type optical recording medium having a quenching structure in which a ternary alloy of e-Sb is used as a recording layer is to reduce the film thickness of the recording film by repeating recording, erasing or rewriting, that is, melting and solidification Variations and the generation of minute apertures are likely to occur, and the repeated recording durability is insufficient.
【0009】[0009]
【発明が解決しようとする課題】本発明の目的は、前述
の従来の光記録媒体の課題を解決し、繰返し耐久性と記
録の長期保存安定性の両立した光記録媒体を提供するこ
とである。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the conventional optical recording medium and to provide an optical recording medium having both repeated durability and long-term storage stability of recording. .
【0010】本発明の別の目的は、記録感度が高く、か
つ、耐酸化性、耐湿熱性に優れ長期の保存においても欠
陥の生じない長寿命の光記録媒体を提供することであ
る。Another object of the present invention is to provide an optical recording medium which has a high recording sensitivity and is excellent in oxidation resistance and resistance to moist heat, and which has no defects even in long-term storage.
【0011】[0011]
【課題を解決するための手段】本発明は、基板上に形成
された記録層に光を照射することによって、情報の記
録、消去、再生が可能であり、情報の記録及び消去が、
非晶相と結晶相の間の相変化により行われる光記録媒体
において、前記光記録媒体が少なくとも記録層と誘電体
層と反射層を有し、かつ前記記録層の結晶状態が、実質
的に単一の結晶相からなる下記の組成式またはで表
されるテルル合金であることを特徴とする光記録媒体に
関する。According to the present invention, information can be recorded, erased, and reproduced by irradiating a recording layer formed on a substrate with light.
In an optical recording medium performed by a phase change between an amorphous phase and a crystalline phase, the optical recording medium has at least a recording layer, a dielectric layer and a reflective layer, and the recording layer has a substantially crystalline state. The present invention relates to an optical recording medium, which is a tellurium alloy represented by the following composition formula or consisting of a single crystal phase.
【0012】組成式 Ptz (Sbx Te1-x )1-y-z (Ge0.5 Te0.5 )
y 0.35≦x≦0.7 0.2≦y≦0.5 0.0001≦z≦0.05 ここで、Ptは白金、Sbはアンチモン、Teはテル
ル、Geはゲルマニウムを表す。またx,y,z及び数
字は、各元素の原子の数(各元素のモル数)を表す。Compositional formula Pt z (Sb x Te 1-x ) 1-yz (Ge 0.5 Te 0.5 )
y 0.35 ≦ x ≦ 0.7 0.2 ≦ y ≦ 0.5 0.0001 ≦ z ≦ 0.05 where Pt is platinum, Sb is antimony, Te is tellurium, and Ge is germanium. Further, x, y, z and the numbers represent the number of atoms of each element (the number of moles of each element).
【0013】組成式 Ptz Pdp (Sbx Te1-x )1-y-z (Gez 5 Te
0.5 )y 0.35≦x≦0.7 0.2≦y≦0.5 0.0001≦z<0.01 0.0001≦p≦0.005 ここで、Ptは白金、Pdはパラジウム、Sbはアンチ
モン、Teはテルル、Geはゲルマニウムを表す。また
x、y、z及び数字は、各元素の原子の数(各元素のモ
ル数)を表す。Compositional formula Pt z Pd p (Sb x Te 1-x ) 1-yz (Ge z 5 Te
0.5 ) y 0.35 ≤ x ≤ 0.7 0.2 ≤ y ≤ 0.5 0.0001 ≤ z <0.01 0.0001 ≤ p ≤ 0.005 where Pt is platinum, Pd is palladium, Sb represents antimony, Te represents tellurium, and Ge represents germanium. Further, x, y, z and the numbers represent the number of atoms of each element (the number of moles of each element).
【0014】図1は本発明の光記録媒体の代表例を示し
ており、基板1に対して第1の誘電体層3aを介して記
録層2を積層し、さらに第2の誘電体層3bを介して反
射層4を積層して構成されている。このような光記録媒
体に対し、光は矢印Aのように照射される。この光記録
媒体は、ディスク、カード、テープなどの種々の形態に
して使用される。FIG. 1 shows a typical example of the optical recording medium of the present invention, in which a recording layer 2 is laminated on a substrate 1 with a first dielectric layer 3a interposed therebetween, and a second dielectric layer 3b is further provided. It is configured by laminating the reflective layer 4 via. Light is applied to such an optical recording medium as indicated by arrow A. This optical recording medium is used in various forms such as a disc, a card and a tape.
【0015】図1の例では、誘電体層が記録層2を挟む
ように2層配置されているが、図2に示す実施態様のよ
うに、第2の誘電体層3bを省略し、記録層2と反射層
4とが直接隣接するような構造にしても差し支えない。
また、反射層上に本発明の効果を損なわない範囲でSi
O2 やZnS、ZnS−SiO2 などの保護層や紫外線
硬化樹脂などの樹脂層、他の基板と張り合わせるための
接着剤層などを設けるようにしてもよい。In the example of FIG. 1, two dielectric layers are arranged so as to sandwich the recording layer 2, but as in the embodiment shown in FIG. 2, the second dielectric layer 3b is omitted and recording is performed. The structure may be such that the layer 2 and the reflective layer 4 are directly adjacent to each other.
In addition, Si is formed on the reflective layer as long as the effect of the present invention is not impaired.
A protective layer such as O 2 , ZnS, or ZnS—SiO 2, a resin layer such as an ultraviolet curable resin, an adhesive layer for bonding to another substrate, or the like may be provided.
【0016】本発明の記録層の材料は、結晶状態と非晶
状態の少なくとも2つの状態をとり得るTeを主成分と
するカルコゲン化合物であり、かつ結晶状態において、
実質的に単一の結晶相となる4元以上で構成された新規
な非化学両論組成の固溶体である。結晶状態が単一相で
あるため、結晶化速度が極めて速く、高速で記録の書換
が可能である。また結晶状態が実質的に単相であるため
組成偏析などによる記録特性の劣化が起き難い。The material of the recording layer of the present invention is a chalcogen compound containing Te as a main component which can be in at least two states of a crystalline state and an amorphous state, and in the crystalline state,
It is a solid solution of a novel non-stoichiometric composition composed of four or more elements that forms a substantially single crystal phase. Since the crystal state is a single phase, the crystallization speed is extremely high, and recording can be rewritten at high speed. Further, since the crystalline state is substantially a single phase, it is difficult for the recording characteristics to deteriorate due to composition segregation.
【0017】組成式中のPt(白金)は、組成式中のz
で表される含有量の範囲において、記録、消去あるいは
書換の多数回の繰返により発生する記録層の膜厚変動や
記録層の開口の発生を抑制する。このメカニズムの詳細
は十分明らかにはなっていないが、記録層のTe、Sb
などの元素と白金が強固に結合を作り、記録層の高温融
解状態において粘性を高めることにより、記録時の記録
層の流動性が低くなるためと推定される。Ptは、他の
金属、例えばCoなどに比べて、多数回の記録繰返時の
前述の劣化抑制効果が大きい。また、Ptは、記録層の
記録マークのアモルファス状態の熱安定性を向上させる
効果もある。Pt (platinum) in the composition formula is z in the composition formula.
Within the range of the content represented by, it is possible to suppress the fluctuation of the film thickness of the recording layer and the occurrence of the opening of the recording layer which are caused by repeating recording, erasing or rewriting a number of times. The details of this mechanism have not been fully clarified, but Te and Sb of the recording layer
It is presumed that the fluidity of the recording layer at the time of recording is lowered by forming a strong bond between the element such as platinum and platinum and increasing the viscosity of the recording layer in a high temperature melting state. Pt has a greater effect of suppressing the above-described deterioration when recording is repeated a large number of times, as compared with other metals such as Co. Further, Pt also has the effect of improving the thermal stability of the recording mark in the recording layer in the amorphous state.
【0018】組成式のzの値が、0.05より大きい場
合には、記録層の結晶状態が実質的に複数の相の結晶か
ら構成されるため、結晶化速度がきわめて遅く、また偏
析が生じ易く、消去、書換が困難になる。また、zの値
が0.0001未満の場合には、既に述べた有意な効果
が発現せず、書換の繰返し耐久性や、記録マークのアモ
ルファス状態の熱安定性が著しく低下する。zの値とし
ては、0.01未満が好ましく、さらに0.0005以
上0.005以下が、結晶化速度が速く、かつ記録マー
クのアモルファス状態の熱安定性が良好で、かつ書換の
繰返し耐久性が高いことから好ましい。When the value of z in the composition formula is larger than 0.05, the crystal state of the recording layer is substantially composed of crystals of a plurality of phases, so that the crystallization rate is extremely slow and segregation is caused. It is easy to occur and it becomes difficult to erase and rewrite. Further, when the value of z is less than 0.0001, the above-mentioned significant effect is not exhibited, and repetitive rewriting durability and thermal stability of the recording mark in the amorphous state are significantly reduced. The value of z is preferably less than 0.01, more preferably 0.0005 or more and 0.005 or less, the crystallization rate is fast, the thermal stability of the recording mark in the amorphous state is good, and the repetitive rewriting durability is high. Is preferable because it is high.
【0019】組成式中のxの値は、0.35≦x≦0.
7の範囲が、結晶化速度が速く、高速で書換が可能であ
り、かつ書換の可逆性も良好である。0.7より大きい
場合には、Sb成分が多くなり過ぎ、0.35未満の場
合には、Te成分が多くなり過ぎ、いずれの場合も結晶
化速度が著しく遅くなると同時に、偏析が生じ易くなり
書換の繰返しが困難になる。xの値としては0.4以上
0.5以下が、結晶化速度が速く、かつ書換の繰返し耐
久性が高いことから好ましい。The value of x in the composition formula is 0.35≤x≤0.
In the range of 7, the crystallization rate is fast, rewriting is possible at high speed, and reversibility of rewriting is also good. When it is more than 0.7, the Sb component becomes too much, and when it is less than 0.35, the Te component becomes too much, and in any case, the crystallization speed becomes remarkably slow and segregation easily occurs. Rewriting becomes difficult. The value of x is preferably 0.4 or more and 0.5 or less because the crystallization rate is high and the repetitive rewriting durability is high.
【0020】組成式中のyの値は、0.2≦y≦0.5
の範囲が、記録マークのアモルファス状態の熱安定性が
高く、かつ結晶化速度も速く、高速で記録の書換が可能
である。0.5より大きい場合には、アモルファス状態
の熱安定性は良好だが、書換の繰り返し耐久性が著しく
悪くなる。一方0.2未満の場合には、記録マークのア
モルファス状態の熱安定性が著しく悪くなる。yの値と
しては、0.3以上0.4未満が、書換の繰返し耐久性
が高く、かつアモルファス状態の熱安定性が高いことか
ら好ましい。The value of y in the composition formula is 0.2≤y≤0.5.
In this range, the thermal stability of the recording mark in the amorphous state is high, the crystallization speed is high, and recording can be rewritten at high speed. If it is more than 0.5, the thermal stability in the amorphous state is good, but the repetitive rewriting durability becomes extremely poor. On the other hand, when it is less than 0.2, the thermal stability of the recording mark in the amorphous state is significantly deteriorated. The value of y is preferably 0.3 or more and less than 0.4 because the repetitive rewriting durability is high and the thermal stability in the amorphous state is high.
【0021】本発明において、上述した記録層の厚さと
しては、10〜30nmの範囲にするのが好ましい。In the present invention, the thickness of the above-mentioned recording layer is preferably in the range of 10 to 30 nm.
【0022】本発明において誘電体層は、記録時に基
板、記録層などが熱によって変形し記録特性が劣化する
ことを防止するなど、基板、記録層を熱から保護する効
果、光学的な干渉効果により、再生時の信号コントラス
トを改善する効果がある。この誘電体層としては、Zn
S,SiO2 、窒化シリコン、酸化アルミニウムなどの
無機薄膜があげられる。特にZnSの薄膜、Si,G
e,Al,Ti,Zr,Ta,などの金属の酸化物の薄
膜、Si、Alなどの窒化物の薄膜、Ti、Zr、Hf
などの炭化物の薄膜及びこれらの化合物の混合物の膜
が、耐熱性が高いことから好ましい。また、これらに炭
素や、MgF2 などのフッ化物を混合したものも、膜の
残留応力が小さいことから好ましく使用される。特にZ
nSとSiO2の混合膜あるいは、ZnSとSiO2 と
炭素の混合膜は、記録、消去の繰り返しによっても、記
録感度、C/N、消去率などの劣化が起きにくいことか
ら好ましく、とりわけZnSとSiO2 と炭素の混合膜
が好ましい。In the present invention, the dielectric layer has an effect of protecting the substrate and the recording layer from heat such as preventing the substrate and the recording layer from being deformed by heat during recording and deteriorating the recording characteristics, and an optical interference effect. This has the effect of improving the signal contrast during reproduction. As the dielectric layer, Zn
Inorganic thin films such as S, SiO 2 , silicon nitride, and aluminum oxide can be used. Especially ZnS thin film, Si, G
e, Al, Ti, Zr, Ta, and other metal oxide thin films, Si, Al, and other nitride thin films, Ti, Zr, and Hf
A thin film of carbide and a film of a mixture of these compounds are preferable because of high heat resistance. Further, a mixture of carbon and a fluoride such as MgF 2 is also preferably used because the residual stress of the film is small. Especially Z
A mixed film of nS and SiO 2 or a mixed film of ZnS, SiO 2 and carbon is preferable because deterioration of recording sensitivity, C / N, erasing rate, etc. does not easily occur even after repeated recording and erasing. A mixed film of SiO 2 and carbon is preferable.
【0023】第1および第2誘電体層の厚さとしては、
通常、およそ10〜500nmである。第1誘電体層
は、基板や記録層から剥離し難く、クラックなどの欠陥
が生じ難いことから、100〜400nmがより好まし
い。また第2誘電体層は、C/N、消去率などの記録特
性、安定に多数回の書換が可能なことから10〜30n
mがより好ましい。The thickness of the first and second dielectric layers is as follows.
Usually, it is about 10 to 500 nm. The first dielectric layer is more preferably 100 to 400 nm, because it is difficult to peel off from the substrate or the recording layer and defects such as cracks are hard to occur. The second dielectric layer has a recording property such as C / N and an erasing rate, and can be stably rewritten many times.
m is more preferred.
【0024】反射層の材質としては、光反射性を有する
Al、Auなどの金属、これらを主成分とし、Ti、C
r、Hfなどの添加元素を含む合金及びAl,Auなど
の金属にAl、Siなどの金属窒化物、金属酸化物、金
属カルコゲン化物などの金属化合物を混合したものなど
があげられる。Al、Auなどの金属、及びこれらを主
成分とする合金は、光反射性が高く、かつ熱伝導率を高
くできることから好ましい。前述の合金の例としては、
AlにSi、Mg、Cu,Pd、Ti、Cr,Hf,T
a,Nb、Mnなどの少なくとも1種の元素を合計で5
原子%以下、1原子%以上加えたもの、あるいは、Au
にCr,Ag、Cu,Pd、Pt、Niなどの少なくと
も1種の元素を合計で1原子%以上20原子%以下加え
たものなどがあげられる。The material of the reflective layer is a metal such as Al or Au having a light reflectivity, which contains Ti or C as a main component.
Examples thereof include alloys containing additional elements such as r and Hf, and metals such as Al and Au mixed with metal compounds such as metal nitrides such as Al and Si, metal oxides and metal chalcogenides. Metals such as Al and Au, and alloys containing these as the main components are preferable because they have high light reflectivity and high thermal conductivity. Examples of the above alloys include
Si, Mg, Cu, Pd, Ti, Cr, Hf, T on Al
a total of at least one element such as a, Nb, and Mn is 5
Atomic% or less, 1 atomic% or more added, or Au
In addition, at least one element such as Cr, Ag, Cu, Pd, Pt, and Ni is added in a total amount of 1 atom% or more and 20 atom% or less.
【0025】特に、材料の価格が安いことから、Alを
主成分とする合金が好ましく、とりわけ、耐腐食性が良
好なことから、AlにTi、Cr,Ta,Hf,Zr,
Mn、Pdから選ばれる少なくとも1種以上の金属を合
計で0.5原子%以上5原子%以下添加した合金が好ま
しい。In particular, an alloy containing Al as a main component is preferable because the material is inexpensive, and particularly, Al, Ti, Cr, Ta, Hf, Zr,
An alloy in which at least one metal selected from Mn and Pd is added in a total amount of 0.5 atom% or more and 5 atom% or less is preferable.
【0026】さらに、耐腐食性が良好でかつヒロックな
どの発生が起こりにくいことから、添加元素を合計で
0.5原子%以上3原子%未満含む、Al−Hf−Pd
合金、Al−Hf合金、Al−Ti合金、Al−Ti−
Hf合金、Al−Cr合金、Al−Ta合金、Al−T
i−Cr合金、Al−Si−Mn合金のいずれかのAl
を主成分とする合金で構成することが好ましい。これら
Al合金のうちでも、次式で表される組成を有するAl
−Hf−Pd合金は、多数回の記録、消去の繰り返しに
対して特に優れた熱安定性を有するため、記録特性の劣
化を少なくすることができる。Further, Al-Hf-Pd containing an additive element in a total amount of 0.5 atom% or more and less than 3 atom% is preferable because it has good corrosion resistance and is unlikely to generate hillocks.
Alloy, Al-Hf alloy, Al-Ti alloy, Al-Ti-
Hf alloy, Al-Cr alloy, Al-Ta alloy, Al-T
Al of i-Cr alloy or Al-Si-Mn alloy
It is preferable to use an alloy containing as a main component. Among these Al alloys, Al having a composition represented by the following formula
Since the -Hf-Pd alloy has particularly excellent thermal stability against repeated recording and erasing many times, deterioration of recording characteristics can be suppressed.
【0027】Pdj Hfk Al1-j-k 0.001<j<0.01 0.005<k<0.10 ここで、j、kは各元素の原子の数(各元素のモル数)
を表す。Pd j Hf k Al 1-jk 0.001 <j <0.01 0.005 <k <0.10 where j and k are the number of atoms of each element (the number of moles of each element)
Represents
【0028】上述した反射層の厚さとしては、いずれの
合金からなる場合にもおおむね10nm以上200nm
以下、さらに好ましくは30〜200nmとするのが好
ましい。The thickness of the above-mentioned reflective layer is approximately 10 nm or more and 200 nm regardless of which alloy is used.
Hereafter, it is more preferably 30 to 200 nm.
【0029】特に、記録感度が高く、高速でワンビーム
・オーバーライトが可能であり、かつ消去率が大きく消
去特性が良好であることから、次のごとく、光記録媒体
の主要部を構成することが好ましい。In particular, since the recording sensitivity is high, the one-beam overwrite can be performed at a high speed, the erasing rate is large, and the erasing characteristic is good, the main part of the optical recording medium can be constructed as follows. preferable.
【0030】すなわち、第1誘電体層の厚さが100n
m〜400nmであり、第2誘電体層の厚さが10nm
〜30nmであり、かつ記録層の厚さを10nm〜30
nm、反射層の厚さを30nm〜200nmとし、誘電
体層がZnSとSiO2 と炭素の混合膜であり、SiO
2 の混合比が15〜35モル%であり、かつ記録層の組
成が次式で表される範囲にあることが好ましい。That is, the thickness of the first dielectric layer is 100 n.
m to 400 nm, and the thickness of the second dielectric layer is 10 nm
˜30 nm, and the thickness of the recording layer is 10 nm to 30 nm.
nm, the thickness of the reflective layer is 30 nm to 200 nm, the dielectric layer is a mixed film of ZnS, SiO 2 and carbon, and
The mixing ratio of 2 is preferably 15 to 35 mol%, and the composition of the recording layer is preferably in the range represented by the following formula.
【0031】組成式 Ptz (Sbx Te1-x )1-y-z (Ge0.5 Te0.5 )
y 0.35≦x≦0.7 0.2≦y≦0.5 0.0001≦z≦0.01 ここで、Ptは白金、Sbはアンチモン、Teはテル
ル、Geはゲルマニウムを表す。またx,y,z及び数
字は、各元素の原子の数(各元素のモル数)を表す。Compositional formula Pt z (Sb x Te 1-x ) 1-yz (Ge 0.5 Te 0.5 )
y 0.35 ≦ x ≦ 0.7 0.2 ≦ y ≦ 0.5 0.0001 ≦ z ≦ 0.01 Here, Pt is platinum, Sb is antimony, Te is tellurium, and Ge is germanium. Further, x, y, z and the numbers represent the number of atoms of each element (the number of moles of each element).
【0032】本発明の基板の材料としては、公知の透明
な各種の合成樹脂、透明ガラスなどが使用できる。ほこ
り、基板の傷などの影響をさけるために、透明基板を用
い、集束した光ビームで基板側から記録を行なうことが
好ましく、この様な透明基板材料としては、ガラス、ポ
リカーボネート、ポリメチル・メタクリレート、ポリオ
レフィン樹脂、エポキシ樹脂、ポリイミド樹脂などがあ
げられる。As the material of the substrate of the present invention, various known transparent synthetic resins, transparent glass and the like can be used. In order to avoid the influence of dust and scratches on the substrate, it is preferable to use a transparent substrate and perform recording from the substrate side with a focused light beam.As such a transparent substrate material, glass, polycarbonate, polymethyl methacrylate, Examples thereof include polyolefin resin, epoxy resin and polyimide resin.
【0033】特に、光学的複屈折が小さく、吸湿性が小
さく、成形が容易であることからポリカーボネート樹
脂、アモルファス・ポリオレフィン樹脂が好ましい。Polycarbonate resin and amorphous polyolefin resin are particularly preferable because they have low optical birefringence, low hygroscopicity and easy molding.
【0034】基板の厚さとしては、特に限定されるもの
ではないが、0.01mm〜5mmが実用的である。
0.01mm未満では、基板側から集束した光ビ−ムで
記録する場合でも、ごみの影響を受け易くなり、5mm
をこえる場合は、対物レンズの開口数を大きくすること
が困難になり、照射光ビームスポットサイズが大きくな
るため、記録密度をあげることが困難になる。The thickness of the substrate is not particularly limited, but 0.01 mm to 5 mm is practical.
If it is less than 0.01 mm, it is likely to be affected by dust even when recording with an optical beam focused from the substrate side, and it becomes 5 mm.
If it exceeds, it becomes difficult to increase the numerical aperture of the objective lens, and the irradiation light beam spot size increases, so that it becomes difficult to increase the recording density.
【0035】基板はフレキシブルなものであっても良い
し、リジッドなものであっても良い。フレキシブルな基
板は、テープ状、シート状、カ−ド状で使用する。リジ
ッドな基板は、カード状、あるいはディスク状で使用す
る。また、これらの基板は、記録層などを形成した後、
2枚の基板を用いて、エアーサンドイッチ構造、エアー
インシデント構造、密着張合せ構造としてもよい。The substrate may be flexible or rigid. The flexible substrate is used in the form of tape, sheet, or card. The rigid board is used in the form of a card or disk. In addition, these substrates, after forming the recording layer,
An air sandwich structure, an air incident structure, and a close-bonding structure may be used by using two substrates.
【0036】本発明の光記録媒体の記録に用いる光源と
しては、レーザー光、ストロボ光のごとき高強度の光源
が挙げられ、特に半導体レーザー光は、光源が小型化で
きること、消費電力が小さいこと、変調が容易であるこ
とから好ましい。Examples of the light source used for recording on the optical recording medium of the present invention include high-intensity light sources such as laser light and strobe light. Particularly, the semiconductor laser light can be downsized and has low power consumption. It is preferable because it can be easily modulated.
【0037】記録は結晶状態の記録層にレーザー光パル
スなどを照射してアモルファスの記録マークを形成して
行う。あるいは、反対に非晶状態の記録層に結晶状態の
記録マークを形成してもよい。消去はレーザー光照射に
よって、アモルファスの記録マークを結晶化するか、も
しくは、結晶状態の記録マークをアモルファス化して行
うことができる。記録速度を高速化でき、かつ記録層の
変形が発生しにくいことから記録時はアモルファスの記
録マークを形成し、消去時は結晶化を行う方法が好まし
い。また、記録マーク形成時は光強度を高く、消去時は
やや弱くし、1回の光ビームの照射により書換を行う1
ビーム・オーバーライトは、書換の所要時間が短くなる
ことから好ましい。Recording is performed by irradiating a crystalline recording layer with a laser light pulse or the like to form an amorphous recording mark. Alternatively, conversely, a recording mark in a crystalline state may be formed on the recording layer in an amorphous state. Erasure can be performed by irradiating a laser beam to crystallize an amorphous recording mark or to amorphize a crystalline recording mark. A method of forming an amorphous recording mark at the time of recording and crystallizing at the time of erasing is preferable because the recording speed can be increased and the deformation of the recording layer is less likely to occur. Further, the light intensity is high at the time of forming the recording mark and slightly weak at the time of erasing, and rewriting is performed by irradiating the light beam once.
Beam overwrite is preferable because the time required for rewriting is shortened.
【0038】次に、本発明の光記録媒体の製造方法につ
いて述べる。反射層、記録層などを基板上に形成する方
法としては、公知の真空中での薄膜形成法、例えば真空
蒸着法、イオンプレーティング法、スパッタリング法な
どがあげられる。特に組成、膜厚のコントロールが容易
であることから、スパッタリング法が好ましい。Next, a method of manufacturing the optical recording medium of the present invention will be described. Examples of the method for forming the reflective layer, the recording layer and the like on the substrate include known thin film forming methods in vacuum, such as a vacuum vapor deposition method, an ion plating method and a sputtering method. In particular, the sputtering method is preferable because the composition and the film thickness can be easily controlled.
【0039】形成する記録層などの厚さの制御は、公知
の技術である水晶振動子膜厚計などで、堆積状態をモニ
タリングすることで、容易に行える。The thickness of the recording layer or the like to be formed can be easily controlled by monitoring the deposition state with a known crystal oscillator film thickness meter.
【0040】記録層などの形成は、基板を固定したまま
の状態、あるいは移動、回転した状態のどちらで行って
もよい。膜厚の面内の均一性に優れることから、基板を
自転させることが好ましく、さらに公転を組合わせるこ
とが、より好ましい。The recording layer or the like may be formed either with the substrate fixed, or with the substrate moved or rotated. Since the in-plane uniformity of the film thickness is excellent, it is preferable to rotate the substrate, and it is more preferable to combine the revolution.
【0041】また、本発明の効果を著しく損なわない範
囲において、反射層などを形成した後、傷、変形の防止
などのため、ZnS,SiO2 などの誘電体層あるいは
紫外線硬化樹脂などの樹脂保護層などを必要に応じて設
けることができる。また、反射層などを形成した後、あ
るいはさらに前述の樹脂保護層を形成した後、2枚の基
板を対向して、接着剤で張り合わせてもよい。In addition, within a range that does not significantly impair the effects of the present invention, after forming a reflective layer or the like, a dielectric layer such as ZnS or SiO 2 or resin protection such as an ultraviolet curable resin is formed to prevent scratches and deformation. Layers and the like can be provided as needed. Further, after forming the reflective layer or the like, or after further forming the above-mentioned resin protective layer, the two substrates may be opposed to each other and adhered with an adhesive.
【0042】記録層は、実際に記録を行う前に、予めレ
ーザー光、キセノンフラッシュランプなどの光を照射し
予め結晶化させておく事が好ましい。The recording layer is preferably preliminarily crystallized by irradiation with light such as a laser beam or a xenon flash lamp before actual recording.
【0043】[0043]
【実施例】以下、本発明を実施例に基づいて説明する。 [分析・測定方法]反射層、記録層の組成は、ICP発
光分析(セイコー電子工業(株)製)により確認した。
またキャリア対ノイズ比および消去率(記録後と消去後
の再生キャリア信号強度の差)は、スペクトラムアナラ
イザにより測定した。EXAMPLES The present invention will be described below based on examples. [Analysis / Measurement Method] The compositions of the reflective layer and the recording layer were confirmed by ICP emission analysis (manufactured by Seiko Denshi Kogyo KK).
The carrier-to-noise ratio and the erasing rate (difference in reproduced carrier signal intensity after recording and after erasing) were measured by a spectrum analyzer.
【0044】記録層、誘電体層、反射層の形成中の膜厚
は、水晶振動子膜厚計によりモニターした。また各層の
厚さは、走査型あるいは透過型電子顕微鏡で断面を観察
することにより測定した。The film thickness during the formation of the recording layer, the dielectric layer and the reflective layer was monitored by a crystal oscillator film thickness meter. The thickness of each layer was measured by observing the cross section with a scanning electron microscope or a transmission electron microscope.
【0045】実施例1 厚さ1.2mm、直径13cm、1.6μmピッチのス
パイラルグルーブ付きポリカーボネート製基板を毎分3
0回転で回転させながら、高周波スパッタ法により、記
録層、誘電体層、反射層を形成した。Example 1 A substrate made of polycarbonate with a spiral groove having a thickness of 1.2 mm, a diameter of 13 cm, and a pitch of 1.6 μm was 3 per minute.
The recording layer, the dielectric layer, and the reflective layer were formed by a high frequency sputtering method while rotating at 0 rotation.
【0046】まず、真空容器内を1×10-5Paまで排
気した後、2×10-1PaのArガス雰囲気中でSiO
2 を20mol%添加したZnSをスパッタし、基板上
に膜厚300nmの第1誘電体層を形成した。続いて、
約Ge0.18Sb0.26Te0.56の組成の3元合金上にPt
の小片を配置した複合ターゲットをスパッタして、組成
Pt0.002 Ge0.178 Sb0.26Te0.56の膜厚25nm
の記録層を形成した。さらに前述の第2誘電体層を20
nm形成し、この上に、Mn0.01Si0.04Al0.95合金
をスパッタして膜厚100nmの反射層を形成した。さ
らにこのディスクを真空容器より取り出した後、この反
射層上にアクリル系紫外線硬化樹脂をスピンコートし、
紫外線照射により硬化させて膜厚10μmの樹脂層を形
成し本発明の光記録媒体を得た。First, the inside of the vacuum vessel was evacuated to 1 × 10 -5 Pa, and then SiO 2 in an Ar gas atmosphere of 2 × 10 -1 Pa.
ZnS containing 20 mol% of 2 was sputtered to form a first dielectric layer having a film thickness of 300 nm on the substrate. continue,
Pt on a ternary alloy with a composition of about Ge 0.18 Sb 0.26 Te 0.56.
Sputtering a composite target with small pieces of Pt 0.002 Ge 0.178 Sb 0.26 Te 0.56 with a film thickness of 25 nm
Recording layer was formed. Further, the above-mentioned second dielectric layer 20
nm, and a Mn 0.01 Si 0.04 Al 0.95 alloy was sputtered thereon to form a 100 nm thick reflective layer. After removing this disk from the vacuum container, spin coat acrylic UV curable resin on this reflective layer,
An optical recording medium of the present invention was obtained by curing the resin layer by ultraviolet irradiation to form a resin layer having a film thickness of 10 μm.
【0047】この光記録媒体に波長820nmの半導体
レーザーのビームでディスク全面の記録層を結晶化し初
期化した。その後、線速度6m/秒の条件で、対物レン
ズの開口数0.5、半導体レーザーの波長780nmの
光学ヘッドを使用して、周波数3.7MHz、パルス幅
60nsec、ピークパワー9〜17mW、ボトムパワ
ー4〜9mWの各条件に変調した半導体レーザー光で1
00回オーバーライト記録した後、再生パワー1.3m
Wの半導体レーザ光を照射してバンド幅30kHzの条
件でC/Nを測定した。On this optical recording medium, the recording layer on the entire surface of the disk was crystallized and initialized by a semiconductor laser beam having a wavelength of 820 nm. Then, under the condition of a linear velocity of 6 m / sec, a frequency of 3.7 MHz, a pulse width of 60 nsec, a peak power of 9 to 17 mW, and a bottom power were obtained by using an optical head having a numerical aperture of 0.5 for an objective lens and a wavelength of 780 nm for a semiconductor laser. 1 with semiconductor laser light modulated to each condition of 4 to 9 mW
Playback power 1.3m after overwriting recording 00 times
C / N was measured under the condition of a bandwidth of 30 kHz by irradiating W semiconductor laser light.
【0048】さらにこの部分を1.4MHzで、先と同
様に変調した半導体レーザ光を照射し、ワンビーム・オ
ーバーライトし、この時の3.7MHzの消去率を測定
した。Further, this portion was irradiated with the semiconductor laser light modulated at 1.4 MHz in the same manner as above, and one-beam overwriting was performed, and the erasing rate at 3.7 MHz at this time was measured.
【0049】ピークパワー15mW以上で実用上十分な
50dB以上のC/Nが得られ、かつボトムパワー5〜
8mWで実用上十分な20dB以上、最大30dBの消
去率が得られた。With a peak power of 15 mW or more, a C / N of 50 dB or more, which is practically sufficient, is obtained, and a bottom power of 5 to 5 is obtained.
At 8 mW, a practically sufficient erasing rate of 20 dB or more and a maximum of 30 dB was obtained.
【0050】さらにピーク・パワー17mW、ボトムパ
ワー8mW、周波数3.7MHzの条件で、ワンビーム
・オーバーライトの繰り返しを1000回及び20万回
行った後、同様の測定を行ったが、C/N、消去率の変
化は、いずれも2dB以内でほとんど劣化が認められな
かった。Further, under the conditions of a peak power of 17 mW, a bottom power of 8 mW, and a frequency of 3.7 MHz, one beam overwrite was repeated 1000 times and 200,000 times, and the same measurement was performed. The change in erasing rate was within 2 dB, and almost no deterioration was observed.
【0051】また、この光記録媒体を80℃、相対湿度
80%の環境に1000時間置いた後、その後記録部分
を再生したが、C/Nの変化は2dB未満でほとんど変
化がなかった。さらに再度、記録、消去を行いC/N、
消去率を測定したところ、同様にほとんど変化が見られ
なかった。The optical recording medium was placed in an environment of 80 ° C. and 80% relative humidity for 1000 hours, and then the recorded portion was reproduced. The change in C / N was less than 2 dB, and there was almost no change. Recording and erasing are performed again, and C / N,
When the erasure rate was measured, almost no change was observed.
【0052】比較例1 実施例1の光記録媒体の記録層の組成をGe0.18Sb
0.26Te0.56とした他は、実施例1と同様の構成の光記
録媒体を作製し、実施例2と同様の測定を行った。Comparative Example 1 The composition of the recording layer of the optical recording medium of Example 1 was Ge 0.18 Sb.
An optical recording medium having the same configuration as that of Example 1 was prepared except that it was 0.26 Te 0.56, and the same measurement as that of Example 2 was performed.
【0053】C/Nは初期が53dBであり、150時
間は52dB、1000時間経過後は40dBと、10
00時間後には著しい劣化が見られた。この事から、記
録マークの熱的安定性が不十分であり、記録の長期保存
性に問題があることが明らかになった。C / N is 53 dB in the initial stage, 52 dB in 150 hours, and 40 dB after 1000 hours, which is 10 dB.
After 00 hours, remarkable deterioration was observed. From this, it became clear that the thermal stability of the recording mark was insufficient and there was a problem in the long-term storage stability of the recording.
【0054】実施例2 実施例1の記録層の組成をPt0.001 Ge0.179 Sb
0.26Te0.56およびPt0.005 Ge0.177 Sb0.26Te
0.558 とした他は、実施例1と同様の構成の光記録媒体
をそれぞれ作製した。この2つの光記録媒体を実施例1
と同様の装置で、記録特性を測定した。いずれもピーク
パワー15mW以上で実用上十分な50dB以上のC/
Nが得られ、かつボトムパワー5〜8mWで実用上十分
な20dB以上、最大30dBの消去率が得られた。Example 2 The composition of the recording layer of Example 1 was changed to Pt 0.001 Ge 0.179 Sb.
0.26 Te 0.56 and Pt 0.005 Ge 0.177 Sb 0.26 Te
Optical recording media having the same configurations as in Example 1 except that 0.558 was manufactured. The two optical recording media were used in Example 1.
The recording characteristics were measured with the same device as described above. Both have a peak power of 15 mW or more and practically sufficient C / C of 50 dB or more.
N was obtained, and at the bottom power of 5 to 8 mW, a practically sufficient erasing rate of 20 dB or more and a maximum of 30 dB was obtained.
【0055】また、ピーク・パワー17mW、ボトムパ
ワー8mW、周波数3.7MHzの条件で、ワンビーム
・オーバーライトの繰り返しを1000回及び20万回
行った後、同様の測定を行ったが、C/N、消去率の変
化は、いずれも2dB以内でほとんど劣化が認められな
かった。Further, under the conditions of a peak power of 17 mW, a bottom power of 8 mW, and a frequency of 3.7 MHz, one beam overwrite was repeated 1000 times and 200,000 times, and the same measurement was performed. As for the change of the erasing rate, almost no deterioration was observed within 2 dB.
【0056】実施例3 実施例1の記録層の組成をPt0.001 Ge0.179 Sb
0.26Te0.56とし、第1誘電体層の厚さを200nmと
した他は、実施例1と同様の構成の光記録媒体をそれぞ
れ作製した。この光記録媒体を実施例1と同様の装置
で、線速度を15m/秒、記録周波数を7.35MH
z、消去率測定時にオーバーライトする周波数を2.7
6MHz、記録パルス幅を50nsecとした他は、実
施例1と同様の方法で記録特性を測定した。ピークパワ
ー15mW以上で実用上十分な50dB以上のC/Nが
得られ、かつボトムパワー7〜10mWで実用上十分な
20dB以上、最大27dBの消去率が得られた。Example 3 The composition of the recording layer of Example 1 was changed to Pt 0.001 Ge 0.179 Sb.
Optical recording media having the same configurations as in Example 1 were prepared, except that the thickness of the first dielectric layer was 0.26 Te 0.56 and the thickness of the first dielectric layer was 200 nm. This optical recording medium was used in the same apparatus as in Example 1 with a linear velocity of 15 m / sec and a recording frequency of 7.35 MH.
z, the frequency of overwriting at the time of erasing rate measurement is 2.7
Recording characteristics were measured by the same method as in Example 1 except that the recording pulse width was 6 MHz and the recording pulse width was 50 nsec. With a peak power of 15 mW or higher, a practically sufficient C / N of 50 dB or higher was obtained, and with a bottom power of 7 to 10 mW, a practically sufficient 20 dB or higher, a maximum erasing rate of 27 dB was obtained.
【0057】実施例4 実施例1光記録媒体の基板をフォーマット付きの別の基
板に替え、かつ反射層の厚さを120nmにした他は、
実施例1と同様の光記録媒体を作製した。Example 4 Example 1 Except that the substrate of the optical recording medium was changed to another substrate with a format and the thickness of the reflective layer was 120 nm,
An optical recording medium similar to that in Example 1 was manufactured.
【0058】その後、線速度8.5m/秒の条件で、対
物レンズの開口数0.5、半導体レーザーの波長830
nmの光学ヘッドを使用して、パルス幅50nsec、
ピークパワー20mW、ボトムパワー9mWの条件に変
調した半導体レーザー光で、2−7コード(1.5Tの
周波数5.3MHz)のランダム・データ・パターンを
同一トラックに100回、さらに10万回オーバーライ
ト・モードで記録した。その後再生し、再生波形を観察
したところ、初期100回記録後に比べ、殆ど劣化がな
く良好な再生波形が得られた。さらに、このトラックの
ビット・エラー率(BER)を測定したところ3×10
-5と良好な値であった。Thereafter, under the condition of linear velocity of 8.5 m / sec, the numerical aperture of the objective lens is 0.5 and the wavelength of the semiconductor laser is 830.
Using an optical head of nm, pulse width 50 nsec,
A semiconductor laser light modulated under conditions of 20 mW peak power and 9 mW bottom power overwrites a random data pattern of 2-7 code (1.5T frequency 5.3 MHz) on the same track 100 times and 100,000 times more.・ Recorded in mode. After that, reproduction was performed and the reproduced waveform was observed. As a result, a good reproduced waveform was obtained with almost no deterioration as compared with after recording 100 times in the initial stage. Furthermore, when the bit error rate (BER) of this track was measured, it was 3 × 10.
It was a good value of -5 .
【0059】また、記録材料の移動による記録セクタ、
の先端、終端部の再生波形つぶれは殆ど見られず、中間
のデータ部の再生波形の乱れも殆どなかった。Further, the recording sector by moving the recording material,
Almost no collapse of the reproduced waveform was observed at the leading and trailing end portions, and there was almost no disturbance in the reproduced waveform of the intermediate data portion.
【0060】比較例2 記録層の組成をGe0.22Sb0.23Te0.55とした他は実
施例4と同様の構成の本発明の範囲外の従来の光記録媒
体を作製した。この光記録媒体の記録感度を測定したと
ころ、実施例1とほぼ同じであった。この光記録媒体を
実施例1と同様に100回、さらに10万回繰り返しオ
ーバーライト記録を行い再生波形を観察したところ、1
0万回後は、100回目に比べ、記録層の膜厚変動が大
きく、データ部分の信号に振幅が著しく低下した部分が
多数見られた。ビット・エラー率(BER)を測定した
ところ、3×10-1以上とエラー訂正を行っても、デー
タの再現が全く困難なレベルまで悪化していた。Comparative Example 2 A conventional optical recording medium having the same structure as that of Example 4, except that the composition of the recording layer was Ge 0.22 Sb 0.23 Te 0.55 , was prepared. When the recording sensitivity of this optical recording medium was measured, it was almost the same as in Example 1. This optical recording medium was repeatedly overwritten 100 times and 100,000 times as in Example 1, and the reproduced waveform was observed.
After 0,000 times, the fluctuation in the film thickness of the recording layer was larger than that at the 100th time, and a large number of parts in which the amplitude of the signal in the data part was significantly decreased were seen. When the bit error rate (BER) was measured, it was found to be 3 × 10 −1 or more, and even when error correction was performed, it was deteriorated to a level at which data reproduction was extremely difficult.
【0061】また、記録材料の移動による記録セクタの
先端部、終端部の再生波形つぶれが顕著に見られた。Further, the reproduction waveform collapse was remarkably observed at the leading and trailing ends of the recording sector due to the movement of the recording material.
【0062】実施例5 実施例1と同様のスパッタ法により、厚さ1.2mmの
アクリル樹脂基板上に、同様の誘電体層材料、Pt0.3
Ge17.7Sb26Te56からなる記録層材料、反射層材料
を使用して、第1誘電体層300nm、記録層50n
m、第2誘電体層200nm、反射層100nmの膜厚
で形成した他は、実施例1と同様に光記録媒体を作製し
た。Example 5 By the same sputtering method as in Example 1, a similar dielectric layer material, Pt 0.3 , was formed on an acrylic resin substrate having a thickness of 1.2 mm.
Using a recording layer material and a reflective layer material made of Ge 17.7 Sb 26 Te 56 , the first dielectric layer 300 nm, the recording layer 50 n
An optical recording medium was prepared in the same manner as in Example 1 except that the film thickness was m, the second dielectric layer was 200 nm, and the reflective layer was 100 nm.
【0063】この光記録媒体を波長830nmの半導体
レーザーと開口数0.5の対物レンズを搭載した光ヘッ
ドを使用して、光記録媒体を静止した状態で記録、消去
を繰り返し行なった。また記録、消去動作の間に0.5
mWの再生光を照射して反射率の変化をモニタした。こ
の条件で100万回記録、消去を繰り返した後も、反射
率の可逆的変化が観測され、劣化はほとんど見られなか
った。Recording and erasing were repeatedly performed on this optical recording medium using an optical head equipped with a semiconductor laser having a wavelength of 830 nm and an objective lens having a numerical aperture of 0.5, while the optical recording medium was stationary. During recording and erasing operations, 0.5
The change in reflectance was monitored by irradiating mW reproducing light. Even after recording and erasing 1 million times under these conditions, a reversible change in reflectance was observed and almost no deterioration was observed.
【0064】比較例3 実施例1の光記録媒体の記録層の組成をPt0.10Ge
0.16Sb0.24Te0.50とした他は、実施例1と同様の構
成の光記録媒体を作製した。Comparative Example 3 The composition of the recording layer of the optical recording medium of Example 1 was Pt 0.10 Ge.
An optical recording medium having the same configuration as in Example 1 was prepared except that 0.16 Sb 0.24 Te 0.50 was used.
【0065】実施例1と同様に記録を試みたが、1回目
の書換から前の記録マークの消去がほとんどできておら
ず、またさらに記録の書換を100回繰り返した後、再
生信号を観測したところ全く正常に記録できていなかっ
た。Recording was attempted in the same manner as in Example 1, but the recorded marks before the first rewriting were hardly erased, and the rewriting of the recording was repeated 100 times, after which the reproduced signal was observed. However, it was not recorded correctly at all.
【0066】実施例6 Pt0.003 Ge0.177 Sb0.26Te0.56の組成の記録膜
を実施例1のスパッタ装置を用いて、ガラス基板上に厚
さ50nmに形成し、電気抵抗および光透過率の変化か
らアモルファス状態の結晶化温度を調べた。昇温速度1
0℃/分の条件で測定した結果は、いずれも160℃で
あり室温でアモルファス状態(記録状態に対応)が十分
安定であることが明らかとなった。Example 6 A recording film having a composition of Pt 0.003 Ge 0.177 Sb 0.26 Te 0.56 was formed on a glass substrate to a thickness of 50 nm by using the sputtering apparatus of Example 1, and a change in electric resistance and light transmittance was confirmed. The crystallization temperature in the amorphous state was investigated. Heating rate 1
The results of measurement under conditions of 0 ° C./min were all 160 ° C., and it was revealed that the amorphous state (corresponding to the recorded state) was sufficiently stable at room temperature.
【0067】[0067]
【発明の効果】本発明は、光記録媒体の記録層の組成を
特定の組成としたので、以下の効果が得られた。 (1) 高感度で、かつ消去率、C/Nが高い。 (2) 多数回の記録消去を繰り返しても、動作が安定し
ており、特性の劣化、欠陥の発生がほとんどない。 (3) 耐湿熱性、耐酸化性に優れ、長寿命である。 (4) 記録マークの熱安定性が高く、記録の長期保存安
定性に優れる。 (5) スパッタ法により容易に作製できる。 (6) 高い線速度でも、良好なオーバーライト性能が得
られる。According to the present invention, the composition of the recording layer of the optical recording medium is set to a specific composition, so that the following effects are obtained. (1) High sensitivity, high erasing rate and C / N. (2) Even if recording and erasing are repeated a large number of times, the operation is stable and there is almost no deterioration of characteristics or occurrence of defects. (3) Excellent resistance to moist heat and oxidation, and long life. (4) The thermal stability of the recording mark is high, and the long-term storage stability of the recording is excellent. (5) It can be easily manufactured by the sputtering method. (6) Good overwrite performance can be obtained even at high linear velocity.
【図1】本発明による光記録媒体の一例を示す縦断面図
である。FIG. 1 is a vertical sectional view showing an example of an optical recording medium according to the present invention.
【図2】本発明による光記録媒体の他の例を示す縦断面
図である。FIG. 2 is a longitudinal sectional view showing another example of the optical recording medium according to the present invention.
1:基板 2:記録層 3:誘電体層 3a:第1の誘電体層 3b:第2の誘電体層 4:反射層 1: Substrate 2: Recording layer 3: Dielectric layer 3a: First dielectric layer 3b: Second dielectric layer 4: Reflective layer
Claims (5)
ることによって、情報の記録、消去、再生が可能であ
り、情報の記録及び消去が、非晶相と結晶相の間の相変
化により行われる光記録媒体において、前記光記録媒体
が少なくとも記録層と誘電体層と反射層を有し、かつ前
記記録層の結晶状態が、実質的に単一の結晶相からなる
下記の組成式またはで表されるテルル合金であるこ
とを特徴とする光記録媒体。 組成式 Ptz (Sbx Te1-x )1-y-z (Ge0.5 Te0.5 )
y 0.35≦x≦0.7 0.2≦y≦0.5 0.0001≦z≦0.05 ここで、Ptは白金、Sbはアンチモン、Teはテル
ル、Geはゲルマニウムを表す。またx,y,z及び数
字は、各元素の原子の数(各元素のモル数)を表す。 組成式 Ptz Pdp (Sbx Te1-x )1-y-z (Gez 5 Te
0.5 )y 0.35≦x≦0.7 0.2≦y≦0.5 0.0001≦z<0.01 0.0001≦p≦0.005 ここで、Ptは白金、Pdはパラジウム、Sbはアンチ
モン、Teはテルル、Geはゲルマニウムを表す。また
x、y、z及び数字は、各元素の原子の数(各元素のモ
ル数)を表す。1. Information can be recorded, erased, and reproduced by irradiating a recording layer formed on a substrate with light, and the recording and erasing of information is performed in a phase between an amorphous phase and a crystalline phase. In the optical recording medium performed by the change, the optical recording medium has at least a recording layer, a dielectric layer, and a reflective layer, and the recording layer has a crystalline state consisting of a substantially single crystal phase as follows: An optical recording medium, which is a tellurium alloy represented by the formula: Composition formula Pt z (Sb x Te 1-x ) 1-yz (Ge 0.5 Te 0.5 )
y 0.35 ≦ x ≦ 0.7 0.2 ≦ y ≦ 0.5 0.0001 ≦ z ≦ 0.05 where Pt is platinum, Sb is antimony, Te is tellurium, and Ge is germanium. Further, x, y, z and the numbers represent the number of atoms of each element (the number of moles of each element). Composition formula Pt z Pd p (Sb x Te 1-x ) 1-yz (Ge z 5 Te
0.5 ) y 0.35 ≤ x ≤ 0.7 0.2 ≤ y ≤ 0.5 0.0001 ≤ z <0.01 0.0001 ≤ p ≤ 0.005 where Pt is platinum, Pd is palladium, Sb represents antimony, Te represents tellurium, and Ge represents germanium. Further, x, y, z and the numbers represent the number of atoms of each element (the number of moles of each element).
において、0.0001≦z<0.01であることを特
徴とする請求項1記載の光記録媒体。2. The optical recording medium according to claim 1, wherein 0.0001 ≦ z <0.01 in a composition formula representing a tellurium alloy of the recording layer.
び炭素の混合物から構成されていることを特徴とする請
求項1記載の光記録媒体。3. The optical recording medium according to claim 1, wherein the dielectric layer is composed of a mixture of ZnS, SiO 2 and carbon.
体層との2層からなり、基板/第1誘電体層/記録層/
第2誘電体層/反射層の積層順に積層されていることを
特徴とする請求項1記載の光記録媒体。4. The dielectric layer is composed of two layers, a first dielectric layer and a second dielectric layer, and is composed of substrate / first dielectric layer / recording layer /
The optical recording medium according to claim 1, wherein the second dielectric layer / reflection layer are laminated in this order.
0nm、前記記録層の厚さが10〜30nm、前記第2
誘電体層の厚さが10〜30nmおよび前記反射層の厚
さが10〜200nmであることを特徴とする請求項4
記載の光記録媒体。5. The thickness of the first dielectric layer is 100 to 40.
0 nm, the thickness of the recording layer is 10 to 30 nm, the second
The thickness of the dielectric layer is 10 to 30 nm, and the thickness of the reflective layer is 10 to 200 nm.
The optical recording medium described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5263519A JPH06191160A (en) | 1992-10-21 | 1993-10-21 | Optical recording medium |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28313292 | 1992-10-21 | ||
JP4-283132 | 1992-10-21 | ||
JP5263519A JPH06191160A (en) | 1992-10-21 | 1993-10-21 | Optical recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06191160A true JPH06191160A (en) | 1994-07-12 |
Family
ID=26546046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5263519A Pending JPH06191160A (en) | 1992-10-21 | 1993-10-21 | Optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06191160A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999006220A1 (en) * | 1997-08-01 | 1999-02-11 | Hitachi, Ltd. | Information recording medium |
-
1993
- 1993-10-21 JP JP5263519A patent/JPH06191160A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999006220A1 (en) * | 1997-08-01 | 1999-02-11 | Hitachi, Ltd. | Information recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08190734A (en) | Optical recording medium | |
JPH05325261A (en) | Optical recording medium | |
JP3211537B2 (en) | Optical recording medium | |
JPH04360039A (en) | Optical recording medium | |
JP3163943B2 (en) | Optical recording medium | |
JPH07161071A (en) | Optical recording medium | |
JPH06191160A (en) | Optical recording medium | |
JPH06127135A (en) | Optical record medium | |
JPH07262613A (en) | Optical recording medium | |
JP2001167475A (en) | Optical recording medium | |
JPH06191161A (en) | Optical recording medium | |
JPH07262607A (en) | Optical recording medium | |
JP3216552B2 (en) | Optical recording medium and manufacturing method thereof | |
JPH07311980A (en) | Optical recording medium | |
JP3173177B2 (en) | Optical recording medium and manufacturing method thereof | |
JPH0540961A (en) | Optical recording medium | |
JPH07225967A (en) | Optical recording medium | |
JPH08124213A (en) | Optical recording medium | |
JPH10255323A (en) | Optical recording medium | |
JPH1064128A (en) | Optical recording medium and its production | |
JP2000067463A (en) | Optical recording medium | |
JPH05124353A (en) | Photorecording medium | |
JPH08115536A (en) | Optical recording medium | |
JPH07153117A (en) | Optical recording medium and its manufacture | |
JPH05325256A (en) | Optical recording medium |