[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11274645A - Semiconductor element and fabrication thereof - Google Patents

Semiconductor element and fabrication thereof

Info

Publication number
JPH11274645A
JPH11274645A JP7197998A JP7197998A JPH11274645A JP H11274645 A JPH11274645 A JP H11274645A JP 7197998 A JP7197998 A JP 7197998A JP 7197998 A JP7197998 A JP 7197998A JP H11274645 A JPH11274645 A JP H11274645A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
buried
active
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7197998A
Other languages
Japanese (ja)
Inventor
Keiji Takaoka
圭児 高岡
Mitsuhiro Kushibe
光弘 櫛部
Yuzo Hirayama
雄三 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7197998A priority Critical patent/JPH11274645A/en
Publication of JPH11274645A publication Critical patent/JPH11274645A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Bipolar Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce threshold level and to enhance reliability by employing a specified nitride based semiconductor material in a buried layer or an insulation layer thereby suppressing introduction of dislocation or strain to the side of other semiconductor for forming an active region. SOLUTION: An amorphous AlXGa1- XN (0<x<1) 110 is buried in the side face of an MQW active layer 103. An n side electrode 121 is formed on a contact layer 105 and a p side electrode 122 is formed on the rear side of a substrate 101. In the case of a semiconductor element having function for controlling a light having wavelength of 0.92-1.6 μm, refractive index of AlXGaYInZN (0<x<1, 0<y+z<1, x+y+z=1) and AlXGaYInZN added with H and O or C (0<=(x, y, z)<=1, x+y+z=1) is substantially invariant in that wavelength region. Since introduction of dislocation or strain to the side of other semiconductor for forming an active region is suppressed, a good quality active layer can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザや光
集積化素子等の半導体素子に係わり、特に埋め込み層又
は絶縁層として用いる半導体層の改良をはかった半導体
素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device such as a semiconductor laser or an optical integrated device, and more particularly, to a semiconductor device in which a semiconductor layer used as a buried layer or an insulating layer is improved, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】半導体素子で一つの活性領域を電気的に
絶縁するためには、能動領域の周辺にイオン注入して絶
縁化するか、能動領域の周辺にメサ構造を形成し、空間
的に分離することが行われる。単一の能動領域が高性能
化し微細化すると、電気的或いは光学的に素子の分離が
難しくなり、同時に放熱効率を大きくすることが必要に
なる。イオン注入による方法は結晶へのダメージが大き
く、特に高さの高い素子では使用が難しくなる。このた
め、メサ構造を形成し電気的,光学的に狭窄できる材料
で埋め込むことが行われている。この目的では、素子の
活性領域と埋め込み領域の材料の特性差が大きく、かつ
埋め込み材料として熱伝導特性の高い材料を用いること
が望ましい。
2. Description of the Related Art In order to electrically insulate one active region in a semiconductor device, ions are implanted around the active region to insulate the active region, or a mesa structure is formed around the active region to spatially isolate the active region. Separation is performed. As a single active area becomes higher in performance and miniaturized, it becomes difficult to electrically or optically separate elements, and at the same time, it is necessary to increase heat dissipation efficiency. In the method by ion implantation, damage to the crystal is large, and it is difficult to use the device particularly in a high device. For this reason, a mesa structure is formed and embedded with a material that can be electrically and optically narrowed. For this purpose, it is desirable to use a material having a large difference in characteristics between the material of the active region and the material of the buried region of the element and having a high thermal conductivity as the burying material.

【0003】このような目的に基づいて、例えば特開平
9−45985号ではAlNを主成分とする層を埋め込
み層に用いた半導体レーザが作成されている。しかし、
AlNは他の半導体よりも堅くかつ他の半導体と熱膨張
率が異なる。本発明者等の研究によれば、この種の材料
を用いると転位や歪みが活性領域を形成する他の半導体
側に導入されやすく、特にその製造工程で高熱に加熱す
ると埋め込み界面に異常層が発生し、良質な活性層が得
られない問題があることが分かった。
[0003] Based on such an object, for example, in Japanese Patent Application Laid-Open No. 9-45885, a semiconductor laser using a layer mainly composed of AlN as a buried layer has been produced. But,
AlN is harder than other semiconductors and has a different coefficient of thermal expansion from other semiconductors. According to the study of the present inventors, when this kind of material is used, dislocations and strains are likely to be introduced to the other semiconductor side forming the active region, and particularly when heated to a high temperature in the manufacturing process, an abnormal layer is formed at the buried interface. It was found that there was a problem that a high quality active layer could not be obtained.

【0004】図9は、従来の面発光型半導体レーザの素
子構造を示す断面図である。n型GaAs基板900上
に、p型GaAsバッファ層901,p型ブラッグ反射
器902,活性層903,n型ブラッグ反射器904,
キャップ層905が積層されており、活性層903,反
射器904,及びキャップ層905はメサ状に加工さ
れ、その側面はAlN層906により埋め込まれてい
る。電流注入のための電極は、n側電極921がキャッ
プ層905上に選択的に形成され、p側電極922は反
射器902上に選択的に形成されている。
FIG. 9 is a sectional view showing an element structure of a conventional surface-emitting type semiconductor laser. On an n-type GaAs substrate 900, a p-type GaAs buffer layer 901, a p-type Bragg reflector 902, an active layer 903, an n-type Bragg reflector 904,
A cap layer 905 is stacked, and the active layer 903, the reflector 904, and the cap layer 905 are processed into a mesa shape, and the side surface is buried with an AlN layer 906. As an electrode for current injection, an n-side electrode 921 is selectively formed on the cap layer 905, and a p-side electrode 922 is selectively formed on the reflector 902.

【0005】また、p型反射器902はp型GaAsと
p型AlAsを交互に繰り返し積層して形成され、n型
反射器904はn型GaAsとn型AlAsを交互に積
層して形成されている。活性層903は、InGaAs
歪み量子井戸層の両側にアンドープGaAs層、更にそ
の両側にアンドープAlGaAs層、そしてその更に両
側にn型AlGaAs層とp型AlGaAs層を設けて
形成されている。
The p-type reflector 902 is formed by alternately stacking p-type GaAs and p-type AlAs, and the n-type reflector 904 is formed by alternately stacking n-type GaAs and n-type AlAs. I have. The active layer 903 is made of InGaAs.
An undoped GaAs layer is provided on both sides of the strained quantum well layer, an undoped AlGaAs layer is provided on both sides thereof, and an n-type AlGaAs layer and a p-type AlGaAs layer are provided on both sides thereof.

【0006】このような構成の面発光型レーザでは、埋
め込み層に熱伝導度の大きなAlNを用いているため、
メサの側面が空気である場合や半導体埋め込み層である
場合と比べて、放熱性に優れ活性層の温度上昇が抑制さ
れるため、最高発振温度の上昇と最高光出力の上昇とい
ったことが期待される。この結果は、上記の面発光型の
半導体レーザに限らず、端面発光型の半導体レーザでも
同様に期待されるものである。
In the surface emitting laser having such a configuration, AlN having high thermal conductivity is used for the buried layer.
Compared to the case where the side surface of the mesa is air or a semiconductor buried layer, heat dissipation is excellent and the temperature rise of the active layer is suppressed, so it is expected that the maximum oscillation temperature and the maximum optical output will increase. You. This result is expected not only for the above-described surface-emitting type semiconductor laser but also for an edge-emitting type semiconductor laser.

【0007】しかしながら、メサの側面のpn接合部を
直接AlNで埋め込んでいるため、表面再結合による漏
れ電流が大きく、発振しきい値が上昇してしまうため、
十分な光出力特性が得られない。また、通電と共に漏れ
電流が徐々に増大するため、素子の信頼性が低いという
問題もある。更に、メサを形成する半導体とAlNの熱
膨張係数が異なるため、活性層近傍に大きなストレスが
かかることも上記の問題を助長している。
However, since the pn junction on the side surface of the mesa is directly buried with AlN, the leakage current due to surface recombination is large, and the oscillation threshold value rises.
Sufficient light output characteristics cannot be obtained. In addition, there is also a problem that the reliability of the element is low because the leakage current gradually increases with energization. Further, since the semiconductor forming the mesa and the AlN have different thermal expansion coefficients, a large stress is applied in the vicinity of the active layer, which furthers the above problem.

【0008】[0008]

【発明が解決しようとする課題】このように従来、窒化
ガリウム系半導体材料を用いた半導体レーザにおいて、
電気的,光学的狭窄を行うためにメサの側面をAlNで
埋め込むことが試みられているが、この場合、転位や歪
みが活性領域を形成する他の半導体側に導入されやす
く、特にその製造工程で高熱に加熱すると埋め込み界面
に異常層が発生し、良質な活性層が得られないという問
題があった。さらに、表面再結合による漏れ電流が大き
く、発振しきい値が上昇しまうため、十分な光出力特性
が得られないという問題があった。
As described above, conventionally, in a semiconductor laser using a gallium nitride-based semiconductor material,
Attempts have been made to bury the side surfaces of the mesa with AlN in order to perform electrical and optical constriction. In this case, dislocations and strains are likely to be introduced to the other semiconductor side forming the active region. However, when heated to a high temperature, an abnormal layer is generated at the buried interface, and a high-quality active layer cannot be obtained. Further, there is a problem that sufficient light output characteristics cannot be obtained because a leakage current due to surface recombination is large and an oscillation threshold value is increased.

【0009】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、AlN系材料を埋め込
み層や絶縁層として用いることができ、かつ活性領域を
形成する他の半導体側に転位や歪みが導入されるのを抑
制して良質な活性層を得ることができ、しきい値の低減
や信頼性の向上等をはかり得る半導体素子及びその製造
方法を提供することにある。
The present invention has been made in view of the above circumstances, and has as its object to be able to use an AlN-based material as a buried layer or an insulating layer, and to provide a semiconductor device which forms an active region. It is an object of the present invention to provide a semiconductor element capable of obtaining a high-quality active layer by suppressing the introduction of dislocations and strains into the semiconductor element, reducing the threshold value, improving the reliability, and the like, and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】(構成)上記課題を解決
するために本発明は、次のような構成を採用している。
即ち本発明は、窒化物系半導体材料を用いた半導体素子
において、Alx Gay Inz N(0<x<1,0<y
+z<1,x+y+z=1)を、埋め込み層又は絶縁層
に用いたことを特徴とする。
(Structure) In order to solve the above-mentioned problem, the present invention employs the following structure.
That is, the present invention is to provide a semiconductor device using a nitride semiconductor material, Al x Ga y In z N (0 <x <1,0 <y
+ Z <1, x + y + z = 1) is used for the buried layer or the insulating layer.

【0011】また本発明は、窒化物系半導体材料を用い
た半導体素子において、Alx Gay Inz N(0≦
(x,y,z)≦1,x+y+z=1)に、HとO又は
HとCを添加した層を、埋め込み層又は絶縁層に用いた
ことを特徴とする。
The present invention also relates to a semiconductor device using a nitride-based semiconductor material, wherein Al x Ga y In z N (0 ≦
(X, y, z) ≦ 1, x + y + z = 1), and a layer obtained by adding H and O or H and C is used as a buried layer or an insulating layer.

【0012】また本発明は、窒化物系半導体素子におい
て、Al又はGaのうちの一方が0でなく、且つカーボ
ンの濃度若しくは酸素の濃度がGaN不純物飽和濃度以
上である単結晶,多結晶,又は非晶質のAlx Gay
z N(0≦x,y,z≦1、x+y+z=1)に、H
とO又はHとCを添加した層を、埋め込み層又は絶縁層
に用いたことを特徴とする。
Further, the present invention provides a nitride-based semiconductor device comprising a single crystal, a polycrystal, or a semiconductor wherein one of Al and Ga is not zero and the concentration of carbon or oxygen is higher than the saturation concentration of GaN impurities. amorphous Al x Ga y I
n z N (0 ≦ x, y, z ≦ 1, x + y + z = 1)
And O or a layer to which H and C are added is used as a buried layer or an insulating layer.

【0013】ここで、本発明の望ましい実施態様として
は次のものがあげられる。 (1) AlGaInN層は多結晶又は非晶質であること。 (2) 下地は、Nを含まない半導体層であること。 (3) 下地は、PとNを同時に含む半導体層、又はAsと
Nを同時に含む半導体層であること。
Here, preferred embodiments of the present invention include the following. (1) The AlGaInN layer is polycrystalline or amorphous. (2) The base should be a semiconductor layer containing no N. (3) The base should be a semiconductor layer containing P and N at the same time, or a semiconductor layer containing As and N at the same time.

【0014】(4) 埋め込み層は、活性領域の側部に形成
された凹部内に形成され、酸素又はカーボンの濃度を、
AlN結晶中での不純物飽和濃度(約1020×cm-3
以上で、且つ熱伝導係数があまり大きくならない組成
(酸素又はカーボンの組成がほぼ50%以下)にするこ
と。
(4) The buried layer is formed in a concave portion formed on the side of the active region, and controls the concentration of oxygen or carbon.
Impurity saturation concentration in AlN crystal (about 10 20 × cm -3 )
The composition should be such that the thermal conductivity coefficient does not become too large (the composition of oxygen or carbon is about 50% or less).

【0015】また本発明は、上記半導体素子の製造方法
において、Alx Gay Inz N(0<x<1,0<y
+z<1,x+y+z=1)からなる半導体層を成長す
る際に、少なくとも窒素の原料にジメチルヒドラジン,
モノメチルヒドラジン,又はターシャリブチルヒドラジ
ンを含み、Ga又はAlの原料としてそれぞれGa又は
Alの有機金属を用いることを特徴とする。ここで、少
なくとも2〜3フッ素化合物或いはフッ素酸素化合物を
選択マスクとして埋め込み層を形成することが望まし
い。
[0015] The present invention is the manufacturing method of the semiconductor element, Al x Ga y In z N (0 <x <1,0 <y
+ Z <1, x + y + z = 1) when growing a semiconductor layer comprising at least dimethylhydrazine,
It contains monomethylhydrazine or tertiarybutylhydrazine, and is characterized by using Ga or Al organic metal as a raw material of Ga or Al, respectively. Here, it is desirable to form the buried layer using at least a few fluorine compounds or fluorine oxygen compounds as a selection mask.

【0016】また本発明は、活性層を含む多層膜の側面
がメサ状に加工され、該メサ側面がAlGaNを主成分
とする埋め込み層で埋め込まれた半導体素子であって、
前記メサ側面とAlGaN埋め込み層の間に、活性層を
形成する半導体と同一結晶構造を有する半導体層が設け
られたことを特徴とする。
According to the present invention, there is also provided a semiconductor device in which a side surface of a multilayer film including an active layer is processed into a mesa shape, and the mesa side surface is buried with a buried layer mainly composed of AlGaN.
A semiconductor layer having the same crystal structure as the semiconductor forming the active layer is provided between the mesa side surface and the AlGaN buried layer.

【0017】また本発明は、活性層を含む多層膜の側面
がメサ状に加工され、該メサ側面がAlGaNを主成分
とする埋め込み層で埋め込まれた半導体素子であって、
前記AlGaN埋め込み層が、組成の異なる複数の層で
形成されたことを特徴とする。
According to the present invention, there is also provided a semiconductor device in which a side surface of a multilayer film including an active layer is processed into a mesa shape, and the mesa side surface is buried with a buried layer mainly composed of AlGaN.
The AlGaN buried layer is formed of a plurality of layers having different compositions.

【0018】(作用)本発明によれば、例えば活性領域
の近傍をメサ形成後に、メサ側部をAlx Gay Inz
N(0<x<1,0<y+z<1,x+y+z=1)、
又はAlx Gay Inz N(0≦(x,y,z)≦1,
x+y+z=1)にHとO又はHとCを添加した層を、
埋め込み層に用いたことを特徴としている。この場合、
活性領域を形成する半導体は、GaAs,AlGaA
s,InP,AlGaInP,GaInAs,GaIn
AsP,GaP等の III族化合物半導体、Si,SiG
eC,SiGeSn,Ge等のIV族半導体、CdMgT
e,ZnSe,ZnCdTe等の II-VI族化合物半導
体、カルコパイライト半導体、GaInAsN,GaI
nAsPN,AlGaInN,AlGaInAsPN等
が適用可能である。
[0018] According to (action) the present invention, for example, the vicinity of the active region after the mesa is formed, the mesa side Al x Ga y In z
N (0 <x <1, 0 <y + z <1, x + y + z = 1),
Or Al x Ga y In z N ( 0 ≦ (x, y, z) ≦ 1,
x + y + z = 1) to a layer in which H and O or H and C are added,
It is characterized in that it is used for a buried layer. in this case,
The semiconductor forming the active region is GaAs, AlGaAs
s, InP, AlGaInP, GaInAs, GaIn
Group III compound semiconductor such as AsP, GaP, Si, SiG
Group IV semiconductor such as eC, SiGeSn, Ge, CdMgT
e, ZnSe, ZnCdTe, etc., II-VI compound semiconductors, chalcopyrite semiconductors, GaInAsN, GaI
nAsPN, AlGaInN, AlGaInAsPN, etc. can be applied.

【0019】本発明の埋め込み層は電気的抵抗率が高い
ので、埋め込み層への電流リークが小さく、活性領域を
小さくすることができる。このため、デバイスの駆動電
流を小さくすることができる。さらに、駆動電流が小さ
いので発熱量を下げることができる。また、本発明の埋
め込み層或いは絶縁層は、2W/cmKと熱伝導度が高
いので、活性層での温度上昇が小さくハイパワーデバイ
スを実現することができる。また、電気的絶縁性が高く
熱伝導度が高いことから、素子を高密度に集積化するこ
とができる。
Since the buried layer of the present invention has a high electric resistivity, current leakage to the buried layer is small, and the active region can be reduced. Therefore, the drive current of the device can be reduced. Further, since the driving current is small, the amount of generated heat can be reduced. Further, since the buried layer or the insulating layer of the present invention has a high thermal conductivity of 2 W / cmK, a temperature rise in the active layer is small and a high power device can be realized. In addition, since the element has high electrical insulation and high thermal conductivity, elements can be integrated at a high density.

【0020】特に、活性領域が上記半導体のうち、Ga
As,AlGaAs,InP,AlGaInP,GaI
nAs,GaInAsP,GaP等のIII-V族化合物半
導体、Si,SiGeC,SiGeSn,Ge等のIV族
半導体、CdMgTe,ZnSe,ZnCdTe等の I
I-VI族化合物半導体、カルコパイライト半導体、GaI
nAsN,GaInAsPN,AlGaInAsPNの
場合には、本発明の埋め込み層と活性領域と吸収端のエ
ネルギーが異なるために、光閉じ込め効果も大きく取る
ことができ、光学的素子分離も十分に行うことができ
る。
In particular, the active region is made of Ga
As, AlGaAs, InP, AlGaInP, GaI
III-V compound semiconductors such as nAs, GaInAsP, and GaP; IV group semiconductors such as Si, SiGeC, SiGeSn, and Ge; and I such as CdMgTe, ZnSe, and ZnCdTe.
I-VI compound semiconductor, chalcopyrite semiconductor, GaI
In the case of nAsN, GaInAsPN, and AlGaInAsPN, since the energy of the buried layer of the present invention, the active region, and the energy of the absorption edge are different, a large light confinement effect can be obtained, and sufficient optical element separation can be performed.

【0021】また、埋め込み又は絶縁層としてのAlG
aInNを単結晶ではなく多結晶或いは非晶質としてい
るので、単結晶の場合と異なり、活性領域に歪みを導入
したり、それに伴う転位を誘起しにくい。さらに、埋め
込み層又は絶縁層内に巨大な転位も導入されにくい。
In addition, AlG as a buried or insulating layer
Since aInN is not a single crystal but a polycrystal or an amorphous, unlike the case of a single crystal, it is difficult to introduce a strain into the active region and induce a dislocation accompanying the distortion. Further, huge dislocations are hardly introduced into the buried layer or the insulating layer.

【0022】また、AlGaInNにHとO又はHとC
を添加することにより、低温での形成が可能であり、活
性層のGaAs,AlGaAs,InP,AlGaIn
P,GaInAs,GaInAsP,GaP,GaIn
AsN,GaInAsPN等のIII-V族化合物半導体、
Si,SiGeC,SiGeSn,Ge等のIV族半導
体、CdMgTe,ZnSe,ZnCdTe等の II-VI
族化合物半導体、カルコパイライト半導体、AlGaI
nAsPNと、埋め込み層の窒素源との間の反応を抑制
できるので、界面にバンドギャップの小さい層が形成さ
れるのを抑制することができる。このため、埋め込み層
又は絶縁層での電流リークを減らすことができる。
In addition, H and O or H and C are added to AlGaInN.
Can be formed at a low temperature by adding GaAs, AlGaAs, InP, and AlGaIn of the active layer.
P, GaInAs, GaInAsP, GaP, GaIn
III-V compound semiconductors such as AsN, GaInAsPN,
Group IV semiconductors such as Si, SiGeC, SiGeSn and Ge, and II-VI such as CdMgTe, ZnSe and ZnCdTe
Group compound semiconductor, chalcopyrite semiconductor, AlGaI
Since the reaction between nAsPN and the nitrogen source of the buried layer can be suppressed, formation of a layer having a small band gap at the interface can be suppressed. Therefore, current leakage in the buried layer or the insulating layer can be reduced.

【0023】また、HとO又はHとCを添加することに
より、AlGaInNの場合と比べて非晶質或いは多結
晶をより容易に形成することができ、活性層と埋め込み
層又は絶縁層との界面に導入される歪みを小さくするこ
とができる。
By adding H and O or H and C, amorphous or polycrystalline can be formed more easily than in the case of AlGaInN. The strain introduced to the interface can be reduced.

【0024】また、酸素又はカーボンの濃度をAlN単
結晶中での不純物飽和濃度(略1020cm-3)以上とす
れば、単一の結晶となりにくく、容易に多結晶或いは非
晶質が得られる。また、熱伝導率がAlNとあまり大き
く異ならない組成(酸素及びカーボンの濃度が略50%
以下)であれば、AlGaInNの熱伝導率はSiの熱
伝導率を上まわる。HとO又はHとCを添加したAlG
aInNは、本発明の特徴である熱伝導率の高い絶縁体
としての特性を維持することになる。
Further, if oxygen or impurity saturation concentration of the concentration of carbon in the AlN single crystal (approximately 10 20 cm -3) or more, less likely the single crystal, easily polycrystalline or amorphous give Can be Further, a composition whose thermal conductivity is not so different from AlN (oxygen and carbon concentrations are approximately 50%
In the following case, the thermal conductivity of AlGaInN exceeds the thermal conductivity of Si. AlG with H and O or H and C added
aInN maintains the characteristics of an insulator having high thermal conductivity, which is a feature of the present invention.

【0025】また、多結晶若しくは非晶質のAlGaI
nN、又はHとO又はHとCを添加したAlGaInN
を形成する際に、少なくとも窒素の原料にジメチルヒド
ラジン,モノメチルヒドラジン,又はターシャリブチル
ヒドラジンを含み、Ga又はAlの原料としてそれそれ
Ga又はAlの有機金属を用いて形成すると、350℃
程度の低温でこれらの窒素原料が分解するので、デバイ
スの活性層となる材料と窒素の反応を防ぐことができ
る。このため、活性層となる材料からの構成元素の蒸発
を防ぐことができ、材料の劣化を防ぐことができる。ま
た、バンドギャップの小さい窒素化砒素化物,窒素化燐
化物,又は窒素化砒素化燐化物の形成を防ぐこともでき
る。
Also, polycrystalline or amorphous AlGaI
nN, or AlGaInN doped with H and O or H and C
When forming at least nitrogen gas containing dimethylhydrazine, monomethylhydrazine, or tertiarybutylhydrazine as a raw material of Ga or Al and using an organic metal of Ga or Al as the raw material for Ga or Al, the temperature is 350 ° C.
Since the nitrogen source is decomposed at a low temperature, a reaction between the material serving as an active layer of the device and nitrogen can be prevented. For this reason, the evaporation of the constituent elements from the material to be the active layer can be prevented, and the deterioration of the material can be prevented. Further, formation of a nitrided arsenide, a nitrided phosphide, or a nitrided arsenide having a small band gap can be prevented.

【0026】上記多結晶若しくは非晶質のAlGaIn
N、又はHとO又はHとCを添加したAlGaInNを
形成する際に、少なくとも窒素の原料としてアンモニア
ガスとジメチルヒドラジン,モノメチルヒドラジン,タ
ーシャリブチルヒドラジンのうちの少なくとも一つを含
み、Ga,Al又はInの原料としてそれぞれGa,A
l又はInの有機金属を用いてもよい。この場合、NH
3 も供給されているので、窒素原料の分解温度域が広が
り膜を堆積する上で適当な温度域が広がる。また、高価
なジメチルヒドラジン,モノメチルヒドラジン,又はタ
ーシャリブチルヒドラジンの使用量を低減することがで
きる。
The above polycrystalline or amorphous AlGaIn
When forming AlGaInN to which N or H and O or H and C are added, at least nitrogen gas and at least one of dimethylhydrazine, monomethylhydrazine and tertiarybutylhydrazine are contained as a nitrogen source, and Ga, Al Or Ga and A as raw materials of In respectively.
An organic metal of 1 or In may be used. In this case, NH
Since 3 is also supplied, the temperature range for decomposition of the nitrogen raw material is widened and the temperature range suitable for depositing a film is widened. Further, the amount of expensive dimethylhydrazine, monomethylhydrazine, or tertiarybutylhydrazine can be reduced.

【0027】素子の活性領域の周囲を電気的或いは光学
杓に絶縁するため活性領域の周囲に凹部を形成し、この
凹部を、多結晶若しくは非晶質のAlx Gay Inz
(0<x<1,0<y+z<1,x+y+z=1)、又
はHとO又はHとCを添加したAlx Gay Inz
(0≦(x,y,z)≦1,x+y+z=1)層を形成
することで略平坦化する際に、活性領域の凹部以外の部
分に少なくともMgx Cay Srz Ba1-x-z2 或い
はAlx Gay In1-x-z3 を選択マスクとして凹部
に埋め込み層を形成した場合、これらの層は表面エネル
ギーが小さいので堆積物がこれらの層の上へ殆ど析出し
ない。
[0027] forming a recess around the active regions for insulating the electrical or optical ladle around the active region of the device, the concave portion, the polycrystalline or amorphous Al x Ga y In z N
(0 <x <1,0 <y + z <1, x + y + z = 1), or H and O or Al was added H and C x Ga y In z N
(0 ≦ (x, y, z) ≦ 1, x + y + z = 1) When forming a layer to make it substantially flat, at least the portion of the active region other than the concave portion is made of Mg x C ay Sr z Ba 1 -x f. when forming a buried layer in the recess 2 or Al x Ga y in 1-xz F 3 as a selective mask, sediments because these layers small surface energy does not precipitate nearly the top of these layers.

【0028】また、500℃程度まで温度を上げて析出
させた場合には、これらのフッ素化合物の蒸発により固
層から蒸発したフッ素と堆積する材料の間で反応が起
り、蒸気圧の高いフッ素化合物となり堆積が抑制される
効果もある。また、これらのフッ素化合物は酸或いはア
ルカリで容易に除去可能であり、マスク上に多結晶若し
くは非晶質のAlx Gay Inz N(0<x<1,0<
y+z<1,x+y+z=1)、又はHとO又はHとC
を添加したAlx Gay Inz N(0≦(x,y,z)
≦1,x+y+z=1)層を堆積しても、容易に除去す
ることができる。
Further, when the temperature is raised to about 500 ° C. to precipitate, a reaction occurs between the fluorine evaporated from the solid layer and the deposited material due to the evaporation of the fluorine compound, and the fluorine compound having a high vapor pressure is deposited. It also has the effect of suppressing deposition. Further, these fluorine compounds are readily removed with acid or alkali, Al x polycrystalline or amorphous on the mask Ga y In z N (0 < x <1,0 <
y + z <1, x + y + z = 1), or H and O or H and C
Was added the Al x Ga y In z N ( 0 ≦ (x, y, z)
≦ 1, x + y + z = 1) Even if a layer is deposited, it can be easily removed.

【0029】[0029]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。 (第1の実施形態)図1は、本発明の第1の実施形態に
係わるレーザアレイの概略構成を示す断面図である。本
実施形態ではレーザの数は1素子内で12個あるが、こ
こではその一部分を示している。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a sectional view showing a schematic configuration of a laser array according to a first embodiment of the present invention. In this embodiment, the number of lasers is 12 in one element, but a part thereof is shown here.

【0030】p−InP基板101上に、キャリア濃度
1×1018cm-3のp−InPバッファ兼クラッド層1
02、組成の異なるGaInAsPとGaInAsP歪
み多重量子井戸構造(MQW)よりなる活性層103、
n−InPクラッド層104、n −InPコンタクト層
105が積層され、これら各層102〜105はメサ状
に加工されている。
On a p-InP substrate 101, a p-InP buffer / cladding layer 1 having a carrier concentration of 1 × 10 18 cm −3 was formed.
02, an active layer 103 composed of GaInAsP and a GaInAsP strained multiple quantum well structure (MQW) having different compositions;
An n-InP cladding layer 104 and an n-InP contact layer 105 are laminated, and these layers 102 to 105 are processed into a mesa shape.

【0031】MQW活性層103の側面には、非晶質A
x Ga1-x N層(0<x<1)110が埋め込み形成
されている。さらに、コンタクト層105上にn側電極
121が形成され、基板101の裏面にp側電極122
が形成されている。能動領域103の側面を非晶質Al
x Ga1-x N層110で埋め込む際には、TMAI,T
MGa,NH3 ,ジメチルヒドラジンを用い、選択堆積
マスクとしてMgCaSrBaFを用いて、350℃で
非晶質Alx Ga1-x N層110を形成した。この後、
MgCaSrBaF2 マスクをその上への堆積物と共
に、硫酸を用いて除去した。その後、更にパターニング
を行いレジストを用いたリフトオフを用いてn側電極1
21を形成した。
On the side surface of the MQW active layer 103, amorphous A
l x Ga 1-x N layer (0 <x <1) 110 is buried. Further, an n-side electrode 121 is formed on the contact layer 105, and a p-side electrode 122 is formed on the back surface of the substrate 101.
Are formed. The side surface of the active region 103 is made of amorphous Al
when embedding in x Ga 1-x N layer 110, TMAI, T
Using Mga, NH 3 , dimethylhydrazine and MgCaSrBaF as a selective deposition mask, an amorphous AlxGa1 -xN layer 110 was formed at 350.degree. After this,
The MgCaSrBaF 2 mask with deposits onto them, was removed using sulfuric acid. Thereafter, further patterning is performed, and the n-side electrode 1 is formed by lift-off using a resist.
21 was formed.

【0032】埋込み層110と活性層103の屈折率は
大きいので活性層103の幅は0.8μm以下にしても
まだしきい電流は活性層幅に応じて下がり、活性層10
3の幅が0.5μm時には同じ層構造を有する1.2μ
mの活性層幅のInP埋め込みレーザに比べてしきい値
は約半分に下がった。また、埋込み層110の抵抗が高
いので漏れ電流が少なく、活性層幅が狭いにも拘わらず
最大光出力はほぼ同様の値を示した。
Since the refractive index between the buried layer 110 and the active layer 103 is large, even if the width of the active layer 103 is 0.8 μm or less, the threshold current still decreases in accordance with the width of the active layer.
3 having the same layer structure when the width of
The threshold value is reduced to about half as compared with the InP buried laser having an active layer width of m. Further, since the resistance of the buried layer 110 was high, the leakage current was small, and the maximum light output showed almost the same value despite the narrow active layer width.

【0033】活性層103の構造或いは、活性層103
の幅を変えて発振波長の異なる素子を集積化した。従来
のデバイスでは、活性層103と埋込み層110との間
の屈折率差が小さいので、光が活性層の周りで複雑に広
がり実効屈折率が活性層の構造に強く依存した。本実施
形態の場合、光は横方向にはほぼ完全に閉じ込められて
いるので、実効屈折率の計算がほぼ1次元で可能となっ
た。このため、活性層の幅を変えた場合の実効屈折率の
変動を考慮する必要が無くなり、グレーティングを用い
た場合の波長の制御性が上がり、活性層幅の制御不良に
伴う歩留まりの低下を防くことができた。また、グレー
ティングのピッチと活性層の構造を変えることで、容易
に異なる波長のデバイスの集積化が可能であった。
The structure of the active layer 103 or the active layer 103
The devices having different oscillation wavelengths were integrated by changing the width of the device. In the conventional device, since the difference in the refractive index between the active layer 103 and the buried layer 110 is small, light spreads around the active layer in a complicated manner, and the effective refractive index strongly depends on the structure of the active layer. In the case of the present embodiment, the light is almost completely confined in the lateral direction, so that the calculation of the effective refractive index can be performed in almost one dimension. For this reason, it is not necessary to consider the fluctuation of the effective refractive index when the width of the active layer is changed, and the controllability of the wavelength when a grating is used is improved, thereby preventing a decrease in yield due to poor control of the width of the active layer. I was able to go. Also, by changing the pitch of the grating and the structure of the active layer, it was possible to easily integrate devices having different wavelengths.

【0034】上記実施形態にとどまらず、波長が0.9
2〜1.6μmの光を制御する機能を有することを特徴
とする半導体素子に本発明を用いた場合、Alx Gay
Inz N(0<x<1,0<y+z<1,x+y+z=
1)、HとO又はHとCを添加したAlx Gay Inz
N(0≦(x,y,z)≦1,x+y+z=1)、の屈
折率がこの波長域で殆ど変化しないので、設計マージン
を制御性良くとれ、設計通りのデバイスを実現できた。
また、この波長域での波長多重化も容易であった。
The present invention is not limited to the above embodiment.
When using the present invention to a semiconductor device and having a function of controlling the light 2~1.6μm, Al x Ga y
In z N (0 <x <1, 0 <y + z <1, x + y + z =
1), Al was added H and O or H and C x Ga y In z
Since the refractive index of N (0 ≦ (x, y, z) ≦ 1, x + y + z = 1) hardly changes in this wavelength range, a design margin can be obtained with good controllability, and a device as designed can be realized.
Also, wavelength multiplexing in this wavelength range was easy.

【0035】また、本実施形態は特開平9−45985
号と比較すると、単結晶AlNの代わりに非晶質AlG
aNを用いている点が異なるが、これにより上記公知例
では得られない効果が得られる。即ち、AlNにGaを
導入するとAlNの酸化が抑制されることになり、埋め
込み層の歪みや特性変化を抑制することができる。さら
に、Gaを導入することにより低温成長が可能となり、
異なる結晶を埋め込み形成する際に極めて有効である。
また、単結晶でなく非晶質に形成すると、埋め込み層は
柔らかくなり変形しやすくなる。これは、活性層を含む
メサの方の変形を抑制することにつながる。
This embodiment is described in Japanese Patent Application Laid-Open No. 9-45895.
Compared with the single crystal AlN, amorphous AlG
The difference is that aN is used, but this provides an effect that cannot be obtained in the above-mentioned known example. That is, when Ga is introduced into AlN, the oxidation of AlN is suppressed, and the distortion and characteristic change of the buried layer can be suppressed. Furthermore, by introducing Ga, low-temperature growth becomes possible,
This is extremely effective when different crystals are embedded.
Further, when the buried layer is formed in an amorphous state instead of a single crystal, the buried layer becomes soft and easily deformed. This leads to suppression of deformation of the mesa including the active layer.

【0036】(第2の実施形態)図2は、本発明の第2
の実施形態に係わる光半導体素子の概略構成を示す斜視
図である。この素子は数多くの能動領域を集積化したも
ので、図2ではその一部分を示している。
(Second Embodiment) FIG. 2 shows a second embodiment of the present invention.
It is a perspective view which shows the schematic structure of the optical semiconductor element concerning embodiment. This device integrates a large number of active areas, and FIG. 2 shows a part thereof.

【0037】図中の201はn型InP基板、202は
n型InPクラッド層、203は導波路兼変調用吸収
層、204はp型InPクラッド層、205はp側電極
メタル、208はグレーティングレーザ領域、210は
高抵抗AlGaNOCH埋め込み層、221は変調器用
電極、222はn側電極、223はレーザ用電極、22
5は電極コンタクト層分離領域を示している。
In the figure, 201 is an n-type InP substrate, 202 is an n-type InP cladding layer, 203 is a waveguide / modulation absorption layer, 204 is a p-type InP cladding layer, 205 is a p-side electrode metal, and 208 is a grating laser. Region, 210 is a high resistance AlGaN OCH buried layer, 221 is a modulator electrode, 222 is an n-side electrode, 223 is a laser electrode, 22
Reference numeral 5 denotes an electrode contact layer separation region.

【0038】図2中にはレーザと変調器と導波路が集積
化されている。レーザと変調器は順バイアス素子と逆バ
イアス素子なので、素子間の絶縁が重要で、この場合は
二つの素子の電流狭窄層を一つの素子分離領域が兼ねて
いるので、埋め込み層としてAlGaNOCH層210
を形成している。この層が高抵抗なので、本実施形態で
は電極を分離することで高い素子分離が実現できてい
る。また、高速動作のためには変調器のキャパシタンス
を減らすことが必要で、これには変調器の幅を狭くする
のが望ましい。また、光の導波を考えるとレーザ部分と
大きな幅の差が無いことが望ましい。
In FIG. 2, a laser, a modulator and a waveguide are integrated. Since the laser and the modulator are a forward bias element and a reverse bias element, insulation between the elements is important. In this case, the current confinement layer of the two elements is also used as one element isolation region, so that the AlGaN OCH layer 210 is used as a buried layer.
Is formed. Since this layer has a high resistance, in this embodiment, high element isolation can be realized by separating the electrodes. In addition, for high-speed operation, it is necessary to reduce the capacitance of the modulator. For this purpose, it is desirable to reduce the width of the modulator. Also, considering light waveguide, it is desirable that there is no large difference in width from the laser portion.

【0039】ここで、埋め込み層210としては、Al
GaNOCHに限らず、更にInを含むものであっても
よいし、O,C又はHのうちの1種又は2種がないもの
であってもよい。つまり、Alx Gay Inz N(0≦
(x,y,z)≦1,x+y+z=1)に、H,O又は
Cを添加した層であればよい。また、第1の実施形態と
同様に、Alx Gay Inz N(0<x<1,0<y+
z<1,x+y+z=1)を用いることも可能である。
Here, the buried layer 210 is made of Al
Not limited to GaNOCH, it may further contain In, or may not have one or two of O, C and H. That, Al x Ga y In z N (0 ≦
Any layer may be used as long as H, O or C is added to (x, y, z) ≦ 1, x + y + z = 1). As in the first embodiment, Al x Ga y In z N (0 <x <1,0 <y +
z <1, x + y + z = 1) can also be used.

【0040】本実施形態の場合には、光と電流の狭窄効
果が高く動作領域の幅を0.4μm程度まで狭くするこ
とができた。このため、従来の構造では高い消光比と高
速動作を両立させることは難しかったが、本実施形態の
デバイスでは消光比18dB以上、動作速度40GHz
を実現することができた。
In the case of this embodiment, the effect of confining light and current is high, and the width of the operation region can be reduced to about 0.4 μm. For this reason, it was difficult to achieve both a high extinction ratio and high-speed operation in the conventional structure, but in the device of the present embodiment, the extinction ratio was 18 dB or more and the operation speed was 40 GHz.
Was realized.

【0041】本発明のAlGaInN又はAlGaNO
CHの材料が素子分離領域あるいは絶縁領域に用いられ
ている構造は本実施形態に限らず、少なくともレーザと
変調器と導波路が集積化されたことを特徴とする半導体
素子において、更に、導波路型の増幅器や受光素子等あ
るいはその集積化にも用いることができる。本発明の半
導体素子では、高抵抗の埋め込み層が用いられている。
このため、いずれの場合も電極間でのリークを容易に減
らすことができた。このため、特にレーザの高出力化
と、変調器の高速領域での変調特性の改善の効果が顕著
である。
AlGaInN or AlGaNO of the present invention
The structure in which the CH material is used for the element isolation region or the insulating region is not limited to the present embodiment, and at least a semiconductor device in which a laser, a modulator, and a waveguide are integrated. It can also be used for a type of amplifier, light receiving element or the like or for integration thereof. In the semiconductor device of the present invention, a buried layer having a high resistance is used.
Therefore, in any case, the leakage between the electrodes could be easily reduced. Therefore, the effects of increasing the output of the laser and improving the modulation characteristics in the high-speed region of the modulator are particularly remarkable.

【0042】(第3の実施形態)図3は、本発明の第3
の実施形態に係わる光半導体素子の概略構成を示す断面
図である。本図は多数の電界効果型トランジスタを集積
化した半導体素子の一部分を示す。
(Third Embodiment) FIG. 3 shows a third embodiment of the present invention.
It is sectional drawing which shows the schematic structure of the optical semiconductor element concerning embodiment. This figure shows a part of a semiconductor device in which a large number of field effect transistors are integrated.

【0043】図中の301はSI−GaAs基板、30
2はi型GaAlAsバッファ層、303はInGaA
sチャネル層、304はAlGaAsスペーサ層、30
5はAlGaAsキャリア供給層、308はGaAs/
GaInAsのn+ 型コンタクト層、310は非晶質A
lNs1-s (0<(s,1−s)<1)絶縁層、32
1はゲート電極、322はソース電極、323はコンタ
クト電極、327は素子分離領域を示している。
In the figure, reference numeral 301 denotes an SI-GaAs substrate;
2 is an i-type GaAlAs buffer layer, 303 is InGaAs
s channel layer, 304 is an AlGaAs spacer layer, 30
5 is an AlGaAs carrier supply layer, 308 is GaAs /
GaInAs n + -type contact layer, 310 is amorphous A
1N s O 1-s (0 <(s, 1-s) <1) Insulating layer, 32
1 is a gate electrode, 322 is a source electrode, 323 is a contact electrode, and 327 is an element isolation region.

【0044】本実施形態の場合、素子間の分離絶縁膜、
表面パッシベーションを兼ねた絶縁膜に本発明の非晶質
AlOs1-s (0<s,1−s<1)を用いており、
これにより良好な素子分離と高い熱伝導が得られた。こ
のため、素子全体で100W級の出力が従来とほぼ同様
の面積で実現でき、同時に20GHz級の動作速度も実
現できた。
In the case of this embodiment, an isolation insulating film between elements,
The amorphous AlO s C 1-s (0 <s, 1-s <1) of the present invention is used for an insulating film also serving as surface passivation,
As a result, good element separation and high heat conduction were obtained. For this reason, an output of 100 W class can be realized in almost the same area as the conventional device, and an operation speed of 20 GHz class can be realized at the same time.

【0045】(第4の実施形態)図4は、本発明の第4
の実施形態に係わる光半導体素子の概略構成を示す断面
図である。これは、ヘテロバイポーラトランジスタに用
いた例を示す。
(Fourth Embodiment) FIG. 4 shows a fourth embodiment of the present invention.
It is sectional drawing which shows the schematic structure of the optical semiconductor element concerning embodiment. This shows an example used for a hetero bipolar transistor.

【0046】図中の401はSI−GaAs基板、40
2はn+ 型GaAs層、403はn型GaAs層、40
4はn+ 型GaAs層、405はAlGaAs層、40
6はn+ 型GaAs層、407はn+ 型GaInAs
層、409はH+ 注入領域、410はAlNOC埋め込
み層、421はエミッタ電極、422はベース電極、4
23はコレクタ電極を示している。
In the figure, reference numeral 401 denotes an SI-GaAs substrate;
2 is an n + -type GaAs layer, 403 is an n-type GaAs layer, 40
4 is an n + -type GaAs layer; 405 is an AlGaAs layer;
6 is an n + -type GaAs layer, and 407 is an n + -type GaInAs
Layer, 409 is an H + implantation region, 410 is an AlNOC buried layer, 421 is an emitter electrode, 422 is a base electrode,
23 indicates a collector electrode.

【0047】本実施形態では、厚いAlNpq
1-p-q (0<(p,q,1−p−q)<1)を形成する
ことで、配線形成後の平坦化ができた。この構造のデバ
イス配線が多く、工程が複雑になるので本発明の効果は
絶大であった。本図も多数のトランジスタを集積化した
半導体素子の一部分を示すものであるが、能動領域の数
が増えて素子構造が複雑になるほど本発明の効果は顕著
となった。また、本実施形態の素子を用いてマイクロ波
領域の周波数での動作を試みたところ、従来よりも素子
分離が良好でサイズも従来よりも25%程度小さいので
高速動作が可能となった。
In this embodiment, the thick AlN p O q C
By forming 1-pq (0 <(p, q, 1-pq ) <1), flattening after forming the wiring was achieved. Since there are many device wirings of this structure and the process becomes complicated, the effect of the present invention is enormous. This figure also shows a part of a semiconductor device in which a large number of transistors are integrated, but the effect of the present invention becomes more remarkable as the number of active regions increases and the device structure becomes more complicated. In addition, when an operation at a frequency in the microwave region was attempted using the device of the present embodiment, high-speed operation became possible because the device isolation was better and the size was about 25% smaller than the conventional device.

【0048】本実施形態の埋め込み層は、2W/cmK
熱伝導度が高いので、活性層からの熱放散が大きく、面
密度当たりのトータルの発熱量を大きくできる。このた
め、集積化した場合の集積化密度を上げることができ
た。また、絶縁層としてデバイスの表面に用いた場合、
従来のSiO2 系の絶縁膜と比べて熱抵抗が小さいの
で、表面からの熱放出効果が大きく集積度を上げること
ができる。また、SOI構造に用いた場合は、従来の熱
抵抗の問題を回避できる。このため、SiO2 系の絶縁
膜を用いた場合と比べて、Si基板上で約3倍、SOI
基板上で約10倍のパワー密度を実現することができ
た。動作速度もそれそれ、約2倍と4倍と顕著な改善が
可能であった。
The buried layer of this embodiment has a thickness of 2 W / cmK
Since the thermal conductivity is high, heat dissipation from the active layer is large, and the total calorific value per area density can be increased. Therefore, the integration density in the case of integration can be increased. Also, when used on the surface of the device as an insulating layer,
Since the thermal resistance is smaller than that of a conventional SiO 2 -based insulating film, the effect of releasing heat from the surface is large and the degree of integration can be increased. Also, when used for an SOI structure, the conventional problem of thermal resistance can be avoided. For this reason, the SOI is about three times as large on the Si substrate as compared with the case where the SiO 2 -based insulating film is used.
It was possible to achieve a power density of about 10 times on the substrate. The operating speed was remarkably improved, about 2 times and 4 times, respectively.

【0049】本発明は上記実施形態に限らず、少なくと
も電子デバイスと光デバイスが集積化されたデバイスに
おいて、Alx Gay Inz N(0<x<1,0<y+
z<1,x+y+z=1)、又はH,C若しくはOのい
ずれか1種以上を添加したAlx Gay Inz N(0≦
(x,y,z)≦1,x+y+z=1)層が、素子分離
領域或いは絶縁領域に用いられてもよい。この場合、電
子デバイスと光デバイスがそれぞれ集積化密度をあげら
れると共に、光の閉じ込め効果が大きいので、光デバイ
スと電子デバイスの距離を近くすることもできた。
[0049] The present invention is not limited to the above embodiment, in a device at least electronic devices and optical devices are integrated, Al x Ga y In z N (0 <x <1,0 <y +
z <1, x + y + z = 1), or H, Al x Ga y In z N (0 ≦ added any one or more of C or O
(X, y, z) ≦ 1, x + y + z = 1) layers may be used for the element isolation region or the insulating region. In this case, the integration density of the electronic device and the optical device can be increased, and the effect of confining light is large, so that the distance between the optical device and the electronic device can be reduced.

【0050】特に、表面に2つ以上或いは表面に2つ以
上かつ裏面に1つ以上の計3つ以上の電極を有するデバ
イスにおいて本発明を適用すると、埋め込み層の電気的
抵抗率が高く、埋め込み層への電流リークが小さく、活
性領域間の距離を小さくすることができる。更に、本発
明の埋め込み層は、2W/cmKと熱伝導度が高いの
で、活性層からの熱放散が大きく、面密度当たりのトー
タルの発熱量を大きくできる。このため、集積化した場
合に集積化密度を上げることができた。従って、本発明
はレーザと変調器の集積化デバイスに限らず、電極が3
以上或いは、デバイスの片面に2個所以上電極のある半
導体素子において、素子サイズを小さくしたり同じサイ
ズでのハイパワー化すること、機能の異なる活性領域を
集積化することが容易にできる。またこのため、素子の
高速動作も容易に実現できる。
In particular, when the present invention is applied to a device having two or more electrodes on the front surface or two or more on the front surface and one or more on the back surface, the electrical resistivity of the buried layer is high, and Current leakage into the layer is small, and the distance between active regions can be reduced. Furthermore, since the buried layer of the present invention has a high thermal conductivity of 2 W / cmK, the heat dissipation from the active layer is large, and the total calorific value per area density can be increased. For this reason, when integrated, the integration density could be increased. Therefore, the present invention is not limited to an integrated device of a laser and a modulator.
Alternatively, in a semiconductor device having two or more electrodes on one side of the device, it is easy to reduce the device size, increase the power at the same size, and integrate active regions having different functions. Therefore, high-speed operation of the element can be easily realized.

【0051】本発明の製造方法は、上記実施形態の製造
方法に限るものではない。Alx Gay Inz N(0<
x<1,0<y+z<1,x+y+z=1)、又はHと
O若しくはHとCを添加したAlx Gay Inz N(0
≦(x,y,z)≦1,x+y+z=1)層を形成する
際に窒素の原料にアンモニアガスを含み、Ga又はAl
の原料としてそれぞれGa又はAlの有機金属を用いて
もよい。この場合、350〜550℃の成長温度では、
NH3 が気相中で殆ど分解しないので原料ガスが未反応
のまま基板表面に到達し、均一な堆積層を形成できた。
当該層の温度が600〜750℃の範囲では気相中での
反応が激しく不均一な膜が形成され、350℃以下では
膜は堆積しなかった。
The manufacturing method of the present invention is not limited to the manufacturing method of the above embodiment. Al x Ga y In z N ( 0 <
x <1,0 <y + z < 1, x + y + z = 1), or Al was added H and O or H and C x Ga y In z N ( 0
≦ (x, y, z) ≦ 1, x + y + z = 1) When forming a layer, a nitrogen source contains ammonia gas, and Ga or Al
May be made of Ga or Al organic metal, respectively. In this case, at a growth temperature of 350 to 550 ° C.,
Since NH 3 hardly decomposed in the gas phase, the raw material gas reached the substrate surface without reacting, and a uniform deposited layer could be formed.
When the temperature of the layer was in the range of 600 to 750 ° C., the reaction in the gas phase was intense and a non-uniform film was formed. When the temperature was 350 ° C. or lower, the film was not deposited.

【0052】また、Alx Gay Inz N(0<x<
1,0<y+z<1,x+y+z=1)、又はH,O若
しくはCの1種類以上を添加したAlx Gay Inz
(0≦(x,y,z)≦1,x+y+z=1)層を形成
する際に、少なくとも窒素の原料にジメチルヒドラジ
ン,モノメチルヒドラジン,又はターシャリブチルヒド
ラジンを含み、Ga又はAlの原料としてそれぞれGa
又はAlの有機金属を用いて形成してもよい。この場
合、250℃〜350℃程度の低温でこれらの窒素原料
が結晶成長に寄与するようになるので、デバイスの活性
層となる材料と窒素の反応を防ぐことができた。このた
め、活性層となる材料からの構成元素の蒸発を防ぐこと
ができ、材料の劣化を防ぐことができた。さらに、バン
ドギャップの小さい窒素化砒素化物,窒素化燐化物,或
いは窒素化砒素化燐化物の形成を防ぐこともできた。
[0052] Further, Al x Ga y In z N (0 <x <
1,0 <y + z <1, x + y + z = 1), or H, Al was added 1 or more O or C x Ga y In z N
(0 ≦ (x, y, z) ≦ 1, x + y + z = 1) When forming a layer, at least nitrogen raw material contains dimethylhydrazine, monomethylhydrazine, or tertiary butylhydrazine, and Ga or Al raw material Ga
Alternatively, it may be formed using an organic metal of Al. In this case, since the nitrogen source contributes to the crystal growth at a low temperature of about 250 ° C. to 350 ° C., it was possible to prevent the reaction between the material serving as the active layer of the device and nitrogen. For this reason, the evaporation of the constituent elements from the material to be the active layer could be prevented, and the deterioration of the material could be prevented. Furthermore, the formation of a small band gap nitrogenated arsenide, a nitrogenated phosphide, or a nitrogenated arsenide phosphide could be prevented.

【0053】上記Alx Gay Inz N(0<x<1,
0<y+z<1,x+y+z=1)、又はH,O若しく
はCの1種類以上を添加したAlx Gay Inz N(0
≦(x,y,z)≦1,x+y+z=1)層を形成する
際に、少なくとも窒素の原料としてアンモニアガスとジ
メチルヒドラジン,モノメチルヒドラジン,又はターシ
ャリアチルヒドラジンのうちの少なくとも一つを含み、
Ga,Al又はInの原料としてそれぞれGa,Al又
はInの有機金属を用いてもよい。この場合、NH3
供給されているので、窒素原料の分解温度域が広がり膜
を堆積する上で適当な温度域が250〜600℃まで広
がった。また、高価なジメチルヒドラジン,モノメチル
ヒドラジン,又はターシャリブチルヒドラジンの使用量
を数分の一に低減することができた。
[0053] The Al x Ga y In z N ( 0 <x <1,
0 <y + z <1, x + y + z = 1), or H, Al was added 1 or more O or C x Ga y In z N ( 0
≦ (x, y, z) ≦ 1, x + y + z = 1) When forming a layer, at least one of ammonia gas and at least one of dimethylhydrazine, monomethylhydrazine, or tertiary hydrazine is contained as a nitrogen source,
An organic metal of Ga, Al or In may be used as a raw material of Ga, Al or In, respectively. In this case, since NH 3 was also supplied, the decomposition temperature range of the nitrogen raw material was widened, and the temperature range suitable for depositing the film was widened to 250 to 600 ° C. Further, the amount of expensive dimethylhydrazine, monomethylhydrazine, or tertiarybutylhydrazine used could be reduced to several times.

【0054】また、上記実施形態に限らず素子の活性領
域の周囲を電気的或いは光学的に絶縁するため活性領域
の周囲に凹部を形成し、この凹部をAlx Gay Inz
N(0<x<1,0<y+z<1,x+y+z=1)、
又はH,O若しくはCの1種類以上を添加したAlx
y Inz N(0≦(x,y,z)≦1,x+y+z=
1)層を形成することで略平坦化する際に、活性領域の
凹部以外の部分に少なくともMgx Cay Srz Ba
1-x-y-z2 或いはAlx Gay In1-x-y3を選択
マスクとして凹部に埋め込み層を形成すればよい。これ
らの層は表面エネルギーが小さいので、堆積物がこれら
の層の上へ殆ど析出しない。SiO2 と比べてこの差は
顕著であった。
[0054] Further, a recess is formed around the active region for insulating electrically or optically around the active region of the device is not limited to the above embodiment, the recess Al x Ga y In z
N (0 <x <1, 0 <y + z <1, x + y + z = 1),
Or Al x G to which at least one of H, O and C is added
a y In z N (0 ≦ (x, y, z) ≦ 1, x + y + z =
When substantially flattened by forming a 1) layer, at least Mg x Ca y Sr z Ba in a portion other than the concave portion of the active region
May be formed a buried layer in the recess as a 1-xyz F 2 or selective mask the Al x Ga y In 1-xy F 3. Since these layers have low surface energy, little deposits deposit on these layers. This difference was remarkable compared to SiO 2 .

【0055】また、500℃程度まで温度を上げて析出
させた場合には、これらのフッ素化合物の蒸発により固
層から蒸発したフッ素と堆積する材料の間で反応が起
り、蒸気圧の高いフッ素化合物となり堆積が抑制される
効果もある。また、これらのフッ素化合物は酸或いはア
ルカリで容易に除去可能であり、マスク上に、多結晶又
は非晶質のAlx Ga1-x N(0<(x,1−x)<
1)、或いはAlx GayInz N(0<x<1,0<
y+z<1,x+y+z=1)、又はH,O若しくCの
1種類以上を添加したAlx Gay Inz N(0≦
(x,y,z)≦1,x+y+z=1)層が堆積しても
容易に除去することができる。
Further, when the temperature is raised to about 500 ° C. to precipitate, a reaction occurs between the fluorine evaporated from the solid layer and the deposited material due to the evaporation of the fluorine compound, and the fluorine compound having a high vapor pressure is generated. It also has the effect of suppressing deposition. Further, these fluorine compounds can be easily removed with an acid or an alkali, and polycrystalline or amorphous Al x Ga 1 -xN (0 <(x, 1-x) <
1), or Al x Ga y In z N ( 0 <x <1,0 <
y + z <1, x + y + z = 1), or H, O Moshiku Al x was added one or more C Ga y In z N (0
Even if (x, y, z) ≦ 1, x + y + z = 1) layers are deposited, they can be easily removed.

【0056】ここではいくつかのデバイスの例を挙げた
が、本発明はこれらの材料,デバイス構造に限られるも
のではなく、種々の電子,光デバイスに適用可能であ
る。例えば、光デバイスと電子デバイスとの集積化にも
適用可能であり、光デバイスとしては上記レーザ,変調
器,導波路と共に、受光素子や増幅器,スイッチ,検波
器,或いはこれらを組合わせたデバイスにも適用可能で
ある。また、電子デバイスはMOS,FET等の横形の
デバイス、CMOSセンサ,バイポーラトランジスタ,
CCD,IGBT,GTO,サイリスタ,SOI構造の
もの等、種々のデバイスに適用可能である。
Although some examples of devices have been given here, the present invention is not limited to these materials and device structures, but can be applied to various electronic and optical devices. For example, the present invention can be applied to integration of an optical device and an electronic device. As the optical device, in addition to the laser, the modulator, and the waveguide, a light receiving element, an amplifier, a switch, a detector, or a device in which these are combined. Is also applicable. Electronic devices include lateral devices such as MOS and FET, CMOS sensors, bipolar transistors, and the like.
The present invention can be applied to various devices such as those having a CCD, IGBT, GTO, thyristor, and SOI structure.

【0057】また、本発明をGaAs,AlGaAs,
InP,AlGaInP,GaInAs,GaInAs
P,GaP等のIII-V族化合物半導体、Si,SiGe
C,SiGeSn,Ge等のIV族半導体、CdMgT
e,ZnSe,ZnCdTe等のII-VI 族化合物半導
体、カルコパイライト半導体、AlGaInAsPNを
活性領域とする半導体素子に用いた場合、埋め込み層,
絶縁層との抵抗率,屈折率差が大きくなるので、良好な
電気的,光学的閉じこめを得ることができる。このた
め、種々の電気,光デバイスの集積化が可能となる。中
でも導波路からの光の散逸を小さくすることができ、レ
ーザと変調器等の光集積化、絶縁膜で熱の放散が有効な
横方向に電流の流れるパワーデバイスについて有効とな
る。
Further, the present invention relates to GaAs, AlGaAs,
InP, AlGaInP, GaInAs, GaInAs
III-V compound semiconductors such as P, GaP, Si, SiGe
Group IV semiconductors such as C, SiGeSn and Ge, CdMgT
e, ZnSe, ZnCdTe, etc., when used in a semiconductor device having an active region of a II-VI group compound semiconductor, chalcopyrite semiconductor, or AlGaInAsPN, a buried layer,
Since the difference between the resistivity and the refractive index from the insulating layer is increased, good electrical and optical confinement can be obtained. For this reason, various electric and optical devices can be integrated. Above all, the dissipation of light from the waveguide can be reduced, which is effective for a power device in which a laser and a modulator are integrated into an optical device and a current flows in a lateral direction in which heat is effectively dissipated by an insulating film.

【0058】(第5の実施形態)図5は、本発明の第5
の実施形態に係わる半導体レーザの概略構成を示す断面
図である。
(Fifth Embodiment) FIG. 5 shows a fifth embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating a schematic configuration of a semiconductor laser according to the first embodiment.

【0059】図中の500はn型InP基板、501は
n型InPバッファ層(クラッド層)、502は発光波
長が1.3μmのInGaAsP多重歪み量子井戸活性
層、503はp型InPクラッド層、504はp型In
GaAsコンタクト層、505は半絶縁性InP埋め込
み層、506は非晶質高抵抗InGaN埋め込み層、5
21はp型電極、522はn型電極である。
In the figure, 500 is an n-type InP substrate, 501 is an n-type InP buffer layer (cladding layer), 502 is an InGaAsP multi-strain quantum well active layer having an emission wavelength of 1.3 μm, 503 is a p-type InP cladding layer, 504 is a p-type In
A GaAs contact layer; 505, a semi-insulating InP buried layer; 506, an amorphous high-resistance InGaN buried layer;
21 is a p-type electrode and 522 is an n-type electrode.

【0060】図6は、図5の実施形態レーザの製造工程
を示す断面図であり、以下この図を参照して作成方法を
説明する。まず、図6(a)に示すように、n型InP
基板500上に、MOCVD法でSiドープn型InP
バッファ兼クラッド層(キャリア濃度1×1018
-3,厚さ0.5μm)5 01、発光波長が1.3μm
のノンドープInGaAsP多重歪み量子井戸活性層5
02、Znドープp型InPクラッド層(キャリア濃度
1×1018cm-3,厚さ1.5μm)503、Znドー
プp型InGaAsコンタクト層(キャリア濃度1×1
18cm-3,厚さ0.8μm)504を順次成長する。
FIG. 6 is a cross-sectional view showing a manufacturing process of the laser of the embodiment shown in FIG. 5. The manufacturing method will be described below with reference to FIG. First, as shown in FIG.
A Si-doped n-type InP is formed on the substrate 500 by MOCVD.
Buffer / cladding layer (carrier concentration 1 × 10 18 c
m -3 , thickness 0.5 μm) 501, emission wavelength 1.3 μm
Non-doped InGaAsP multiple strain quantum well active layer 5
02, Zn-doped p-type InP cladding layer (carrier concentration 1 × 10 18 cm −3 , thickness 1.5 μm) 503, Zn-doped p-type InGaAs contact layer (carrier concentration 1 × 1
0 18 cm −3 , thickness 0.8 μm) 504 are sequentially grown.

【0061】次いで、図6(b)に示すように、熱CV
D法で堆積したSiO2 膜511をストライプ状に加工
した後、それをマスクとしてECR−RIBE法により
エッチングを施し、高さが約3μmで活性層102の幅
が約1.2μmのメサストライプを作成する。
Next, as shown in FIG.
After the SiO 2 film 511 deposited by the method D is processed into a stripe shape, etching is performed by the ECR-RIBE method using the SiO 2 film 511 as a mask to form a mesa stripe having a height of about 3 μm and a width of the active layer 102 of about 1.2 μm. create.

【0062】次いで、図6(c)に示すように、再びM
OCVD法を用いて、厚さ0.2μmのFeドープ高抵
抗InP埋め込み層505と厚さ2.8μmの非晶質の
高抵抗AlGaN埋め込み層506を積層する。
Next, as shown in FIG.
Using an OCVD method, a Fe-doped high-resistance InP buried layer 505 having a thickness of 0.2 μm and an amorphous high-resistance AlGaN buried layer 506 having a thickness of 2.8 μm are laminated.

【0063】次いで、SiO2 膜511を除去した後、
p型InGaAsコンタクト層504上に選択的にp側
電極521を形成し、基板500の裏面を塩酸でエッチ
ングして厚さ100μmとした後、n側電極522を形
成することにより、前記図5に示す構造が得られる。こ
れ以降は、共振器長が300μmとなるように基板を劈
開することにより半導体レーザが完成する。
Next, after removing the SiO 2 film 511,
By selectively forming a p-side electrode 521 on the p-type InGaAs contact layer 504 and etching the back surface of the substrate 500 with hydrochloric acid to a thickness of 100 μm, an n-side electrode 522 is formed as shown in FIG. The structure shown is obtained. Thereafter, the semiconductor laser is completed by cleaving the substrate so that the cavity length becomes 300 μm.

【0064】このようにして作成された端面発光型の半
導体レーザは、活性層502の側面が基板500と同一
の(活性層と実質的に同一の結晶構造を有する)半導体
の高抵抗InP層505で埋め込まれているため、リー
ク電流が極めて少なく、低しきい値で発振する。また、
メサ全体は熱伝導度の高い高抵抗AlGaN層506で
埋め込まれているため放熱性に優れ、活性層502の温
度上昇が抑えられ、高温・高光出力動作が可能である。
また、活性層502の側面のpn接合が直接AlGaN
層506に接していないため、信頼性も非常に高い。加
えて、メサ側面の埋め込み層の寄生容量も極めて小さい
ので、超高速動作も可能である。
In the edge-emitting semiconductor laser fabricated in this manner, the semiconductor high-resistance InP layer 505 in which the side surface of the active layer 502 is the same as the substrate 500 (has substantially the same crystal structure as the active layer) is used. , And oscillate at a low threshold value with a very small leak current. Also,
Since the entire mesa is buried in the high-resistance AlGaN layer 506 having high thermal conductivity, the mesa has excellent heat dissipation, the temperature rise of the active layer 502 is suppressed, and high-temperature and high-light output operation is possible.
Further, the pn junction on the side surface of the active layer 502 is directly connected to AlGaN.
Since it is not in contact with the layer 506, the reliability is also very high. In addition, since the parasitic capacitance of the buried layer on the side of the mesa is extremely small, ultra-high-speed operation is possible.

【0065】なお、本実施形態において、メサ側面を埋
め込む薄い半導体層の半絶縁性のInP層とメサ側面の
間に厚さ0.1μm程度のノンドープInGaP層或い
はInAlAs層などのワイドギャップの半導体層など
を挿入しても良い。
In this embodiment, a semiconductor layer having a wide gap such as a non-doped InGaP layer or an InAlAs layer having a thickness of about 0.1 μm is provided between a semi-insulating InP layer of a thin semiconductor layer burying the mesa side surface and the mesa side surface. May be inserted.

【0066】(第6の実施形態)図7は、本発明の第6
の実施形態に係わる半導体レーザの概略構成を示す断面
図であり、面発光型の半導体レーザを示している。
(Sixth Embodiment) FIG. 7 shows a sixth embodiment of the present invention.
1 is a cross-sectional view illustrating a schematic configuration of a semiconductor laser according to an embodiment of the present invention, illustrating a surface-emitting type semiconductor laser.

【0067】図中の600は半絶縁性GaAs基板、6
01はp型GaAsバッファ層、602はp型ブラッグ
反射器、603は活性層、604はn型ブラッグ反射
器、605はキャップ層、606は半絶縁性GaAs埋
め込み層、607はAlGaN埋め込み層、621はp
側電極、622はn側電極を示している。
In the figure, reference numeral 600 denotes a semi-insulating GaAs substrate;
01 is a p-type GaAs buffer layer, 602 is a p-type Bragg reflector, 603 is an active layer, 604 is an n-type Bragg reflector, 605 is a cap layer, 606 is a semi-insulating GaAs buried layer, 607 is an AlGaN buried layer, 621 Is p
A side electrode 622 indicates an n-side electrode.

【0068】p側及びn側のブラッグ反射器601,6
04は、p型GaAsとp型AlAs及びn型GaAs
とn型AlAsをそれぞれ交互に積層して形成されてい
る。また、活性層603は、両側をノンドープGaAs
層で挟まれたInGaAs歪み量子井戸層からなり、そ
の両側をノンドープAlGaAs層で挟み、更にその外
側をp型AlGaAs層とn型AlGaAs層で挟んだ
構造となっている。
The p-side and n-side Bragg reflectors 601, 6
04 denotes p-type GaAs, p-type AlAs, and n-type GaAs
And n-type AlAs are alternately laminated. Further, the active layer 603 is made of non-doped GaAs on both sides.
The structure is composed of an InGaAs strained quantum well layer sandwiched between layers, with both sides sandwiched between non-doped AlGaAs layers, and further outside sandwiched between a p-type AlGaAs layer and an n-type AlGaAs layer.

【0069】また、メサは円柱状加工されており、その
径は約1.5μmである。このような構造の面発光レー
ザでは、メサの側面が熱伝導度の高いAlGaNで埋め
込まれているため、放熱性が優れており、最高発振温度
の向上と最大光出力の増大が実現される。加えて、メサ
側面のpn接合は結晶構造が同じ半導体層で埋め込まれ
ているため、表面再結合によるリーク電流はなく、低し
きい値動作が可能であり信頼性も優れている。
The mesa is formed in a cylindrical shape, and has a diameter of about 1.5 μm. In the surface emitting laser having such a structure, since the side surfaces of the mesa are embedded with AlGaN having high thermal conductivity, the heat dissipation is excellent, and the maximum oscillation temperature is increased and the maximum light output is increased. In addition, since the crystal structure of the pn junction on the side of the mesa is buried in the same semiconductor layer, there is no leakage current due to surface recombination, low threshold operation is possible, and the reliability is excellent.

【0070】(第7の実施形態)図8は、本発明の第7
の実施形態に係わる半導体レーザの概略構成を示す断面
図である。
(Seventh Embodiment) FIG. 8 shows a seventh embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating a schematic configuration of a semiconductor laser according to the first embodiment.

【0071】図中の700はn型InP基板、701は
n型InPバッファ兼クラツド層、702はInGaA
sP歪みMQW活性層、703はp型InPクラッド
層、704はp型InGaAsコンタクト層、705は
半絶縁性InP埋め込み層、706はGaN埋め込み
層、707はAlN埋め込み層、721はp側電極、7
22はn側電極を示している。
In the figure, 700 is an n-type InP substrate, 701 is an n-type InP buffer / cladding layer, and 702 is InGaAs.
sP strained MQW active layer, 703 is a p-type InP cladding layer, 704 is a p-type InGaAs contact layer, 705 is a semi-insulating InP buried layer, 706 is a GaN buried layer, 707 is an AlN buried layer, 721 is a p-side electrode, 7
Reference numeral 22 denotes an n-side electrode.

【0072】本実施形態では、AlGaN埋め込み層が
GaNとAlNの二層構造となっている点に特徴があ
る。このような二層構造とすることにより、熱膨張係数
の違いにより活性層を含むメサに加わるストレスを低減
することが可能であり、素子の信頼性を向上させること
ができる。
The present embodiment is characterized in that the AlGaN buried layer has a two-layer structure of GaN and AlN. With such a two-layer structure, stress applied to the mesa including the active layer due to a difference in thermal expansion coefficient can be reduced, and the reliability of the element can be improved.

【0073】第5〜第7の実施形態においては、端面発
光型と面発光型の半導体レーザについて説明したが、本
発明はその他の半導体発光素子全般に適用可能である。
即ち、面発光型或いは端面発光型の発光ダイオードや、
光変調器と半導体レーザを集積化した集積化光源などに
も適用できる。
In the fifth to seventh embodiments, edge-emitting and surface-emitting semiconductor lasers have been described. However, the present invention can be applied to other semiconductor light-emitting devices in general.
That is, a light emitting diode of a surface emitting type or an edge emitting type,
The present invention can also be applied to an integrated light source in which an optical modulator and a semiconductor laser are integrated.

【0074】[0074]

【発明の効果】以上説明したように本発明によれば、埋
め込み層や絶縁層として、AlGaInN、又はH,O
若しくはCのうちの1種類以上を添加したAlGaIn
Nを用いることによって、活性領域を形成する他の半導
体側に転位や歪みが導入されるのを抑制して良質な活性
層を得ることができ、しきい値の低減や信頼性の向上等
をはかることができる。また、光と電気の絶縁性の高い
領域の形成できるようになり、さらに熱伝導性も向上で
きる。このため、従来よりも効率の高い、高出力素子を
高密度に形成できると共に、従来と比べ素子設計の自由
度が増し、三次元的な素子を得ることが可能となる。
As described above, according to the present invention, as a buried layer or an insulating layer, AlGaInN or H, O
Or AlGaIn to which at least one of C is added
By using N, a high-quality active layer can be obtained by suppressing the introduction of dislocations and strains on the other semiconductor side forming the active region, and the threshold value can be reduced and the reliability can be improved. Can be measured. Further, it becomes possible to form a region having high light and electric insulation, and it is possible to further improve thermal conductivity. For this reason, a high-output element with higher efficiency than the conventional one can be formed at a high density, and the degree of freedom in element design increases compared to the conventional one, so that a three-dimensional element can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態に係わる半導体レーザアレイの
概略構成を示す断面図。
FIG. 1 is a sectional view showing a schematic configuration of a semiconductor laser array according to a first embodiment.

【図2】第2の実施形態に係わる半導体素子の概略構成
を示す斜視図。
FIG. 2 is a perspective view showing a schematic configuration of a semiconductor device according to a second embodiment.

【図3】第3の実施形態に係わる半導体素子の概略構成
を示す断面図。
FIG. 3 is a sectional view showing a schematic configuration of a semiconductor device according to a third embodiment.

【図4】第4の実施形態に係わる半導体素子の概略構成
を示す断面図。
FIG. 4 is a sectional view showing a schematic configuration of a semiconductor device according to a fourth embodiment;

【図5】第5の実施形態に係わる半導体レーザの概略構
成を示す断面図。
FIG. 5 is a sectional view showing a schematic configuration of a semiconductor laser according to a fifth embodiment.

【図6】図5の実施形態レーザの製造工程を示す断面
図。
FIG. 6 is a sectional view showing a manufacturing process of the laser according to the embodiment shown in FIG. 5;

【図7】第6の実施形態に係わる半導体レーザの概略構
成を示す断面図。
FIG. 7 is a sectional view showing a schematic configuration of a semiconductor laser according to a sixth embodiment.

【図8】第7の実施形態に係わる半導体レーザの概略構
成を示す断面図。
FIG. 8 is a sectional view showing a schematic configuration of a semiconductor laser according to a seventh embodiment.

【図9】従来の面発光型半導体レーザの素子構造を示す
断面図。
FIG. 9 is a cross-sectional view showing the element structure of a conventional surface-emitting type semiconductor laser.

【符号の説明】[Explanation of symbols]

101…p型InP基板 102…p型InPバッファ兼クラッド層 103…歪み多重量子井戸(MQW)活性層 104…n型InPクラッド層 105…n型InPコンタクト層 110…非晶質AlGaN埋め込み層 121…n側電極 122…p側電極 201…n型InP基板 202…n型InPクラッド層 203…導波路兼変調用吸収層 204…p型InPクラッド層 205…p側電極メタル 208…グレーティングレーザ領域 210…高抵抗AlGaNOCH埋め込み層 221…変調器用電極 222…n側電極 223…レーザ用電極 225…電極 301…SI−GaAs基板 302…i型GaAlAsバッファ層 303…InGaAsチャネル層 304…AlGaAsスペーサ層 305…AlGaAsキャリア供給層 308…GaAs/GaInAsのn+ 型コンタクト層 310…非晶質AlNO絶縁層 321…ゲート電極 322…ソース電極 323…コンタクト電極 327…素子分離領域DESCRIPTION OF SYMBOLS 101 ... p-type InP substrate 102 ... p-type InP buffer / cladding layer 103 ... strained multiple quantum well (MQW) active layer 104 ... n-type InP cladding layer 105 ... n-type InP contact layer 110 ... amorphous AlGaN buried layer 121 ... n-side electrode 122 p-side electrode 201 n-type InP substrate 202 n-type InP cladding layer 203 waveguide / modulation absorption layer 204 p-type InP cladding layer 205 p-side electrode metal 208 grating laser region 210 High resistance AlGaNOCH buried layer 221 modulator electrode 222 n-side electrode 223 laser electrode 225 electrode 301 SI-GaAs substrate 302 i-type GaAlAs buffer layer 303 InGaAs channel layer 304 AlGaAs spacer layer 305 AlGaAs carrier Supply layer 30 ... GaAs / GaInAs of the n + -type contact layer 310 ... amorphous AlNO insulating layer 321 ... gate electrode 322 ... source electrode 323 ... contact electrodes 327 ... isolation region

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 29/778 H01L 29/80 H 21/338 29/812 33/00 Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 29/778 H01L 29/80 H 21/338 29/812 33/00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Alx Gay Inz N(0<x<1,0<
y+z<1,x+y+z=1)を、埋め込み層又は絶縁
層に用いたことを特徴とする半導体素子。
1. A Al x Ga y In z N ( 0 <x <1,0 <
(y + z <1, x + y + z = 1) is used for a buried layer or an insulating layer.
【請求項2】Alx Gay Inz N(0≦(x,y,
z)≦1,x+y+z=1)に、HとO又はHとCを添
加した層を、埋め込み層又は絶縁層に用いたことを特徴
とする半導体素子。
Wherein Al x Ga y In z N ( 0 ≦ (x, y,
z) ≦ 1, x + y + z = 1), wherein a layer to which H and O or H and C are added is used as a buried layer or an insulating layer.
【請求項3】Alx Gay Inz N(0<x<1,0<
y+z<1,x+y+z=1)からなる半導体層を成長
する際に、 少なくとも窒素の原料にジメチルヒドラジン,モノメチ
ルヒドラジン,又はターシャリブチルヒドラジンを含
み、Ga又はAlの原料としてそれぞれGa又はAlの
有機金属を用いることを特徴とする半導体素子の製造方
法。
Wherein Al x Ga y In z N ( 0 <x <1,0 <
When growing a semiconductor layer consisting of y + z <1, x + y + z = 1), at least dimethylhydrazine, monomethylhydrazine, or tertiarybutylhydrazine is contained as a raw material of nitrogen, and an organic metal of Ga or Al is used as a raw material of Ga or Al, respectively. A method for manufacturing a semiconductor device, comprising using:
【請求項4】活性層を含む多層膜の側面がメサ状に加工
され、該メサ側面がAlGaNを主成分とする埋め込み
層で埋め込まれた半導体素子であって、 前記メサ側面とAlGaN埋め込み層の間に、活性層を
形成する半導体と同一結晶構造を有する半導体層が設け
られたことを特徴とする半導体素子。
4. A semiconductor device in which a side surface of a multilayer film including an active layer is processed into a mesa shape, and the mesa side surface is buried with a buried layer containing AlGaN as a main component. A semiconductor element, wherein a semiconductor layer having the same crystal structure as a semiconductor forming an active layer is provided therebetween.
【請求項5】活性層を含む多層膜の側面がメサ状に加工
され、該メサ側面がAlGaNを主成分とする埋め込み
層で埋め込まれた半導体素子であって、 前記AlGaN埋め込み層が、組成の異なる複数の層で
形成されたことを特徴とする半導体素子。
5. A semiconductor device in which side surfaces of a multilayer film including an active layer are processed into a mesa shape, and the mesa side surfaces are buried with a buried layer containing AlGaN as a main component, wherein the AlGaN buried layer has a composition. A semiconductor element formed of a plurality of different layers.
JP7197998A 1998-03-20 1998-03-20 Semiconductor element and fabrication thereof Pending JPH11274645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7197998A JPH11274645A (en) 1998-03-20 1998-03-20 Semiconductor element and fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7197998A JPH11274645A (en) 1998-03-20 1998-03-20 Semiconductor element and fabrication thereof

Publications (1)

Publication Number Publication Date
JPH11274645A true JPH11274645A (en) 1999-10-08

Family

ID=13476103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7197998A Pending JPH11274645A (en) 1998-03-20 1998-03-20 Semiconductor element and fabrication thereof

Country Status (1)

Country Link
JP (1) JPH11274645A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299598A (en) * 2001-04-03 2002-10-11 Fujitsu Ltd Semiconductor device
JP2002368339A (en) * 2001-06-08 2002-12-20 Oki Electric Ind Co Ltd Method of manufacturing buried mesa semiconductor laser
SG99394A1 (en) * 2001-06-07 2003-10-27 Sumitomo Chemical Co Group 3-5 compound semiconductor and light emitting diode
JP2004147472A (en) * 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd Direct current-to-alternating current converter for photovoltaic power generation
JP2004529487A (en) * 2000-11-28 2004-09-24 ハネウェル・インターナショナル・インコーポレーテッド Multifunctional method and system for single mode VCSEL
JP2008182202A (en) * 2006-12-28 2008-08-07 Nichia Chem Ind Ltd Nitride semiconductor laser element
US7855096B2 (en) 2007-09-28 2010-12-21 Mitsubishi Electric Corporation Method for manufacturing semiconductor device
JP2016092080A (en) * 2014-10-30 2016-05-23 浜松ホトニクス株式会社 Quantum cascade laser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529487A (en) * 2000-11-28 2004-09-24 ハネウェル・インターナショナル・インコーポレーテッド Multifunctional method and system for single mode VCSEL
JP2002299598A (en) * 2001-04-03 2002-10-11 Fujitsu Ltd Semiconductor device
SG99394A1 (en) * 2001-06-07 2003-10-27 Sumitomo Chemical Co Group 3-5 compound semiconductor and light emitting diode
JP2002368339A (en) * 2001-06-08 2002-12-20 Oki Electric Ind Co Ltd Method of manufacturing buried mesa semiconductor laser
JP2004147472A (en) * 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd Direct current-to-alternating current converter for photovoltaic power generation
JP2008182202A (en) * 2006-12-28 2008-08-07 Nichia Chem Ind Ltd Nitride semiconductor laser element
US7855096B2 (en) 2007-09-28 2010-12-21 Mitsubishi Electric Corporation Method for manufacturing semiconductor device
JP2016092080A (en) * 2014-10-30 2016-05-23 浜松ホトニクス株式会社 Quantum cascade laser

Similar Documents

Publication Publication Date Title
US7485902B2 (en) Nitride-based semiconductor light-emitting device
JPH11214788A (en) Gallium nitride type semiconductor laser element
KR100621117B1 (en) Semiconductor laser and method for manufacturing the same
US6620641B2 (en) Semiconductor light emitting device and its manufacturing method
KR980012751A (en) GaN-based compound semiconductor laser and manufacturing method thereof
JPH09129974A (en) Semiconductor laser device
JPH11274645A (en) Semiconductor element and fabrication thereof
JP2008235519A (en) Optical semiconductor element and optical semiconductor element manufacturing method
JPH08172238A (en) Manufacture of semiconductor laser element
EP0945939A2 (en) Semiconductor light-emitting device
JPH0815228B2 (en) Semiconductor laser device and method of manufacturing the same
US7782919B2 (en) Buried semiconductor laser and method for manufacturing the same
JP3889910B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2001345516A (en) Semiconductor optical device
JP2001185809A (en) Semiconductor optical device and manufacturing method therefor
JP2001203423A (en) Semiconductor light-emitting device
JP3963233B2 (en) Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
JP2002124738A (en) Semiconductor optical device and manufacturing method thereof
JP2865160B2 (en) Manufacturing method of semiconductor laser
JPH09129969A (en) Semiconductor laser
JP2003008147A (en) Semiconductor laser device and its manufacturing method
JP3963632B2 (en) Semiconductor optical device equipment
JPH1084131A (en) Semiconductor light emitting element
US5559821A (en) Semiconductor laser
JP3143105B2 (en) Method for manufacturing semiconductor laser device