[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11253990A - Treatment of nitrogen-containing waste water - Google Patents

Treatment of nitrogen-containing waste water

Info

Publication number
JPH11253990A
JPH11253990A JP6321898A JP6321898A JPH11253990A JP H11253990 A JPH11253990 A JP H11253990A JP 6321898 A JP6321898 A JP 6321898A JP 6321898 A JP6321898 A JP 6321898A JP H11253990 A JPH11253990 A JP H11253990A
Authority
JP
Japan
Prior art keywords
nitrogen
raw water
time
nitrification
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6321898A
Other languages
Japanese (ja)
Other versions
JP2912901B1 (en
Inventor
Shigehiro Suzuki
重浩 鈴木
Tomomasa Takemura
知正 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP6321898A priority Critical patent/JP2912901B1/en
Application granted granted Critical
Publication of JP2912901B1 publication Critical patent/JP2912901B1/en
Publication of JPH11253990A publication Critical patent/JPH11253990A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/40Protecting water resources
    • Y02A20/402River restoration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To optimally control the proper flow rate of raw water in intermittent aeration treatment aeration quantity during an aerobic time and the loadings of a hydrogen donor during an anaerobic time even if the concn. of nitrogen in raw water changes. SOLUTION: The pH change in a reaction tank where intermittent aeration treatment is performed is measured and, from the flexural point thereof, the completion of nitration reaction is detected and the concn. of nitrogen in raw water is estimated from the obtained nitration time. The flow rate of raw water is controlled from the concn. of nitrogen in raw water in order to keep the nitrogen load to the reaction tank constant. Or, aeration quantity at a time of an aerobic state is controlled corresponding to the concn. of nitrogen in raw water. Or, the loadings of a hydrogen donor in an anaerobic state are controlled with respect to nitrogen load varied corresponding to the concn. of nitrogen in raw water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水二次処理水、
ごみ埋め立て地からの浸出水、河川、し尿、産業排水等
の窒素含有排水中から効率よく窒素を除去することがで
きる間欠曝気方式の窒素含有排水の処理方法に関するも
のである。
TECHNICAL FIELD The present invention relates to secondary sewage water,
The present invention relates to a method for treating nitrogen-containing wastewater of an intermittent aeration type, which can efficiently remove nitrogen from nitrogen-containing wastewater such as leachate from a landfill, rivers, human waste, and industrial wastewater.

【0002】[0002]

【従来の技術】排水中から窒素を除去するためには、好
気槽で酸素の存在下で排水中の有機態窒素やアンモニア
態窒素を酸化して硝酸態窒素に変換する硝化過程と、こ
の硝酸態窒素を嫌気槽で窒素ガスに変える脱窒過程とが
必要であり、通常は好気槽と嫌気槽とを直列に設置して
窒素除去を行っている。この場合2槽を必要とするが、
単一の反応槽内で間欠的な曝気を行うことにより好気条
件と嫌気条件とを交互に作りだし、窒素除去を行う間欠
曝気処理も知られている。
2. Description of the Related Art In order to remove nitrogen from wastewater, a nitrification process of oxidizing organic nitrogen or ammonia nitrogen in wastewater in the presence of oxygen in an aerobic tank and converting it into nitrate nitrogen is performed. A denitrification process of converting nitrate nitrogen into nitrogen gas in an anaerobic tank is required. Usually, an aerobic tank and an anaerobic tank are arranged in series to remove nitrogen. In this case, two tanks are required,
An intermittent aeration process in which aerobic conditions and anaerobic conditions are alternately created by performing intermittent aeration in a single reaction tank to remove nitrogen is also known.

【0003】この間欠曝気処理における重要な操作因子
は、好気時間(硝化時間)と嫌気時間(脱窒時間)の取
り方であり、通常は例えば好気時間3時間、嫌気時間2
時間というように、予めそれぞれの時間を設定して処理
を行っている。しかし水温や排水中の有機物成分と窒素
成分との割合などの環境条件によって硝化能力、脱窒能
力に差が生じることから、これらの時間を環境条件によ
り制御することが望まれる。このため、処理槽内のDO
(溶存酸素濃度)やOPR(酸化還元電位)等を測定す
ることにより、好気時間と嫌気時間の制御を行うことが
既に提案されている。
An important operating factor in the intermittent aeration treatment is how to take an aerobic time (nitrification time) and an anaerobic time (denitrification time).
Processing is performed by setting each time in advance, such as time. However, since the nitrification capacity and the denitrification capacity differ depending on environmental conditions such as the water temperature and the ratio of the organic component to the nitrogen component in the wastewater, it is desired to control these times according to the environmental conditions. Therefore, DO in the processing tank
It has already been proposed to control aerobic time and anaerobic time by measuring (dissolved oxygen concentration), OPR (redox potential) and the like.

【0004】ところがこのような方法で好気時間と嫌気
時間の制御を行うことはできるものの、適正な原水流
量、好気時間中の曝気量、嫌気時間中の水素供与体添加
量までを制御することはできなかった。すなわちこれら
はいずれも原水窒素濃度に応じて決定されるべき値であ
るが、原水窒素濃度の測定には一般的な分析手法を用い
るか、あるいは高価な自動窒素測定装置を導入する必要
があり、例えばごみ埋立地浸出水などの原水窒素濃度の
変動が激しい排水に対しては、リアルタイムで経済的な
制御を行うことが不可能であった。
However, although the aerobic time and the anaerobic time can be controlled by such a method, an appropriate raw water flow rate, an aeration amount during the aerobic time, and an addition amount of the hydrogen donor during the anaerobic time are controlled. I couldn't do that. That is, these are all values to be determined according to the raw water nitrogen concentration, but it is necessary to use a general analysis method for measuring the raw water nitrogen concentration, or to introduce an expensive automatic nitrogen measurement device, For example, it has not been possible to perform real-time economical control on wastewater whose raw water nitrogen concentration fluctuates greatly, such as leachate from a landfill.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決して、間欠曝気処理における適正な原水
流量、好気時間中の曝気量、嫌気時間中の水素供与体添
加量などを、原水窒素濃度に応じてリアルタイムで最適
に制御し、効率よく窒素を除去することができるように
した窒素含有排水の処理方法を提供するためになされた
ものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and provides an appropriate raw water flow rate in intermittent aeration treatment, aeration during aerobic time, hydrogen donor addition during anaerobic time, and the like. The present invention has been made to provide a method for treating nitrogen-containing wastewater in which nitrogen can be efficiently removed by optimally controlling the concentration of nitrogen in raw water in real time.

【0006】[0006]

【課題を解決するための手段】本発明者等はこの課題を
解決するために研究した結果、好気条件時に反応槽内の
pH変化を計測すると、硝化反応の終了と同時に屈曲点
が現れること、この硝化に要した時間と予め測定されて
いる温度に応じた硝化速度から原水窒素濃度が推定でき
ることを把握した。本発明はこれらの知見に基づいてな
されたものであり、第1の発明は、間欠曝気処理が行わ
れる反応槽内のpH変化を計測してその屈曲点から硝化
反応の終了を検知するとともに、得られた硝化時間から
原水窒素濃度を推定し、この原水窒素濃度から反応槽の
窒素負荷を一定にするために原水流量を制御することを
特徴とするものである。
Means for Solving the Problems As a result of research conducted by the present inventors to solve this problem, when a pH change in a reaction tank is measured under aerobic conditions, a bending point appears at the same time as the end of the nitrification reaction. It was also found that the nitrogen concentration in the raw water can be estimated from the time required for this nitrification and the nitrification rate according to the previously measured temperature. The present invention has been made based on these findings, the first invention is to detect the end of the nitrification reaction from the inflection point by measuring the pH change in the reaction tank where intermittent aeration treatment is performed, The nitrogen concentration of raw water is estimated from the obtained nitrification time, and the flow rate of raw water is controlled based on the nitrogen concentration of raw water to keep the nitrogen load of the reaction tank constant.

【0007】また第2の発明は、間欠曝気処理が行われ
る反応槽内のpH変化を計測してその屈曲点から硝化反
応の終了を検知するとともに、得られた硝化時間から原
水窒素濃度を推定し、この原水窒素濃度から変動する窒
素負荷に対し好気状態における曝気量を制御することを
特徴とするものであり、第3の発明は、間欠曝気処理が
行われる反応槽内のpH変化を計測してその屈曲点から
硝化反応の終了を検知するとともに、得られた硝化時間
から原水窒素濃度を推定し、この原水窒素濃度から変動
する窒素負荷に対し嫌気状態における水素供与体の添加
量を制御することを特徴とするものである。
The second invention measures the pH change in the reaction tank where the intermittent aeration process is performed, detects the end of the nitrification reaction from the inflection point, and estimates the nitrogen concentration of the raw water from the obtained nitrification time. Then, the amount of aeration in an aerobic state is controlled with respect to the nitrogen load fluctuating from the raw water nitrogen concentration, and the third invention is characterized in that the pH change in the reaction tank where the intermittent aeration is performed is controlled. While measuring and detecting the end of the nitrification reaction from the inflection point, the raw water nitrogen concentration is estimated from the obtained nitrification time, and the addition amount of the hydrogen donor in the anaerobic state with respect to the nitrogen load fluctuating from the raw water nitrogen concentration is determined. It is characterized by controlling.

【0008】単一に反応槽で好気状態と嫌気状態とを繰
り返す間欠曝気処理において、好気時間と嫌気時間を予
め定めた場合(例えば30分まで)、微生物による硝化
反応が終了して反応槽内にアンモニア態窒素がなくなる
と、図1に示すようにpH変化曲線に屈曲点が出現す
る。この硝化に要した時間(t)と原水のアンモニア態
窒素濃度との間には相関関係がある。
In the intermittent aeration treatment in which the aerobic state and the anaerobic state are repeatedly repeated in a single reaction tank, if the aerobic time and the anaerobic time are predetermined (for example, up to 30 minutes), the nitrification reaction by the microorganism is terminated and the reaction is terminated. When the ammonia nitrogen disappears from the tank, a bending point appears on the pH change curve as shown in FIG. There is a correlation between the time (t) required for this nitrification and the ammonia nitrogen concentration of the raw water.

【0009】例えば担体としてポリビニルアルコールゲ
ルを使用し、反応槽内に40%充填した間欠曝気処理装
置において、滞留時間を12時間、好気状態と嫌気状態
の繰り返し回数を12回とした場合、水温20℃の条件
において硝化時間(硝化開始から屈曲点が出現するまで
の時間)と原水のアンモニア態窒素濃度との間には、図
2に示される関係が成立することが確認された。このよ
うな相関関係が成立する理由は次の通りである。
For example, in an intermittent aeration apparatus in which a reaction vessel is filled with 40% polyvinyl alcohol gel as a carrier, the residence time is 12 hours, and the number of repetitions of the aerobic state and the anaerobic state is 12 times. It was confirmed that the relationship shown in FIG. 2 was established between the nitrification time (time from the start of nitrification to the appearance of the inflection point) and the concentration of ammonia nitrogen in the raw water under the condition of 20 ° C. The reason why such a correlation is established is as follows.

【0010】まず好気状態下におけるアンモニア態窒素
の減少速度は反応槽内の硝化菌による硝化速度に依存す
るため、硝化速度が分かっている場合、硝化時間より好
気状態開始時におけるアンモニア態窒素濃度が推定でき
る。このとき、硝化速度は水温によって図3のように影
響されるので、水温との関係を考慮した硝化速度を用い
る。
First, the rate of reduction of ammonia nitrogen under an aerobic condition depends on the nitrification rate of nitrifying bacteria in a reaction tank. Therefore, if the nitrification rate is known, the ammonia nitrogen at the start of the aerobic state is shorter than the nitrification time. The concentration can be estimated. At this time, since the nitrification rate is affected by the water temperature as shown in FIG. 3, the nitrification rate in consideration of the relationship with the water temperature is used.

【0011】また、好気状態開始時におけるアンモニア
態窒素濃度と原水中のアンモニア態窒素濃度とは、好気
状態時に硝化反応が、また嫌気状態時に脱窒反応が完了
している場合には、式1により表される。ここで好気状
態開始時におけるアンモニア態窒素濃度をCNH4 、原水
中のアンモニア態窒素濃度をC0 、好気状態と嫌気状態
の繰り返し回数をNとする。
The ammonia nitrogen concentration at the start of the aerobic state and the ammonia nitrogen concentration in the raw water are defined as follows: when the nitrification reaction is completed during the aerobic state and when the denitrification reaction is completed during the anaerobic state, It is represented by Equation 1. Here, the ammonia nitrogen concentration at the start of the aerobic state is C NH4 , the ammonia nitrogen concentration in the raw water is C 0 , and the number of repetitions of the aerobic state and the anaerobic state is N.

【数1】CNH4 =C0 (1−exp(−1/2N))## EQU1 ## C NH4 = C 0 (1−exp (− / N))

【0012】このため、反応槽内のpH変化の屈曲点か
ら硝化時間が分かり、この硝化時間から原水窒素濃度を
推定することができるのである。このようにして得られ
た原水窒素濃度から、本願各発明は効率よく原水中から
窒素を除去するために、次の実施形態に示す通りの手段
を取る。
For this reason, the nitrification time can be determined from the inflection point of the pH change in the reaction tank, and the nitrogen concentration of the raw water can be estimated from the nitrification time. In order to efficiently remove nitrogen from raw water from the raw water nitrogen concentration obtained as described above, the present invention employs the means shown in the following embodiments.

【0013】[0013]

【発明の実施の形態】(第1の発明)間欠曝気処理が行
われる反応槽内のpH変化を公知のpH計で連続的に測
定してその屈曲点から硝化反応の終了を検知し、硝化開
始から屈曲点が出現するまでの時間である硝化時間を算
出する。この硝化時間と予め求められている硝化速度と
から、前記の式により原水窒素濃度を推定する。第1の
発明では、この原水窒素濃度から反応槽の窒素負荷を一
定にするために原水流量を制御する。
BEST MODE FOR CARRYING OUT THE INVENTION (First Invention) A change in pH in a reaction tank where an intermittent aeration process is performed is continuously measured by a known pH meter, and the end of the nitrification reaction is detected from the inflection point, and nitrification is performed. The nitrification time, which is the time from the start until the inflection point appears, is calculated. From the nitrification time and the previously determined nitrification rate, the raw water nitrogen concentration is estimated by the above equation. In the first invention, the flow rate of the raw water is controlled based on the nitrogen concentration of the raw water in order to keep the nitrogen load of the reaction tank constant.

【0014】通常、反応槽の窒素負荷が変動する場合に
は、好気状態時における曝気量あるいは嫌気状態時にお
ける水素供与体添加量を調節しないと、間欠曝気処理が
うまく行えない。しかしこの第1の発明では、原水窒素
濃度を指標として原水流量を制御し、単位時間内に処理
槽に流入するアンモニア態窒素の量を一定に保つ。その
結果、原水窒素濃度の変動が激しい排水に対しても間欠
曝気処理により効率のよい窒素除去が可能となる。
Normally, when the nitrogen load in the reaction vessel fluctuates, the intermittent aeration treatment cannot be performed properly unless the amount of aeration in the aerobic state or the amount of the hydrogen donor added in the anaerobic state is adjusted. However, in the first invention, the flow rate of the raw water is controlled using the nitrogen concentration of the raw water as an index, and the amount of ammonia nitrogen flowing into the treatment tank within a unit time is kept constant. As a result, even for wastewater in which the concentration of nitrogen in the raw water is significantly fluctuating, efficient nitrogen removal can be performed by intermittent aeration.

【0015】(第2の発明)この第2の発明では、上記
のようにして求められた原水窒素濃度に応じて好気状態
時における曝気量を制御し、常に適切な空気供給量を維
持する。具体的には、原水窒素濃度が高いときにはブロ
ワの出力を高めて曝気量を増加させ、原水窒素濃度が低
いときにはブロワの出力を落とす。これにより、原水窒
素濃度の変動が激しい排水に対しても間欠曝気処理によ
り効率のよい窒素除去が可能となる。
(Second Invention) In the second invention, the aeration amount in the aerobic state is controlled according to the raw water nitrogen concentration obtained as described above, and an appropriate air supply amount is always maintained. . Specifically, when the raw water nitrogen concentration is high, the output of the blower is increased to increase the aeration amount, and when the raw water nitrogen concentration is low, the output of the blower is reduced. As a result, it is possible to efficiently remove nitrogen by intermittent aeration even for wastewater in which the concentration of nitrogen in the raw water is significantly fluctuating.

【0016】(第3の発明)この第3の発明では、上記
のようにして求められた原水窒素濃度に応じて変動する
窒素負荷に対し嫌気状態における水素供与体の添加量を
制御する。水素供与体としてメタノールを使用した場
合、1gの硝酸態窒素に対し2.47gのメタノールが
必要となる。従って硝化が完全に行われる場合、メタノ
ールは原水アンモニア態窒素に対して2.47倍以上添
加する。これにより、変動する窒素負荷に対し効率のよ
い窒素除去が可能となる。
(Third Invention) In the third invention, the amount of the hydrogen donor added in an anaerobic state is controlled with respect to the nitrogen load that fluctuates according to the raw water nitrogen concentration obtained as described above. When methanol is used as a hydrogen donor, 2.47 g of methanol is required for 1 g of nitrate nitrogen. Therefore, when nitrification is completely performed, methanol is added at least 2.47 times the amount of ammonia nitrogen in the raw water. This allows efficient nitrogen removal for fluctuating nitrogen loads.

【0017】[0017]

【発明の効果】以上に説明したように、本発明によれば
従来は迅速に把握できなかった原水窒素濃度をリアルタ
イムで正確に推測することができ、間欠曝気処理におけ
る適正な原水流量、好気時間中の曝気量、嫌気時間中の
水素供与体添加量などを最適に制御し、効率よく窒素を
除去することができる。このため、ごみ埋立地浸出水な
どの原水窒素濃度の変動が激しい排水に対しても、効率
のよい処理が可能となる。
As described above, according to the present invention, it is possible to accurately estimate in real time the concentration of nitrogen in raw water, which could not be quickly grasped in the past, and to obtain an appropriate raw water flow rate and aerobic flow in intermittent aeration processing. By optimally controlling the amount of aeration during time and the amount of hydrogen donor added during anaerobic time, nitrogen can be removed efficiently. For this reason, efficient treatment is possible even for wastewater in which the concentration of raw water nitrogen, such as leachate from a landfill site, fluctuates greatly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】間欠曝気処理におけるpH変化曲線のグラフで
ある。
FIG. 1 is a graph of a pH change curve in an intermittent aeration process.

【図2】硝化時間と原水窒素濃度との関係を示すグラフ
である。
FIG. 2 is a graph showing the relationship between nitrification time and raw water nitrogen concentration.

【図3】水温と硝化速度との関係を示すグラフである。FIG. 3 is a graph showing the relationship between water temperature and nitrification rate.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年2月4日[Submission date] February 4, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】[0006]

【課題を解決するための手段】本発明者等はこの課題を
解決するために研究した結果、好気条件時に反応槽内の
pH変化を計測すると、硝化反応の終了と同時に屈曲点
が現れること、この硝化に要した時間と予め測定されて
いる温度に応じた硝化速度から原水窒素濃度が推定でき
ることを把握した。本発明はこれらの知見に基づいてな
されたものであり、第1の発明は、間欠曝気処理が行わ
れる反応槽内のpH変化を計測してその屈曲点から硝化
反応の終了を検知するとともに、得られた硝化時間から
原水窒素濃度を推定し、この原水窒素濃度から反応槽の
窒素負荷を一定にするために、単位時間内に反応槽に流
入する窒素量を一定に保つよう原水流量を制御すること
を特徴とするものである。
Means for Solving the Problems As a result of research conducted by the present inventors to solve this problem, when a pH change in a reaction tank is measured under aerobic conditions, a bending point appears at the same time as the end of the nitrification reaction. It was also found that the nitrogen concentration in the raw water can be estimated from the time required for this nitrification and the nitrification rate according to the previously measured temperature. The present invention has been made based on these findings, the first invention is to detect the end of the nitrification reaction from the inflection point by measuring the pH change in the reaction tank where the intermittent aeration treatment is performed, From the obtained nitrification time, the raw water nitrogen concentration is estimated, and based on this raw water nitrogen concentration, the nitrogen flow in the reaction tank is controlled within a unit time to keep the nitrogen load of the reaction tank constant.
It is characterized in that the flow rate of raw water is controlled so as to keep the amount of nitrogen introduced constant .

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】また第2の発明は、間欠曝気処理が行われ
る反応槽内のpH変化を計測してその屈曲点から硝化反
応の終了を検知するとともに、得られた硝化時間から原
水窒素濃度を推定し、この原水窒素濃度から、その濃度
が高いときは曝気量を増加させ、低いときは減少させる
よう変動する窒素負荷に対し好気状態における曝気量を
制御することを特徴とするものであり、第3の発明は、
嫌気状態において水素供与体を添加する間欠曝気処理が
行われる反応槽内のpH変化を計測してその屈曲点から
硝化反応の終了を検知するとともに、得られた硝化時間
から原水窒素濃度を推定し、この原水窒素濃度から、そ
の濃度が高いときは水素供与体添加量を増加させ、低い
ときは減少させるよう変動する窒素負荷に対し嫌気状態
における水素供与体の添加量を制御することを特徴とす
るものである。
The second invention measures the pH change in the reaction tank where the intermittent aeration process is performed, detects the end of the nitrification reaction from the inflection point, and estimates the nitrogen concentration of the raw water from the obtained nitrification time. From this raw water nitrogen concentration ,
Increase the amount of aeration when it is high, decrease it when it is low
The amount of aeration in an aerobic state is controlled with respect to such a fluctuating nitrogen load.
In an anaerobic condition, the pH change in the reaction tank where the intermittent aeration process in which the hydrogen donor is added is performed, and the end of the nitrification reaction is detected from the inflection point, and the raw water nitrogen concentration is estimated from the obtained nitrification time. From this raw water nitrogen concentration ,
When the concentration of is high, increase the amount of hydrogen donor added, and
In some cases, the amount of the hydrogen donor added in an anaerobic state is controlled with respect to a fluctuating nitrogen load so as to reduce the amount.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 間欠曝気処理が行われる反応槽内のpH
変化を計測してその屈曲点から硝化反応の終了を検知す
るとともに、得られた硝化時間から原水窒素濃度を推定
し、この原水窒素濃度から反応槽の窒素負荷を一定にす
るために原水流量を制御することを特徴とする窒素含有
排水の処理方法。
Claims: 1. pH in a reaction tank where intermittent aeration is performed
The change is measured and the end of the nitrification reaction is detected from the inflection point.The raw water nitrogen concentration is estimated from the obtained nitrification time, and the raw water flow rate is determined from this raw water nitrogen concentration to keep the nitrogen load of the reaction tank constant. A method for treating nitrogen-containing wastewater, comprising controlling.
【請求項2】 間欠曝気処理が行われる反応槽内のpH
変化を計測してその屈曲点から硝化反応の終了を検知す
るとともに、得られた硝化時間から原水窒素濃度を推定
し、この原水窒素濃度から変動する窒素負荷に対し好気
状態における曝気量を制御することを特徴とする窒素含
有排水の処理方法。
2. The pH in a reaction tank where intermittent aeration is performed.
The change is measured, the end of the nitrification reaction is detected from the inflection point, and the raw water nitrogen concentration is estimated from the obtained nitrification time, and the amount of aeration in the aerobic state is controlled for the nitrogen load fluctuating from this raw water nitrogen concentration. A method for treating nitrogen-containing wastewater.
【請求項3】 間欠曝気処理が行われる反応槽内のpH
変化を計測してその屈曲点から硝化反応の終了を検知す
るとともに、得られた硝化時間から原水窒素濃度を推定
し、この原水窒素濃度から変動する窒素負荷に対し嫌気
状態における水素供与体の添加量を制御することを特徴
とする窒素含有排水の処理方法。
3. The pH in a reaction tank where intermittent aeration is performed.
The change is measured, the end of the nitrification reaction is detected from the inflection point, and the raw water nitrogen concentration is estimated from the obtained nitrification time, and the addition of the hydrogen donor in an anaerobic state to the nitrogen load fluctuating from the raw water nitrogen concentration A method for treating nitrogen-containing wastewater, comprising controlling the amount.
JP6321898A 1998-03-13 1998-03-13 Treatment method for nitrogen-containing wastewater Expired - Lifetime JP2912901B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6321898A JP2912901B1 (en) 1998-03-13 1998-03-13 Treatment method for nitrogen-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6321898A JP2912901B1 (en) 1998-03-13 1998-03-13 Treatment method for nitrogen-containing wastewater

Publications (2)

Publication Number Publication Date
JP2912901B1 JP2912901B1 (en) 1999-06-28
JPH11253990A true JPH11253990A (en) 1999-09-21

Family

ID=13222859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6321898A Expired - Lifetime JP2912901B1 (en) 1998-03-13 1998-03-13 Treatment method for nitrogen-containing wastewater

Country Status (1)

Country Link
JP (1) JP2912901B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218939A (en) * 2004-02-04 2005-08-18 Fuji Electric Holdings Co Ltd Method for treating nitrogen-containing waste liquid
JP2007029882A (en) * 2005-07-28 2007-02-08 Fuji Electric Holdings Co Ltd Nitrogen-containing waste liquid treatment method
JP2008142605A (en) * 2006-12-07 2008-06-26 Fuji Electric Holdings Co Ltd Method and apparatus for treating fermented waste liquid
CZ301935B6 (en) * 2009-05-11 2010-08-04 Hach Lange Gmbh Automatic control method of intermittent aeration in activation process of sewage treatment plants
JP2011230069A (en) * 2010-04-28 2011-11-17 Kiyomi Yamaura Aeration operation control system and aeration operation control method for sewage treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218939A (en) * 2004-02-04 2005-08-18 Fuji Electric Holdings Co Ltd Method for treating nitrogen-containing waste liquid
JP4576845B2 (en) * 2004-02-04 2010-11-10 富士電機ホールディングス株式会社 Nitrogen-containing waste liquid treatment method
JP2007029882A (en) * 2005-07-28 2007-02-08 Fuji Electric Holdings Co Ltd Nitrogen-containing waste liquid treatment method
JP2008142605A (en) * 2006-12-07 2008-06-26 Fuji Electric Holdings Co Ltd Method and apparatus for treating fermented waste liquid
CZ301935B6 (en) * 2009-05-11 2010-08-04 Hach Lange Gmbh Automatic control method of intermittent aeration in activation process of sewage treatment plants
JP2011230069A (en) * 2010-04-28 2011-11-17 Kiyomi Yamaura Aeration operation control system and aeration operation control method for sewage treatment apparatus

Also Published As

Publication number Publication date
JP2912901B1 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
Fux et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant
Gao et al. Shortcut nitrification–denitrification by real-time control strategies
US8956540B2 (en) Process and apparatus for controlling aeration during nitrification and denitrification of water
JP2005246136A (en) Nitration method for ammonia nitrogen-containing water and treatment method therefor
Ding et al. Mathematical modeling of nitrous oxide production in an anaerobic/oxic/anoxic process
Bogaert et al. New sensor based on pH effect of denitrification process
JP5292658B2 (en) A method for nitrification of ammonia nitrogen-containing water
Surmacz-Gorska et al. Nitrification process control in activated sludge using oxygen uptake rate measurements
JP2912901B1 (en) Treatment method for nitrogen-containing wastewater
CN111924967B (en) Method for quickly starting anaerobic ammonia oxidation reaction
JPH04104896A (en) Method for controlling drainage
JP4867099B2 (en) Biological denitrification method
US10947141B2 (en) Systems and methods for controlling denitrification in a denitrifying biological reactor
JPS61249597A (en) Method for controlling methanol injection in biological denitrification process
KR20200046874A (en) Sludge reduction and its sewage treatment method
JPH0691294A (en) Operation control method of batch type active sludge treatment
JPH0133236B2 (en)
Li et al. Performance of nitrogen removal in an alternating activated sludge reactor for full-scale applications
JP3677811B2 (en) Biological denitrification method
Foxon et al. Denitrifying activity measurements using an anoxic titration (pHstat) bioassay
Li et al. Nitrogen removal from pharmaceutical manufacturing wastewater via nitrite and the process optimization with on-line control
JP3632265B2 (en) Control method for batch activated sludge treatment
JP3279008B2 (en) Control method of intermittent aeration type activated sludge method
JPH10249386A (en) Treatment of nitrogen-containing waste water
Shourjeh et al. Advances in analysis, quantification and modelling of N2O emission in SBRs under various DO set points

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term