JP2912901B1 - Treatment method for nitrogen-containing wastewater - Google Patents
Treatment method for nitrogen-containing wastewaterInfo
- Publication number
- JP2912901B1 JP2912901B1 JP6321898A JP6321898A JP2912901B1 JP 2912901 B1 JP2912901 B1 JP 2912901B1 JP 6321898 A JP6321898 A JP 6321898A JP 6321898 A JP6321898 A JP 6321898A JP 2912901 B1 JP2912901 B1 JP 2912901B1
- Authority
- JP
- Japan
- Prior art keywords
- raw water
- nitrogen
- nitrification
- amount
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/40—Protecting water resources
- Y02A20/402—River restoration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
【要約】
【課題】原水窒素濃度が変化した場合にも、間欠曝気処
理における適正な原水流量、好気時間中の曝気量、嫌気
時間中の水素供与体添加量などを最適に制御すること。
【解決手段】間欠曝気処理が行われる反応槽内のpH変
化を計測してその屈曲点から硝化反応の終了を検知し、
得られた硝化時間から原水窒素濃度を推定する。第1の
発明では、原水窒素濃度から反応槽の窒素負荷を一定に
するために原水流量を制御する。第2の発明では、原水
窒素濃度に応じて好気状態時における曝気量を制御す
る。第3の発明では、原水窒素濃度に応じて変動する窒
素負荷に対し嫌気状態における水素供与体の添加量を制
御する。Abstract: [PROBLEMS] To optimally control an appropriate raw water flow rate, an aeration amount during an aerobic time, and a hydrogen donor addition amount during an anaerobic time, etc., even when a raw water nitrogen concentration changes. A pH change in a reaction tank where an intermittent aeration process is performed is measured, and the end of the nitrification reaction is detected from a bending point thereof,
From the obtained nitrification time, the raw water nitrogen concentration is estimated. In the first invention, the flow rate of the raw water is controlled in order to keep the nitrogen load of the reaction tank constant from the nitrogen concentration of the raw water. In the second invention, the aeration amount in the aerobic state is controlled according to the raw water nitrogen concentration. In the third invention, the amount of the hydrogen donor added in an anaerobic state is controlled with respect to the nitrogen load that fluctuates according to the raw water nitrogen concentration.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、下水二次処理水、
ごみ埋め立て地からの浸出水、河川、し尿、産業排水等
の窒素含有排水中から効率よく窒素を除去することがで
きる間欠曝気方式の窒素含有排水の処理方法に関するも
のである。TECHNICAL FIELD The present invention relates to secondary sewage water,
The present invention relates to a method for treating nitrogen-containing wastewater of an intermittent aeration type, which can efficiently remove nitrogen from nitrogen-containing wastewater such as leachate from a landfill, rivers, human waste, and industrial wastewater.
【0002】[0002]
【従来の技術】排水中から窒素を除去するためには、好
気槽で酸素の存在下で排水中の有機態窒素やアンモニア
態窒素を酸化して硝酸態窒素に変換する硝化過程と、こ
の硝酸態窒素を嫌気槽で窒素ガスに変える脱窒過程とが
必要であり、通常は好気槽と嫌気槽とを直列に設置して
窒素除去を行っている。この場合2槽を必要とするが、
単一の反応槽内で間欠的な曝気を行うことにより好気条
件と嫌気条件とを交互に作りだし、窒素除去を行う間欠
曝気処理も知られている。2. Description of the Related Art In order to remove nitrogen from wastewater, a nitrification process of oxidizing organic nitrogen or ammonia nitrogen in wastewater in the presence of oxygen in an aerobic tank and converting it into nitrate nitrogen is performed. A denitrification process of converting nitrate nitrogen into nitrogen gas in an anaerobic tank is required. Usually, an aerobic tank and an anaerobic tank are arranged in series to remove nitrogen. In this case, two tanks are required,
There is also known an intermittent aeration process in which aerobic conditions and anaerobic conditions are alternately created by performing intermittent aeration in a single reaction tank to remove nitrogen.
【0003】この間欠曝気処理における重要な操作因子
は、好気時間(硝化時間)と嫌気時間(脱窒時間)の取
り方であり、通常は例えば好気時間3時間、嫌気時間2
時間というように、予めそれぞれの時間を設定して処理
を行っている。しかし水温や排水中の有機物成分と窒素
成分との割合などの環境条件によって硝化能力、脱窒能
力に差が生じることから、これらの時間を環境条件によ
り制御することが望まれる。このため、処理槽内のDO
(溶存酸素濃度)やOPR(酸化還元電位)等を測定す
ることにより、好気時間と嫌気時間の制御を行うことが
既に提案されている。An important operating factor in the intermittent aeration treatment is how to take an aerobic time (nitrification time) and an anaerobic time (denitrification time).
Processing is performed by setting each time in advance, such as time. However, since the nitrification capacity and the denitrification capacity differ depending on environmental conditions such as the water temperature and the ratio of the organic component to the nitrogen component in the wastewater, it is desired to control these times according to the environmental conditions. Therefore, DO in the processing tank
It has already been proposed to control aerobic time and anaerobic time by measuring (dissolved oxygen concentration), OPR (redox potential) and the like.
【0004】ところがこのような方法で好気時間と嫌気
時間の制御を行うことはできるものの、適正な原水流
量、好気時間中の曝気量、嫌気時間中の水素供与体添加
量までを制御することはできなかった。すなわちこれら
はいずれも原水窒素濃度に応じて決定されるべき値であ
るが、原水窒素濃度の測定には一般的な分析手法を用い
るか、あるいは高価な自動窒素測定装置を導入する必要
があり、例えばごみ埋立地浸出水などの原水窒素濃度の
変動が激しい排水に対しては、リアルタイムで経済的な
制御を行うことが不可能であった。However, although the aerobic time and the anaerobic time can be controlled by such a method, an appropriate raw water flow rate, an aeration amount during the aerobic time, and an addition amount of the hydrogen donor during the anaerobic time are controlled. I couldn't do that. That is, these are all values to be determined according to the raw water nitrogen concentration, but it is necessary to use a general analysis method for measuring the raw water nitrogen concentration, or to introduce an expensive automatic nitrogen measurement device, For example, it has not been possible to perform real-time economical control on wastewater whose raw water nitrogen concentration fluctuates greatly, such as leachate from a landfill.
【0005】[0005]
【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決して、間欠曝気処理における適正な原水
流量、好気時間中の曝気量、嫌気時間中の水素供与体添
加量などを、原水窒素濃度に応じてリアルタイムで最適
に制御し、効率よく窒素を除去することができるように
した窒素含有排水の処理方法を提供するためになされた
ものである。SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and provides an appropriate raw water flow rate in intermittent aeration treatment, aeration during aerobic time, hydrogen donor addition during anaerobic time, and the like. The present invention has been made to provide a method for treating nitrogen-containing wastewater in which nitrogen can be efficiently removed by optimally controlling the concentration of nitrogen in raw water in real time.
【0006】[0006]
【課題を解決するための手段】本発明者等はこの課題を
解決するために研究した結果、好気条件時に反応槽内の
pH変化を計測すると、硝化反応の終了と同時に屈曲点
が現れること、この硝化に要した時間と予め測定されて
いる温度に応じた硝化速度から原水窒素濃度が推定でき
ることを把握した。本発明はこれらの知見に基づいてな
されたものであり、第1の発明は、間欠曝気処理が行わ
れる反応槽内のpH変化を計測してその屈曲点から硝化
反応の終了を検知するとともに、得られた硝化時間から
原水窒素濃度を推定し、この原水窒素濃度から反応槽の
窒素負荷を一定にするために、単位時間内に反応槽に流
入する窒素量を一定に保つよう原水流量を制御すること
を特徴とするものである。Means for Solving the Problems As a result of research conducted by the present inventors to solve this problem, when a pH change in a reaction tank is measured under aerobic conditions, a bending point appears at the same time as the end of the nitrification reaction. It was also found that the nitrogen concentration in the raw water can be estimated from the time required for this nitrification and the nitrification rate according to the previously measured temperature. The present invention has been made based on these findings, the first invention is to detect the end of the nitrification reaction from the inflection point by measuring the pH change in the reaction tank where the intermittent aeration treatment is performed, From the obtained nitrification time, the raw water nitrogen concentration is estimated, and based on this raw water nitrogen concentration, the nitrogen flow in the reaction tank is controlled within a unit time to keep the nitrogen load of the reaction tank constant.
It is characterized in that the flow rate of raw water is controlled so as to keep the amount of nitrogen introduced constant .
【0007】また第2の発明は、間欠曝気処理が行われ
る反応槽内のpH変化を計測してその屈曲点から硝化反
応の終了を検知するとともに、得られた硝化時間から原
水窒素濃度を推定し、この原水窒素濃度から、その濃度
が高いときは曝気量を増加させ、低いときは減少させる
よう変動する窒素負荷に対し好気状態における曝気量を
制御することを特徴とするものであり、第3の発明は、
嫌気状態において水素供与体を添加する間欠曝気処理が
行われる反応槽内のpH変化を計測してその屈曲点から
硝化反応の終了を検知するとともに、得られた硝化時間
から原水窒素濃度を推定し、この原水窒素濃度から、そ
の濃度が高いときは水素供与体添加量を増加させ、低い
ときは減少させるよう変動する窒素負荷に対し嫌気状態
における水素供与体の添加量を制御することを特徴とす
るものである。The second invention measures the pH change in the reaction tank where the intermittent aeration process is performed, detects the end of the nitrification reaction from the inflection point, and estimates the nitrogen concentration of the raw water from the obtained nitrification time. From this raw water nitrogen concentration ,
Increase the amount of aeration when it is high, decrease it when it is low
The amount of aeration in an aerobic state is controlled with respect to such a fluctuating nitrogen load.
In an anaerobic condition, the pH change in the reaction tank where the intermittent aeration process in which the hydrogen donor is added is performed, and the end of the nitrification reaction is detected from the inflection point, and the raw water nitrogen concentration is estimated from the obtained nitrification time. From this raw water nitrogen concentration ,
When the concentration of is high, increase the amount of hydrogen donor added, and
In some cases, the amount of the hydrogen donor added in an anaerobic state is controlled with respect to a fluctuating nitrogen load so as to reduce the amount.
【0008】単一に反応槽で好気状態と嫌気状態とを繰
り返す間欠曝気処理において、好気時間と嫌気時間を予
め定めた場合(例えば30分まで)、微生物による硝化
反応が終了して反応槽内にアンモニア態窒素がなくなる
と、図1に示すようにpH変化曲線に屈曲点が出現す
る。この硝化に要した時間(t)と原水のアンモニア態
窒素濃度との間には相関関係がある。In the intermittent aeration treatment in which the aerobic state and the anaerobic state are repeatedly repeated in a single reaction tank, if the aerobic time and the anaerobic time are predetermined (for example, up to 30 minutes), the nitrification reaction by the microorganism is terminated and the reaction is terminated. When the ammonia nitrogen disappears from the tank, a bending point appears on the pH change curve as shown in FIG. There is a correlation between the time (t) required for this nitrification and the ammonia nitrogen concentration of the raw water.
【0009】例えば担体としてポリビニルアルコールゲ
ルを使用し、反応槽内に40%充填した間欠曝気処理装
置において、滞留時間を12時間、好気状態と嫌気状態
の繰り返し回数を12回とした場合、水温20℃の条件
において硝化時間(硝化開始から屈曲点が出現するまで
の時間)と原水のアンモニア態窒素濃度との間には、図
2に示される関係が成立することが確認された。このよ
うな相関関係が成立する理由は次の通りである。For example, in an intermittent aeration apparatus in which a reaction vessel is filled with 40% polyvinyl alcohol gel as a carrier, the residence time is 12 hours, and the number of repetitions of the aerobic state and the anaerobic state is 12 times. It was confirmed that the relationship shown in FIG. 2 was established between the nitrification time (time from the start of nitrification to the appearance of the inflection point) and the concentration of ammonia nitrogen in the raw water under the condition of 20 ° C. The reason why such a correlation is established is as follows.
【0010】まず好気状態下におけるアンモニア態窒素
の減少速度は反応槽内の硝化菌による硝化速度に依存す
るため、硝化速度が分かっている場合、硝化時間より好
気状態開始時におけるアンモニア態窒素濃度が推定でき
る。このとき、硝化速度は水温によって図3のように影
響されるので、水温との関係を考慮した硝化速度を用い
る。First, the rate of reduction of ammonia nitrogen under an aerobic condition depends on the nitrification rate of nitrifying bacteria in a reaction tank. Therefore, if the nitrification rate is known, the ammonia nitrogen at the start of the aerobic state is shorter than the nitrification time. The concentration can be estimated. At this time, since the nitrification rate is affected by the water temperature as shown in FIG. 3, the nitrification rate in consideration of the relationship with the water temperature is used.
【0011】また、好気状態開始時におけるアンモニア
態窒素濃度と原水中のアンモニア態窒素濃度とは、好気
状態時に硝化反応が、また嫌気状態時に脱窒反応が完了
している場合には、式1により表される。ここで好気状
態開始時におけるアンモニア態窒素濃度をCNH4 、原水
中のアンモニア態窒素濃度をC0 、好気状態と嫌気状態
の繰り返し回数をNとする。The ammonia nitrogen concentration at the start of the aerobic state and the ammonia nitrogen concentration in the raw water are defined as follows: when the nitrification reaction is completed during the aerobic state and when the denitrification reaction is completed during the anaerobic state, It is represented by Equation 1. Here, the ammonia nitrogen concentration at the start of the aerobic state is C NH4 , the ammonia nitrogen concentration in the raw water is C 0 , and the number of repetitions of the aerobic state and the anaerobic state is N.
【数1】CNH4 =C0 (1−exp(−1/2N))## EQU1 ## C NH4 = C 0 (1−exp (− / N))
【0012】このため、反応槽内のpH変化の屈曲点か
ら硝化時間が分かり、この硝化時間から原水窒素濃度を
推定することができるのである。このようにして得られ
た原水窒素濃度から、本願各発明は効率よく原水中から
窒素を除去するために、次の実施形態に示す通りの手段
を取る。For this reason, the nitrification time can be determined from the inflection point of the pH change in the reaction tank, and the nitrogen concentration of the raw water can be estimated from the nitrification time. In order to efficiently remove nitrogen from raw water from the raw water nitrogen concentration obtained as described above, the present invention employs the means shown in the following embodiments.
【0013】[0013]
【発明の実施の形態】(第1の発明) 間欠曝気処理が行われる反応槽内のpH変化を公知のp
H計で連続的に測定してその屈曲点から硝化反応の終了
を検知し、硝化開始から屈曲点が出現するまでの時間で
ある硝化時間を算出する。この硝化時間と予め求められ
ている硝化速度とから、前記の式により原水窒素濃度を
推定する。第1の発明では、この原水窒素濃度から反応
槽の窒素負荷を一定にするために原水流量を制御する。BEST MODE FOR CARRYING OUT THE INVENTION (First Invention) The pH change in a reaction tank in which an intermittent aeration treatment is performed is determined by a known p method.
The end of the nitrification reaction is detected from the inflection point by continuously measuring with an H meter, and the nitrification time, which is the time from the start of nitrification to the appearance of the inflection point, is calculated. From the nitrification time and the previously determined nitrification rate, the raw water nitrogen concentration is estimated by the above equation. In the first invention, the flow rate of the raw water is controlled based on the nitrogen concentration of the raw water in order to keep the nitrogen load of the reaction tank constant.
【0014】通常、反応槽の窒素負荷が変動する場合に
は、好気状態時における曝気量あるいは嫌気状態時にお
ける水素供与体添加量を調節しないと、間欠曝気処理が
うまく行えない。しかしこの第1の発明では、原水窒素
濃度を指標として原水流量を制御し、単位時間内に処理
槽に流入するアンモニア態窒素の量を一定に保つ。その
結果、原水窒素濃度の変動が激しい排水に対しても間欠
曝気処理により効率のよい窒素除去が可能となる。Normally, when the nitrogen load in the reaction vessel fluctuates, the intermittent aeration treatment cannot be performed properly unless the amount of aeration in the aerobic state or the amount of the hydrogen donor added in the anaerobic state is adjusted. However, in the first invention, the flow rate of the raw water is controlled using the nitrogen concentration of the raw water as an index, and the amount of ammonia nitrogen flowing into the treatment tank within a unit time is kept constant. As a result, even for wastewater in which the concentration of nitrogen in the raw water is significantly fluctuating, efficient nitrogen removal can be performed by intermittent aeration.
【0015】(第2の発明) この第2の発明では、上記のようにして求められた原水
窒素濃度に応じて好気状態時における曝気量を制御し、
常に適切な空気供給量を維持する。具体的には、原水窒
素濃度が高いときにはブロワの出力を高めて曝気量を増
加させ、原水窒素濃度が低いときにはブロワの出力を落
とす。これにより、原水窒素濃度の変動が激しい排水に
対しても間欠曝気処理により効率のよい窒素除去が可能
となる。(Second Invention) In the second invention, the aeration amount in the aerobic state is controlled according to the raw water nitrogen concentration obtained as described above,
Maintain an adequate air supply at all times. Specifically, when the raw water nitrogen concentration is high, the output of the blower is increased to increase the aeration amount, and when the raw water nitrogen concentration is low, the output of the blower is reduced. As a result, it is possible to efficiently remove nitrogen by intermittent aeration even for wastewater in which the concentration of nitrogen in the raw water is significantly fluctuating.
【0016】(第3の発明) この第3の発明では、上記のようにして求められた原水
窒素濃度に応じて変動する窒素負荷に対し嫌気状態にお
ける水素供与体の添加量を制御する。水素供与体として
メタノールを使用した場合、1gの硝酸態窒素に対し
2.47gのメタノールが必要となる。従って硝化が完
全に行われる場合、メタノールは原水アンモニア態窒素
に対して2.47倍以上添加する。これにより、変動す
る窒素負荷に対し効率のよい窒素除去が可能となる。(Third Invention) In the third invention, the amount of the hydrogen donor added in an anaerobic state is controlled with respect to the nitrogen load fluctuating according to the raw water nitrogen concentration obtained as described above. When methanol is used as a hydrogen donor, 2.47 g of methanol is required for 1 g of nitrate nitrogen. Therefore, when nitrification is completely performed, methanol is added at least 2.47 times the amount of ammonia nitrogen in the raw water. This allows efficient nitrogen removal for fluctuating nitrogen loads.
【0017】[0017]
【発明の効果】以上に説明したように、本発明によれば
従来は迅速に把握できなかった原水窒素濃度をリアルタ
イムで正確に推測することができ、間欠曝気処理におけ
る適正な原水流量、好気時間中の曝気量、嫌気時間中の
水素供与体添加量などを最適に制御し、効率よく窒素を
除去することができる。このため、ごみ埋立地浸出水な
どの原水窒素濃度の変動が激しい排水に対しても、効率
のよい処理が可能となる。As described above, according to the present invention, it is possible to accurately estimate in real time the concentration of nitrogen in raw water, which could not be quickly grasped in the past, and to obtain an appropriate raw water flow rate and aerobic flow in intermittent aeration processing. By optimally controlling the amount of aeration during time and the amount of hydrogen donor added during anaerobic time, nitrogen can be removed efficiently. For this reason, efficient treatment is possible even for wastewater in which the concentration of raw water nitrogen, such as leachate from a landfill site, fluctuates greatly.
【図1】間欠曝気処理におけるpH変化曲線のグラフで
ある。FIG. 1 is a graph of a pH change curve in an intermittent aeration process.
【図2】硝化時間と原水窒素濃度との関係を示すグラフ
である。FIG. 2 is a graph showing the relationship between nitrification time and raw water nitrogen concentration.
【図3】水温と硝化速度との関係を示すグラフである。FIG. 3 is a graph showing the relationship between water temperature and nitrification rate.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C02F 3/34 101 C02F 3/12 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C02F 3/34 101 C02F 3/12
Claims (3)
変化を計測してその屈曲点から硝化反応の終了を検知す
るとともに、得られた硝化時間から原水窒素濃度を推定
し、この原水窒素濃度から反応槽の窒素負荷を一定にす
るために、単位時間内に反応槽に流入する窒素量を一定
に保つよう原水流量を制御することを特徴とする窒素含
有排水の処理方法。Claims: 1. pH in a reaction tank where intermittent aeration is performed
The change is measured and the end of the nitrification reaction is detected from the inflection point, and the raw water nitrogen concentration is estimated from the obtained nitrification time. Constant the amount of nitrogen flowing into the reactor
A method for treating nitrogen-containing wastewater, comprising controlling the flow rate of raw water so as to maintain the flow rate.
変化を計測してその屈曲点から硝化反応の終了を検知す
るとともに、得られた硝化時間から原水窒素濃度を推定
し、この原水窒素濃度から、その濃度が高いときは曝気
量を増加させ、低いときは減少させるよう変動する窒素
負荷に対し好気状態における曝気量を制御することを特
徴とする窒素含有排水の処理方法。2. The pH in a reaction tank where intermittent aeration is performed.
The change is measured and the end of the nitrification reaction is detected from the inflection point, and the raw water nitrogen concentration is estimated from the obtained nitrification time. From this raw water nitrogen concentration , aeration is performed when the concentration is high.
A method for treating nitrogen-containing wastewater, comprising controlling the amount of aeration in an aerobic state with respect to a varying nitrogen load so as to increase the amount and decrease the amount when the amount is low .
間欠曝気処理が行われる反応槽内のpH変化を計測して
その屈曲点から硝化反応の終了を検知するとともに、得
られた硝化時間から原水窒素濃度を推定し、この原水窒
素濃度から、その濃度が高いときは水素供与体添加量を
増加させ、低いときは減少させるよう変動する窒素負荷
に対し嫌気状態における水素供与体の添加量を制御する
ことを特徴とする窒素含有排水の処理方法。3. A method in which a hydrogen donor is added in an anaerobic state. A pH change in a reaction tank in which an intermittent aeration process is performed is measured, and the end of the nitrification reaction is detected from the inflection point and obtained. The raw water nitrogen concentration is estimated from the nitrification time, and when the raw water nitrogen concentration is high, the amount of the hydrogen donor added is determined.
A method for treating nitrogen-containing wastewater, comprising controlling the amount of a hydrogen donor added in an anaerobic state to a fluctuating nitrogen load so as to increase and decrease when the amount is low .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6321898A JP2912901B1 (en) | 1998-03-13 | 1998-03-13 | Treatment method for nitrogen-containing wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6321898A JP2912901B1 (en) | 1998-03-13 | 1998-03-13 | Treatment method for nitrogen-containing wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2912901B1 true JP2912901B1 (en) | 1999-06-28 |
JPH11253990A JPH11253990A (en) | 1999-09-21 |
Family
ID=13222859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6321898A Expired - Lifetime JP2912901B1 (en) | 1998-03-13 | 1998-03-13 | Treatment method for nitrogen-containing wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2912901B1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4576845B2 (en) * | 2004-02-04 | 2010-11-10 | 富士電機ホールディングス株式会社 | Nitrogen-containing waste liquid treatment method |
JP4904738B2 (en) * | 2005-07-28 | 2012-03-28 | 富士電機株式会社 | Nitrogen-containing waste liquid treatment method |
JP4743100B2 (en) * | 2006-12-07 | 2011-08-10 | 富士電機株式会社 | Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus |
CZ2009292A3 (en) * | 2009-05-11 | 2010-08-04 | Hach Lange Gmbh | Automatic control method of intermittent aeration in activation process of sewage treatment plants |
JP2011230069A (en) * | 2010-04-28 | 2011-11-17 | Kiyomi Yamaura | Aeration operation control system and aeration operation control method for sewage treatment apparatus |
-
1998
- 1998-03-13 JP JP6321898A patent/JP2912901B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11253990A (en) | 1999-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2803941B2 (en) | Control method of intermittent aeration type activated sludge method | |
Gao et al. | Shortcut nitrification–denitrification by real-time control strategies | |
JP4951826B2 (en) | Biological nitrogen removal method | |
JP5355314B2 (en) | Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus | |
Murray et al. | Inter-relationships between nitrogen balance, pH and dissolved oxygen in an oxidation ditch treating farm animal waste | |
JP3772882B2 (en) | Methane fermentation treatment method | |
JP2912901B1 (en) | Treatment method for nitrogen-containing wastewater | |
JP3015426B2 (en) | Wastewater management and treatment method | |
Surmacz-Gorska et al. | Nitrification process control in activated sludge using oxygen uptake rate measurements | |
CN106348440A (en) | Method for measuring flora denitrification contribution rate and activity of full-autotrophic denitrification process | |
JPH1043787A (en) | Device for simulating amount of nitrous oxide of activated sludge method | |
JP2003326297A (en) | Nitrification method for waste water | |
JPS61249597A (en) | Method for controlling methanol injection in biological denitrification process | |
CN105330015B (en) | The method of maximum nitrite accumulation in denitrification process | |
JP2015208723A (en) | Water treatment process control system | |
JPH0691294A (en) | Operation control method of batch type active sludge treatment | |
CN111217449B (en) | Sewage treatment device and method based on accurate control of oxygen input | |
JP3632265B2 (en) | Control method for batch activated sludge treatment | |
JP3677811B2 (en) | Biological denitrification method | |
JP3260558B2 (en) | Control method of intermittent aeration type activated sludge method | |
JPH10249386A (en) | Treatment of nitrogen-containing waste water | |
JPH0362480B2 (en) | ||
JP3260554B2 (en) | How to control the sewage treatment process | |
JP2004025051A (en) | Organic wastewater treatment method and organic wastewater treatment apparatus | |
JP4037491B2 (en) | Nitrogen removal method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990330 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090409 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090409 Year of fee payment: 10 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090409 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090409 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090409 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090409 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100409 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110409 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120409 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140409 Year of fee payment: 15 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |