JPH11257357A - Race for rolling bearing - Google Patents
Race for rolling bearingInfo
- Publication number
- JPH11257357A JPH11257357A JP5832798A JP5832798A JPH11257357A JP H11257357 A JPH11257357 A JP H11257357A JP 5832798 A JP5832798 A JP 5832798A JP 5832798 A JP5832798 A JP 5832798A JP H11257357 A JPH11257357 A JP H11257357A
- Authority
- JP
- Japan
- Prior art keywords
- decarburization
- ring
- bearing
- amount
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Articles (AREA)
- Rolling Contact Bearings (AREA)
- Forging (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、二輪車、自動車、
農業機械、建設機械等あらゆる所に使用される転がり軸
受に係り、特に、冷間ローリング加工(CRF加工)を
利用して製造される深溝玉軸受などの転がり軸受の軌道
輪として有効な転がり軸受の軌道輪に関するものであ
る。TECHNICAL FIELD The present invention relates to a motorcycle, an automobile,
The present invention relates to rolling bearings used everywhere such as agricultural machines and construction machines, and in particular, to rolling bearings effective as bearing rings for rolling bearings such as deep groove ball bearings manufactured by using cold rolling (CRF processing). It relates to a bearing ring.
【0002】[0002]
【従来の技術】熱処理後に研削加工を行うことで製造さ
れる深溝玉軸受の内外輪(軌道輪)は、製造コストを考
慮して、一般には、次のようにして製造される。図1を
参照しつつ説明する。2. Description of the Related Art Generally, inner and outer rings (track rings) of a deep groove ball bearing manufactured by grinding after heat treatment are manufactured in the following manner in consideration of manufacturing costs. This will be described with reference to FIG.
【0003】軸受素材には、圧延したままの丸棒鋼材が
使用され(S1)、まず、図2(A)に示すように、そ
の素材である丸棒鋼材21に、多段フォーマーを使用し
て熱間鍛造を施し、図2(B)に示すような、内外輪と
なる粗形リング22,23を作る(S2)。次に、軟化
焼鈍により、硬さを下げたり、ミクロ組織を改善する
(S3)。As the bearing material, a rolled round bar steel material is used (S1). First, as shown in FIG. 2A, a round bar steel material 21 is formed by using a multi-stage former. Hot forging is performed to form rough rings 22, 23 as inner and outer rings as shown in FIG. 2 (B) (S2). Next, the hardness is reduced or the microstructure is improved by softening annealing (S3).
【0004】続いて、冷間ローリング加工(以下、CR
F加工と呼ぶ)を行なう(S4)。CRF加工とは、簡
略図である図3に示すように、粗形リング22,23
を、回転する成形ロール11とマンドレル12とで挟圧
しつつ、荷重Wにより圧延することで肉薄にして、リン
グ径を拡大するものである。Subsequently, cold rolling (hereinafter referred to as CR)
F processing) (S4). As shown in FIG. 3, which is a simplified diagram, CRF processing refers to roughing rings 22, 23.
Is thinned by rolling with a load W while being pressed between the rotating forming roll 11 and the mandrel 12, thereby increasing the ring diameter.
【0005】ここで、このCRF加工を使用しない場合
には、従来、図4に示すような鍛造工程が採用され、こ
の鍛造工程で外輪・内輪となる粗形リングa1、b1を
作る際に、符号c1、c2の部分がスクラップとして廃
棄される。一方、上記CRF加工を行う場合は、熱間鍛
造で図2(B)に示す小さな粗形リング22、23が作
られ、CRF加工によって、図2(C)に示す、二つの
リング31、32に拡径することができるため、図4に
おける符号c2の部分が発生せず、しかも、c1も図2
のc3に示す通り小さくすることができるので、スクラ
ップ量が少ない。さらにCRF加工でリングを拡径する
際に軌道面にみぞ31b、32a等を付けるように成形
して旋削取代を少しでも減らすことが可能であり、材料
歩留が非常に良くなる。このため、上述にように、製造
コストを考慮してCRF加工が採用される。[0005] Here, when the CRF processing is not used, a forging process as shown in FIG. 4 is conventionally employed. When the rough rings a1 and b1 to be the outer ring and the inner ring are formed in the forging process, The portions denoted by reference numerals c1 and c2 are discarded as scrap. On the other hand, when performing the above-mentioned CRF processing, small rough rings 22 and 23 shown in FIG. 2B are made by hot forging, and two rings 31 and 32 shown in FIG. Since the diameter can be increased, the portion denoted by reference numeral c2 in FIG. 4 does not occur.
Since the size can be reduced as shown in c3, the scrap amount is small. Further, when the diameter of the ring is expanded by CRF processing, the raceway surface is formed to have grooves 31b, 32a, etc., so that the machining allowance can be reduced as much as possible, and the material yield is greatly improved. Therefore, as described above, CRF processing is adopted in consideration of manufacturing costs.
【0006】次に、サイジング(S5)を行なう。その
後、鍛造や焼鈍時に発生した酸化層や脱炭層を取り除く
と共に、熱処理や研削後に深溝玉軸受の軌道輪として必
要な形状に成形するために、CRF加工後の粗形リング
(以下、CRFリングと呼ぶ)のリング全面について旋
削加工(S6)が施される。また、場合によっては旋削
加工前の熱間鍛造時にできたバリ等を研削加工で除去す
ることもある。Next, sizing (S5) is performed. Then, in order to remove the oxidized layer and decarburized layer generated during forging and annealing, and to form into the shape required for the raceway of the deep groove ball bearing after heat treatment and grinding, the rough ring after CRF processing (hereinafter referred to as CRF ring) Turning (S6) is performed on the entire surface of the ring. In some cases, burrs and the like formed during hot forging before turning may be removed by grinding.
【0007】次に、焼入焼戻を行ない軸受として必要な
硬さを得る(S7)。引き続き、軌道面とはめ合い面を
研削加工することにより完成品としての内外輪が製造さ
れる(S8)。Next, quenching and tempering are performed to obtain the hardness required for the bearing (S7). Then, the inner and outer races as finished products are manufactured by grinding the raceway surface and the mating surface (S8).
【0008】また、従来にあっては、特公平6−838
72号公報に記載のように、CRF加工の前工程として
粗形リングの全面に旋削加工を施して形状や重量を一定
にした後に、精密なCRF加工により、深溝玉軸受とし
て必要な軌道面みぞやシールみぞ等を有する形状まで完
全に仕上げることで、その後の旋削加工を省略して、コ
スト低減を図るものが開示されている。[0008] Conventionally, Japanese Patent Publication No. 6-838
As described in Japanese Patent Publication No. 72, as a pre-process of CRF processing, the entire surface of the rough ring is subjected to turning processing to make the shape and weight constant, and then, by precise CRF processing, a raceway surface groove required as a deep groove ball bearing. There is disclosed an apparatus in which a shape having seal grooves or the like is completely finished so that subsequent turning is omitted and cost is reduced.
【0009】そして、いずれの製造方法が採用される場
合であっても、従来にあっては、完成品としての内外輪
表面全面に、脱炭層が残存しないように加工される。[0009] Regardless of which manufacturing method is adopted, conventionally, the decarburized layer is processed so as not to remain on the entire surface of the inner and outer rings as a finished product.
【0010】[0010]
【発明が解決しようとする課題】ここで、上述したよう
に、CRF加工とは粗形リングを拡径するために成形を
施すものである。従って、リングの径方向の肉厚や拡径
量は調整可能であるが、幅方向はフリーであるためリン
グの幅方向の寸法制御はできない。この結果、幅方向に
はみ出しが生じる。Here, as described above, the CRF process is a process of forming a rough ring in order to expand its diameter. Therefore, although the radial thickness and the diameter expansion amount of the ring can be adjusted, the width of the ring cannot be controlled because the width is free. As a result, protrusion occurs in the width direction.
【0011】従って、精密なCRF加工を行なう,上記
特公平6−83872号公報に記載の製造方法で製造さ
れる軌道輪では、幅方向へのはみ出しが発生し易いし、
脱炭層がない状態でCRF加工で強圧するために、複雑
な形状に成形する必要のあるシール溝やレース溝の縁
に、微少な割れが発生してしまうおそれがある。[0011] Therefore, in the raceway manufactured by the manufacturing method described in Japanese Patent Publication No. 6-83872, which performs precise CRF processing, it is easy for the raceway to protrude in the width direction.
Since strong pressure is applied by CRF processing without a decarburized layer, there is a possibility that minute cracks may occur at the edges of seal grooves and race grooves that need to be formed into complicated shapes.
【0012】この結果、CRF加工前に寸法を整え、体
積等を一定にするためCRF加工前の全面旋削が必要な
上に、結局,CRF加工後にも割れ等を取り除く、仕上
旋削が必要となってしまう。また、複雑な形状を精密に
CRF加工することは、加工時間が長く必要となり、C
RF加工のコストが上がる要因になる。すなわち、製造
コスト上,不利な軌道輪となる。As a result, it is necessary to turn the entire surface before the CRF processing in order to adjust the dimensions before the CRF processing and to keep the volume and the like constant. Would. In addition, precise CRF processing of a complex shape requires a long processing time.
This is a factor that increases the cost of RF processing. In other words, the bearing ring is disadvantageous in manufacturing cost.
【0013】一方、CRF加工前に旋削加工を行なわな
い上記従来の方法で製造される軌道輪では、CRF加工
で拡径する時に軌道面にみぞ形状(図2の31b、32
a)等を成形することで、その後の旋削取代を少しでも
減らすことができる。しかし、熱間鍛造や軟化焼鈍時に
発生する脱炭が残ると、硬さむらや表面割れ等が生じ易
くなって軸受機能上の問題が生じるおそれがあるという
見地から、従来にあってはCRF加工後にCRFリング
31,32の表面について全面旋削加工を施しており、
後述するように、工程省略による製造コスト低減に関し
てまだ追求の余地が残されている軌道輪であった。On the other hand, in a raceway manufactured by the above-mentioned conventional method in which turning is not performed before CRF processing, a groove shape (31b, 32 in FIG. 2) is formed on the raceway surface when the diameter is increased by CRF processing.
By shaping a) or the like, the subsequent machining allowance can be reduced as much as possible. However, if decarburization generated during hot forging or soft annealing remains, uneven hardness and surface cracks are likely to occur, which may cause problems in bearing function. Later, the entire surface of the CRF rings 31 and 32 was turned,
As will be described later, there is still room for pursuit with respect to the reduction of manufacturing costs by omitting steps.
【0014】本発明は、上記のような知見に従いなされ
たもので、熱処理後に研削加工を行う鋼製の転がり軸受
の軌道輪について、完成品としての品質を損なうことな
く、しかも、製造コストを抑えることができる転がり軸
受の軌道輪を提供することを課題としている。The present invention has been made in accordance with the above-mentioned knowledge, and it is possible to reduce the manufacturing cost of a steel rolling bearing ring which is subjected to grinding after heat treatment without impairing the quality as a finished product. An object of the present invention is to provide a bearing ring of a rolling bearing that can perform the rolling operation.
【0015】[0015]
【課題を解決するための手段】上記課題を解決するため
に、本発明は、熱処理後に研削加工を行うことで製造さ
れる転がり軸受の軌道輪において、完成した軌道輪にお
ける内輪内径部に、表面脱炭率が10%以上50%以下
で最大の脱炭深さが0.4mm以内の脱炭層が残存し、
外輪外径部に、表面脱炭率%が10%以上70%以下で
最大の脱炭深さが0.5mm以内の脱炭層が残存し、且
つ、軌道面には脱炭層が残存しないことを特徴とする転
がり軸受の軌道輪を提供するものである。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a raceway of a rolling bearing manufactured by performing a grinding process after a heat treatment. A decarburized layer with a decarburization rate of 10% or more and 50% or less and a maximum decarburization depth of 0.4 mm or less remains.
A decarburized layer with a surface decarburization rate of 10% or more and 70% or less and a maximum decarburization depth of 0.5 mm or less remains on the outer ring outer diameter, and no decarburized layer remains on the raceway surface. The present invention provides a rolling bearing race ring.
【0016】但し、上記表面脱炭率(D)は、軸受素材
の炭素量に対する完成品表面の炭素量の変化率であっ
て、下記(1)式で示す値である。 但し、上記表面炭素量は、円周方向全面における最大に
脱炭を生じている部分での炭素量とする。Here, the surface decarburization rate (D) is a rate of change of the carbon content of the finished product surface with respect to the carbon content of the bearing material, and is a value represented by the following equation (1). However, the above surface carbon amount is the carbon amount in the portion where decarburization occurs most in the entire circumferential direction.
【0017】本発明は、従来と発想を変えて、完成品と
しての外輪外径部及び内輪内径部に積極的に脱炭層を残
存させることで、軌道輪製造の際に、CRF加工の強圧
成形による溝肩部等での微細な割れが防止されると共に
切削量が大幅に減少して切削加工性が向上する。ここ
で、後述するように、CRF加工後の粗形リングにおい
ては、外径外面部に一番多く脱炭層が存在し、他の部分
は少ない。The present invention is based on the idea that the decarbonized layer is positively left in the outer ring outer diameter portion and the inner ring inner diameter portion as a finished product by changing the idea from the conventional one, so that the CRF processing can be performed at a high pressure during the production of the bearing ring. This prevents fine cracks at the groove shoulder and the like, and significantly reduces the amount of cutting, thereby improving the machinability. Here, as described later, in the rough ring after the CRF processing, the decarburized layer exists most on the outer surface portion of the outer diameter, and the other portions are few.
【0018】この結果、製造コストを従来よりも低減で
きる軌道輪となる。さらに、完成品における内輪内径部
及び外輪外径部の表面脱炭率及び脱炭深さを上述の範囲
に規制することで、内輪内径部及び外輪外径部に脱炭層
が残存していても、その内輪内径部及び外輪外径部の耐
フレッチング特性を、脱炭層を完全に除去した従来の軌
道輪と同等の性能に設定することができる。As a result, a bearing ring whose manufacturing cost can be reduced as compared with the prior art is obtained. Furthermore, by limiting the surface decarburization rate and the decarburization depth of the inner ring inner diameter portion and the outer ring outer diameter portion in the finished product to the above ranges, even if a decarburized layer remains in the inner ring inner diameter portion and the outer ring outer diameter portion. The fretting resistance characteristics of the inner ring inner diameter portion and the outer ring outer diameter portion can be set to the same performance as that of a conventional bearing ring from which the decarburized layer is completely removed.
【0019】また、軌道面は、軸受寿命に大きく影響す
るが、本発明にあっては、軌道面については従来と同様
に脱炭層を残存させないので、軸受寿命への悪影響もな
い。次に、本発明の根拠などについて説明する。Although the raceway surface greatly affects the bearing life, in the present invention, the decarburized layer does not remain on the raceway surface as in the prior art, so there is no adverse effect on the bearing life. Next, the basis of the present invention will be described.
【0020】本発明者らは脱炭層がその量や深さによっ
て軸受機能に与える影響に関して調査し、以下の結果を
得た。 軸受軌道面の脱炭量が増加すると焼入後の硬さの低下
や残留オーステナイトが減少してしまい、軸受寿命が低
下してしまう。特に、市場での不具合をシミュレートし
た表面起点の損傷による軸受寿命では、軌道面に微量な
脱炭が残存していても軸受寿命が低下してしまう。The present inventors have investigated the effect of the decarburized layer on the bearing function depending on the amount and depth thereof, and have obtained the following results. If the amount of decarburization on the bearing raceway surface increases, the hardness after quenching decreases and the retained austenite decreases, and the life of the bearing decreases. In particular, in the bearing life due to damage to the surface starting point simulating a failure in the market, the bearing life is reduced even if a small amount of decarburization remains on the raceway surface.
【0021】軸やハウジングにはめ合う内輪内径や外
輪外径も、脱炭量が増加すると焼入れ後の硬さの低下に
より、摩耗やフレティングが発生し易くなる場合もある
が、軸受寿命ほど顕著ではなく、しかも、上記摩耗やフ
レティングの影響が生じる脱炭の量や深さに、限界値が
あることを見出した。The inner diameter of the inner ring and the outer diameter of the outer ring to be fitted to the shaft or the housing may be liable to cause abrasion or fretting due to a decrease in hardness after quenching when the amount of decarburization increases, but is more remarkable as the life of the bearing increases. In addition, it has been found that there is a limit to the amount and depth of decarburization in which the above-mentioned effects of wear and fretting occur.
【0022】その他、シール溝やチャンファー部は、
脱炭による大きな影響は見られなかった。更に、脱炭層
について、その量や深さによって加工特性に与える影響
に関して調査し、以下の結果を得た。In addition, the seal groove and the chamfer
There was no significant effect of decarburization. Furthermore, the influence of the amount and depth of the decarburized layer on the processing characteristics was investigated, and the following results were obtained.
【0023】CRF加工は、通常は、表面に脱炭があ
ると、硬さが低下するため変形抵抗が下がり、良好な加
工ができることを見出した。 旋削加工においても、適量な脱炭量の存在により加工
性が良好になることを見出した。In the CRF processing, it has been found that normally, if the surface is decarburized, the hardness is reduced, so that the deformation resistance is reduced and good processing can be performed. It has also been found that in turning, workability is improved by the presence of an appropriate amount of decarburization.
【0024】以上のことから、転がり寿命に直接影響す
る軌道面以外は脱炭層が適量に残留した方が、製造時に
おける加工性が良好となり、製造コストが下がると共
に、軸受内外輪の各位置における脱炭量をそれぞれ適当
な値に調整すれば、軸受機能を損なうこがないことを発
見した。即ち、軸受内外輪の各位置における最適脱炭量
が存在することを発見した。From the above, it is better that the decarburized layer remains in an appropriate amount on the raceway surface other than the raceway surface which directly affects the rolling life, thereby improving the workability at the time of manufacturing, lowering the manufacturing cost, and reducing the cost at each position of the bearing inner and outer rings. It has been found that adjusting the decarburization amount to an appropriate value does not impair the bearing function. That is, it has been found that there is an optimum decarburization amount at each position of the bearing inner and outer rings.
【0025】次に、本発明の軸受完成品の数値限定の理
由を説明する。 完成軸受の内輪内径部における表面脱炭率を10%以
上50%以下で脱炭深さを0.4mm以内の脱炭層とし
たことについて軸受内輪の内径面は、必要機能としてシ
ャフト類とのはめ合いに対する耐フレティング特性が挙
げられる。Next, the reason for limiting the numerical value of the finished bearing product of the present invention will be described. A decarburized layer with a surface decarburization rate of 10% or more and 50% or less and a decarburization depth of 0.4 mm or less at the inner ring inner diameter part of the completed bearing. The inner diameter surface of the bearing inner ring is fitted with shafts as a necessary function. Anti-fretting properties.
【0026】表面脱炭率は高くなりすぎると、硬さが低
下しすぎて、また、脱炭深さは、深くなるほど最大脱炭
位置の範囲が広くなって、耐フレティング特性が劣化す
る。そして、脱炭量について、脱炭が残存しない軌道輪
と同等の耐フレティング特性を発揮する最適範囲につい
て調査し、本発明品の脱炭の範囲では、脱炭が残留して
いないものと同等の耐フレティング特性を示すことを見
い出した(後述の表1参照)。また、本発明品は適量な
脱炭が残留することで、表面の硬さが低下して、冷間加
工性が良好になり、CRFや切削工具の寿命が伸びてい
る。If the surface decarburization rate is too high, the hardness will be too low, and the deeper the decarburization depth, the wider the range of the maximum decarburization position, and the fretting resistance will deteriorate. The decarburization amount was investigated for the optimum range that exhibits the same anti-fretting characteristics as the raceway where decarburization does not remain. (See Table 1 below). In addition, the product of the present invention retains an appropriate amount of decarburization, thereby lowering the surface hardness, improving the cold workability, and extending the life of the CRF and the cutting tool.
【0027】以上の理由から、完成品における内輪内径
部に残存させる脱炭層として、その表面脱炭率が10%
以上50%以下で且つ最大の脱炭深さを0.4mm以内
に限定した。For the above reasons, the decarburized layer remaining on the inner ring inner diameter portion of the finished product has a surface decarburization rate of 10%.
The maximum decarburization depth is limited to not more than 50% and not more than 0.4 mm.
【0028】但し、表1から分かるように、表面脱炭量
が増えると悪くなる傾向があるので、表面脱炭率が40
%以下で脱炭深さは0.3mm以内が望ましい。なお、
本発明の範囲よりも脱炭量が少なくても耐フレティング
特性は良いが、冷間加工性が本発明より劣化して、本発
明と比較して製造コストの高い軌道輪となる。However, as can be seen from Table 1, the surface decarburization rate tends to be worse as the surface decarburization amount increases.
% And the decarburization depth is preferably within 0.3 mm. In addition,
Even if the decarburization amount is smaller than the range of the present invention, the anti-fretting property is good, but the cold workability is deteriorated as compared with the present invention, so that a raceway whose production cost is higher than that of the present invention is obtained.
【0029】外輪外径部の表面脱炭率%が10%以上
70%以下で脱炭深さが0.5mm以内の脱炭層とした
ことについて軸受外輪の外径面は、必要機能としてハウ
ジング類とのはめ合いに対する耐フレティング特性が挙
げられる。The outer surface of the outer ring has a decarburization rate of 10% or more and 70% or less and a decarburization layer having a decarburization depth of 0.5 mm or less. And fretting resistance to the fit.
【0030】上記と同様に、表面脱炭率は高くなりすぎ
ると、硬さが低下しすぎて、また、脱炭深さは、深くな
るほど最大脱炭位置の範囲が広くなって、耐フレティン
グ特性が劣化する。As described above, if the surface decarburization rate is too high, the hardness is too low, and as the decarburization depth increases, the range of the maximum decarburization position increases and the fretting resistance increases. The characteristics deteriorate.
【0031】そして、脱炭量について、脱炭が残存しな
い軌道輪と同等の耐フレティング特性を発揮する最適範
囲について調査し、本発明品の脱炭の範囲では、脱炭が
残留していないものと同等の耐フレティング特性を示す
ことを見い出した(後述の表2参照)。また、本発明品
は適量な脱炭が残留することで、表面の硬さが低下し
て、冷間加工性が良好になり、CRFや切削工具の寿命
が伸びている。With respect to the amount of decarburization, an optimum range for exhibiting fretting resistance equivalent to that of a bearing ring in which decarburization does not remain was investigated, and no decarburization remained in the range of decarburization of the product of the present invention. It has been found that it exhibits anti-fretting properties equivalent to those shown in Table 2 below. In addition, the product of the present invention retains an appropriate amount of decarburization, thereby lowering the surface hardness, improving the cold workability, and extending the life of the CRF and the cutting tool.
【0032】以上のことから、外輪外径に残存させる脱
炭層として、その表面脱炭率%が10%以上70%以下
で且つ最大の脱炭深さを0.5mm以内と限定した。但
し、表2から分かるように、表面脱炭量が増えると悪く
なる傾向があるので、表面脱炭率が50%以下で脱炭深
さは0.4mm以内が望ましい。From the above, as the decarburized layer remaining on the outer diameter of the outer ring, the surface decarburization rate% was limited to 10% or more and 70% or less, and the maximum decarburization depth was limited to 0.5 mm or less. However, as can be seen from Table 2, since the surface decarburization amount tends to become worse as the surface decarburization amount increases, it is desirable that the surface decarburization rate is 50% or less and the decarburization depth is 0.4 mm or less.
【0033】なお、本発明の範囲よりも脱炭量が少なく
ても耐フレティング特性は良いが、冷間加工性が本発明
より劣化して、本発明と比較して製造コストの高い軌道
輪となる。Although the fretting resistance is good even if the amount of decarburization is smaller than the range of the present invention, the cold workability is deteriorated as compared with the present invention, and the raceway whose production cost is higher than that of the present invention. Becomes
【0034】ここで、上記表面脱炭率は0より大きい値
であるので、上記内輪内径部及び外輪外径部の脱炭深さ
は、0より大きい値となる。ここで、上記転動輪は、例
えば、丸棒素材を熱間鍛造して粗形リングを作る熱間鍛
造工程と、その粗形リングについて炭化物を球状化する
軟化焼鈍を行なう工程と、軟化焼鈍後の粗形リングをを
拡径して内輪と外輪の形状にする冷間ローリング加工工
程と、冷間ローリング加工工程後の粗形リングを、軌道
輪として必要な形状に仕上げる仕上旋削加工工程と、焼
入焼戻を行ない軸受として必要な硬さを得る焼入焼戻工
程と、軌道面とはめ合い面を研削加工する研削加工工程
によって製造し、上記仕上旋削加工工程では内輪内径及
び外輪外径を旋削せず、また、完成軸受の内輪内径に表
面脱炭率が10%以上50%以下で最大の脱炭深さが
0.4mm以内の脱炭層を残存させると共に、外輪外径
に表面脱炭率%が10%以上70%以下で最大の脱炭深
さが0.5mm以内の脱炭層を残存させるように、主に
焼鈍工程までで調整することで製造することができる。Here, since the surface decarburization ratio is a value larger than 0, the decarburization depth of the inner ring inner diameter portion and the outer ring outer diameter portion is a value larger than 0. Here, the rolling wheel is, for example, a hot forging step of hot forging a round bar material to form a rough ring, a step of performing a soft annealing to spheroidize the carbide with respect to the rough ring, and after the soft annealing A cold rolling process to increase the diameter of the rough ring to form the inner ring and the outer ring, and a finish turning process to finish the shape of the rough ring after the cold rolling process to the required shape as a raceway ring. Manufactured by a quenching and tempering process to obtain the required hardness as a bearing by performing quenching and tempering, and a grinding process to grind the raceway surface and the mating surface.In the finish turning process, the inner ring inner diameter and outer ring outer diameter are manufactured. Not to be turned, leaving a decarburized layer with a surface decarburization rate of 10% or more and 50% or less and a maximum decarburization depth of 0.4 mm or less on the inner ring inner diameter of the finished bearing, and a surface decarburization on the outer ring outer diameter. The largest charcoal percentage is 10% or more and 70% or less As coal depth to leave the decarburized layer within 0.5 mm, it can be produced by adjusting up mainly annealing.
【0035】[0035]
【発明の実施の形態】次に、本発明の実施の形態を図面
を参照しつつ説明する。本実施形態は、深溝玉軸受の内
外輪を例に説明する。Next, embodiments of the present invention will be described with reference to the drawings. In this embodiment, an inner and outer ring of a deep groove ball bearing will be described as an example.
【0036】まず、その製造方法について説明する。製
造は、図5に示すように、次の工程によって行われる。
軸受素材としては、圧延したままの丸棒鋼材を使用する
(S1)。その素材は、例えば、従来から軸受に最も多
く使用され、深溝玉軸受で殆ど使用されている軸受鋼
(SUJ2)とする。First, the manufacturing method will be described. Manufacturing is performed by the following steps as shown in FIG.
As the bearing material, a rolled steel bar is used as it is (S1). The material is, for example, bearing steel (SUJ2), which has been most frequently used in bearings and almost used in deep groove ball bearings.
【0037】まず、図2に示すように、上記丸棒鋼材2
1を、多段フォーマーを使用して熱間鍛造を行ない、内
外輪になる粗形リング22,23を作る(S2)。次
に、その粗形リング22,23について炭化物を球状化
する軟化焼鈍を行い、硬さを下げたり、ミクロ組織を改
善する(S3)。ここまでの工程で、脱炭層が形成され
る。First, as shown in FIG.
1 is subjected to hot forging using a multi-stage former to form rough rings 22 and 23 serving as inner and outer rings (S2). Next, the rough rings 22 and 23 are subjected to softening annealing for spheroidizing carbides to lower the hardness and improve the microstructure (S3). In the steps so far, a decarburized layer is formed.
【0038】続いて、CRF加工を行なう(S4)。こ
のCRF加工の際に溝31b,32a等を成形する。こ
れによって、軌道面における旋削取代が減る。また、脱
炭層がある状態で強圧加工することで、溝等の成形を行
っても溝肩部等に微細な割れが生じるおそれもない。Subsequently, CRF processing is performed (S4). At the time of this CRF processing, the grooves 31b and 32a are formed. This reduces the machining allowance on the raceway surface. Further, by performing the high pressure processing in a state where the decarburized layer is present, even if the groove or the like is formed, there is no possibility that a fine crack is generated in a groove shoulder or the like.
【0039】次に、サイジング(S5)、つまり外径の
矯正を行う。その後、CRF加工後のCRFリング3
1,32の少なくも軌道面において鍛造や焼鈍時に発生
した酸化、脱炭層を取り除くため、旋削加工(S6)を
施す。なお、場合によっては旋削加工前の熱間鍛造時に
できたバリ等を研削加工で除去する。Next, sizing (S5), that is, correction of the outer diameter is performed. Then, CRF ring 3 after CRF processing
Turning (S6) is performed to remove the oxidized and decarburized layers generated at the time of forging and annealing on at least the raceway surfaces of the first and second raceways. In some cases, burrs and the like formed during hot forging before turning are removed by grinding.
【0040】このとき、内輪内径部32b及び外輪外径
部31aについては、旋削加工を行うことなく、最適化
のために脱炭層を残存させる。これによって、旋削加工
性が向上する。At this time, the inner ring inner diameter portion 32b and the outer ring outer diameter portion 31a are not subjected to turning but leave a decarburized layer for optimization. Thereby, the turning workability is improved.
【0041】次に、焼入焼戻を行ない軸受として必要な
硬さを得る(S7)。引き続き、軌道面とはめ合い面を
研削加工することにより完成品としての内外輪が製造さ
れる(S8)。Next, quenching and tempering are performed to obtain the hardness required for the bearing (S7). Then, the inner and outer races as finished products are manufactured by grinding the raceway surface and the mating surface (S8).
【0042】ここで、完成品としての内輪内径部には、
表面脱炭率が10%以上50%以下で最大の脱炭深さが
0.4mm以内の脱炭層を残存し、且つ、外輪外径部に
は、表面脱炭率%が10%以上70%以下で最大の脱炭
深さが0.5mm以内の脱炭層を残存させる。Here, in the inner ring inner diameter portion as a finished product,
A decarburized layer having a surface decarburization rate of 10% or more and 50% or less and a maximum decarburization depth of 0.4 mm or less remains, and a surface decarburization rate of 10% or more and 70% in the outer diameter portion of the outer ring. In the following, a decarburized layer having a maximum decarburization depth of 0.5 mm or less is left.
【0043】上記脱炭層は、主に焼鈍工程まで、特に焼
鈍工程で生じるので、上記範囲の脱炭量とすることは、
主に、焼鈍工程の焼鈍条件を調整することで実現でき
る。以上のようにして軌道輪である内外輪を製造した場
合、仕上旋削加工工程で内輪内径部32b及び外輪外径
部31aの旋削を省略することで製造コストの低減が図
られる。ここで、後述するように、脱炭層が一番多いの
は外輪外径部31aであり、その部分の旋削を省略する
ため、特に有効である。なお、外輪外径部31aの脱炭
量は研削加工時にも調整できる。Since the decarburized layer is mainly generated up to the annealing step, particularly in the annealing step, the decarburized amount within the above range is determined as follows.
This can be mainly achieved by adjusting the annealing conditions in the annealing step. When the inner and outer races, which are races, are manufactured as described above, the manufacturing cost can be reduced by omitting the turning of the inner race inner diameter portion 32b and the outer race outer diameter portion 31a in the finishing turning process. Here, as will be described later, the outermost portion of the outer ring 31a has the largest amount of decarburized layer, which is particularly effective because the turning of that portion is omitted. In addition, the decarburization amount of the outer ring outer diameter portion 31a can also be adjusted at the time of grinding.
【0044】さらに、適量に脱炭を残すことでCRF加
工性や軌道面形状仕上やシール溝成形及び端面調整に対
して行なう仕上旋削加工性も良好にし、さらなるコスト
ダウンが図られる。Furthermore, by leaving decarburization in an appropriate amount, the CRF workability, the finish of the raceway surface shape, the finish turning work for forming the seal groove and adjusting the end face are improved, and the cost can be further reduced.
【0045】すなわち、CRF加工後に全面旋削を行な
う軌道輪に対して、転がり寿命に直接影響する軌道面以
外については脱炭層を適量に残留させることで、軸受機
能を損なうことなく、逆に製造の際の加工性が良好とな
り、製造コストが下がる転がり軸受の軌道輪を提供でき
る。しかも、残存させる脱炭層の最適化を図ることで、
転がり軸受として要求される外輪外径部及び内輪内径部
での耐フレティング特性の劣化が防止される。また、上
述のように脱炭層の最適化は、上述の加工性向上と共に
切削工具の寿命向上にも繋がる。In other words, for a raceway which is fully turned after CRF processing, a decarburized layer is left in an appropriate amount on the raceway surface other than the raceway surface which directly affects the rolling life. In this case, the workability can be improved, and the bearing ring of the rolling bearing whose manufacturing cost is reduced can be provided. Moreover, by optimizing the remaining decarburized layer,
Deterioration of anti-fretting characteristics at the outer ring outer diameter portion and the inner ring inner diameter portion required for a rolling bearing is prevented. Further, as described above, the optimization of the decarburized layer leads to the improvement of the workability described above and the improvement of the life of the cutting tool.
【0046】つまり、本実施形態の軌道輪は、軸受機能
としての品質を落とすことなく、製造コストを大幅に低
減可能なものとなる。ここで、本発明者らは熱処理後に
研削加工を行う鋼製の転がり軸受のうち,深溝玉軸受の
内外輪を例に、そのの製造コストに関して、素材及び各
製造工程について詳しく調査し、以下の結果を得た。That is, the bearing ring of this embodiment can greatly reduce the manufacturing cost without deteriorating the quality as a bearing function. Here, among the steel rolling bearings that are subjected to grinding after heat treatment, the present inventors took an example of the inner and outer rings of a deep groove ball bearing, and investigated the material and each manufacturing process in detail regarding the manufacturing cost thereof, and described the following. The result was obtained.
【0047】深溝玉軸受は一般に並径と呼ばれるおよ
そ外輪外径が20mm前後から200mm前後までの軸受が
そのほとんどであり、大量かつ低コストで生産が行われ
る。そのため、同時に多くの軸受が処理できる熱処理や
ショット等に比べて、軸受を一つ一つ処理する研削加工
や、旋削加工の工数低減はコストダウン効果が大きい。Most of the deep groove ball bearings have an outer ring outer diameter of about 20 mm to about 200 mm, which is generally called a parallel diameter, and are produced in large quantities at low cost. Therefore, compared to heat treatment, shots, and the like that can simultaneously process many bearings, the reduction in the number of steps of grinding and turning for each bearing has a large cost reduction effect.
【0048】大量生産を行なうためには、材料歩留に
よるコストダウン効果も重要であり、CRF加工を利用
して、鍛造ブランク(スクラップ)を小さくすること
や、軌道面にみぞ形状等を付けて旋削取代を減らすこと
が有効である。In order to perform mass production, it is also important to reduce the cost due to the yield of materials. Forging blanks (scraps) can be reduced by using CRF processing, or grooves can be formed on the raceway surface. It is effective to reduce the turning allowance.
【0049】軌道面みぞやシールみぞ形状を完全に仕
上げる従来の精密CRF加工ではCRF加工前の全面旋
削のコストや脱炭層が無い状態での強圧による割れの問
題、CRF加工の加工時間延長によるコストアップを考
慮するとCRF加工後に旋削加工を行なう方が低コスト
となる。In the conventional precision CRF processing for completely finishing the raceway groove and seal groove shape, the cost of full-turning before CRF processing, the problem of cracking due to high pressure without a decarburized layer, and the cost of extending the processing time of CRF processing In consideration of the increase, it is cheaper to perform the turning after the CRF processing.
【0050】以上のことから、軌道輪の製造コスト低減
の見地からは、CRF加工を採用し、しかも、CRF加
工前に旋削加工を行なうことなく、CRF加工後の旋削
工数を極力減らすことが最も有効であることを見出し
た。From the above, from the viewpoint of reducing the manufacturing cost of the bearing ring, it is most preferable to adopt the CRF processing and to minimize the number of turning steps after the CRF processing without performing the turning processing before the CRF processing. Found to be effective.
【0051】次に、残存させる脱炭量の最適化について
の本発明者らが得た知見を示す。深溝玉軸受の内外輪の
製造工程で、熱間鍛造を施すと、冷却速度や軸受素材の
合金成分にもよるが、ほとんどの場合パーライト組織が
現れ、その後の旋削等の加工工程に悪影響を与える。そ
のため、焼鈍により硬さを下さげると共にミク口組織を
改善しなければならない。従来から軸受に最も多く使用
されている素材の炭素量が1%の軸受鋼(SUJ2)で
は、一般に球状化焼鈍が採用されている。Next, the findings obtained by the present inventors regarding the optimization of the remaining decarburization amount will be described. When hot forging is applied in the manufacturing process of the inner and outer rings of deep groove ball bearings, depending on the cooling rate and the alloy composition of the bearing material, in most cases, a pearlite structure appears, adversely affecting the subsequent processing such as turning . Therefore, the hardness must be reduced by annealing and the mouth structure must be improved. Conventionally, spheroidizing annealing is generally employed in bearing steel (SUJ2) having a carbon content of 1% as a material most commonly used for bearings.
【0052】そして、CRF加工前の熱処理工程、つま
り、1100〜1200℃に加熱され据え込み成形され
る熱間鍛造、及び750〜800℃程度に加熱され10
〜20時間程度の処理を行なう焼鈍を行うことにより、
粗形リングの表面には酸化層や脱炭層が発生する。そし
て、その後のCRF加工により拡径された旋削前のCR
Fリング表面にも酸化層や脱炭層がほぼそのまま残留す
る。酸化層や脱炭層が軸受完成品表面に残ると、寿命や
摩耗等、軸受としての機能が低下してしまうおそれがあ
るため、上述のように従来にあってはCRFリングの全
面を旋削し脱炭層を除去していた。Then, a heat treatment step before the CRF processing, that is, hot forging to be heated to 1100 to 1200 ° C. and upsetting, and 10 to 10 to 750 to 800 ° C.
By performing annealing for about 20 hours,
An oxidized layer and a decarburized layer are generated on the surface of the rough ring. Then, the CR before turning enlarged in diameter by the subsequent CRF processing
The oxidized layer and the decarburized layer remain almost as they are on the surface of the F ring. If an oxidized layer or decarburized layer remains on the surface of the finished bearing, the function of the bearing, such as life or wear, may be reduced. The coal seam had been removed.
【0053】そこでまず、一般的な深溝玉軸受のCRF
加工を行う製造法(図1で示す工程で製造する場合)で
素材から各製造工程における脱炭量を詳しく調査した。
ここで、素材としては、従来から軸受に最も多く使用さ
れ、深溝玉軸受ではそのほとんどに使用されている軸受
鋼(SUJ2)とした。脱炭量の調査方法は、断面をX
線解析による炭素の特性X線を測定することで行なっ
た。なお、測定には、島津製作所製のX線測定器(商品
名:EPMA−1600)を用いた。First, the CRF of a general deep groove ball bearing is used.
The amount of decarburization in each manufacturing process was investigated in detail from the raw material by the manufacturing method of processing (in the case of manufacturing in the process shown in FIG. 1).
Here, as a material, a bearing steel (SUJ2), which has been most frequently used for a bearing in the past and most of a deep groove ball bearing has been used. To determine the amount of decarburization, use a cross
This was performed by measuring characteristic X-rays of carbon by X-ray analysis. Note that an X-ray measuring device (trade name: EPMA-1600) manufactured by Shimadzu Corporation was used for the measurement.
【0054】素材は、一般に、素材コストが有利な圧延
したままの丸棒鋼材を使用する。そのため、製鋼から圧
延工程までで、既にある程度の脱炭が発生している。次
に、熱間鍛造後の最大脱炭量の測定結果を図6に示す。In general, as-rolled round bar steel is used because of its advantageous material cost. Therefore, a certain degree of decarburization has already occurred from the steelmaking to the rolling process. Next, FIG. 6 shows the measurement results of the maximum decarburization amount after hot forging.
【0055】図6において、横軸は表面からの距離(m
m)を示し、縦軸は炭素濃度(重量%)を示す(後述す
る図7〜図8も同様)。また、熱間鍛造時に、およそ1
100〜1200℃に加熱され据え込み成形される間に
脱炭が増加している。In FIG. 6, the horizontal axis represents the distance (m) from the surface.
m), and the vertical axis indicates the carbon concentration (% by weight) (the same applies to FIGS. 7 and 8 described later). Also, during hot forging, about 1
Decarburization is increasing during upset molding by heating to 100-1200 ° C.
【0056】また、熱間鍛造後の粗形リング(鍛造リン
グ)の脱炭量を測定した結果、測定位置により脱炭量の
バラツキがあり、外輪外径や内輪外径の端面部(図2
(B)の22a、23a)に脱炭が多いことから、その
原因の一つは、素材からの脱炭量の積み重ねと考えられ
る。ここで、上記図2はCRF加工を取り入れた場合の
熱間鍛造工程を示すものであるが、調査したところ、図
2(A)に示す丸棒素材21の外径部21aには脱炭が
あり、その素材21を熱間鍛造すると、図2(B)の鍛
造リングの外径面22a、23aには素材からの積み重
なりにより脱炭量が多くなっている。特に、外輪外径部
31aに相当する22a部分の幅方向中央に対し、脱炭
量が多く残る傾向を示していることを確認した。Also, as a result of measuring the amount of decarburization of the rough ring (forged ring) after hot forging, there was a variation in the amount of decarburization depending on the measurement position, and the end surfaces of the outer ring outer diameter and the inner ring outer diameter (FIG. 2).
Since the decarburization is large in (B) 22a and 23a), one of the causes is considered to be the accumulation of the decarburization amount from the raw material. Here, FIG. 2 shows a hot forging process in the case where the CRF processing is adopted. According to an investigation, the outer diameter portion 21a of the round bar material 21 shown in FIG. In addition, when the material 21 is hot forged, the outer diameter surfaces 22a and 23a of the forged ring in FIG. In particular, it was confirmed that a large amount of decarburization tended to remain in the widthwise center of a portion 22a corresponding to the outer ring outer diameter portion 31a.
【0057】また、本発明者らは円周上での各位置にお
ける脱炭量の調査を行ない、最大脱炭部(22aの中央
位置)の中でも、円周方向でもバラツキがあることを確
認した。Further, the present inventors conducted an investigation of the decarburization amount at each position on the circumference, and confirmed that even in the maximum decarburization portion (the center position of 22a), there was also variation in the circumferential direction. .
【0058】次に、一般に並径と呼ばれる軸受で行われ
ている、窒素雰囲気での焼鈍後の脱炭量を測定したとこ
ろ、図7に示す結果を得た。焼鈍工程は加熱温度こそ7
50〜800℃程度と低いが、全行程ではおよそ10〜
20時間程度の処理を行なうため窒素雰囲気であっても
最大脱炭量が大幅に増加していた。つまり、脱炭の主原
因は焼鈍工程にあることが明確となった。ただし、その
量は、焼鈍条件、主に焼鈍雰囲気に大きく依存する。す
なわち、焼鈍条件を適当に設定することで所望の脱炭量
に設定できる。Next, the amount of decarburization after annealing in a nitrogen atmosphere, which is generally performed with a bearing generally called a parallel diameter, was measured, and the result shown in FIG. 7 was obtained. In the annealing process, the heating temperature is 7
It is as low as 50-800 ° C, but it is about 10-
Since the treatment was performed for about 20 hours, the maximum decarburization amount was greatly increased even in a nitrogen atmosphere. In other words, it became clear that the main cause of decarburization was the annealing process. However, the amount greatly depends on the annealing conditions, mainly the annealing atmosphere. That is, the desired decarburization amount can be set by appropriately setting the annealing conditions.
【0059】なお、鍛造後の焼鈍を、雰囲気を使用せず
大気で行なう場合もあるが、その場合には、表面は激し
く酸化及び脱炭し荒れた状態となり、ショットピーニン
グやショツトブラストによって表面酸化層を除去してか
ら、さらに、脱炭層を含めて大きな取代の旋削が必要と
なってしまう。つまり、大気焼鈍はショツトブラスト等
による表面酸化層の除去工程や旋削加工の取代が増え
て、結局,コスト増となる。そのため、一般に並径と呼
ばれる軸受では、切削取代が少なくするため、大気焼鈍
はほとんど行なわれていない。In some cases, annealing after forging is performed in the air without using an atmosphere. In such a case, the surface is violently oxidized and decarburized to a rough state, and the surface is oxidized by shot peening or shot blasting. After the layer is removed, further turning with a large allowance including the decarburized layer is required. That is, in the air annealing, the removal step of the surface oxide layer by shot blasting or the like and the allowance for the turning work increase, and as a result, the cost increases. For this reason, in a bearing generally called a uniform diameter, atmospheric annealing is hardly performed in order to reduce a cutting allowance.
【0060】また、脱炭量を極端に減らすために、真空
焼鈍や浸炭雰囲気での焼鈍の採用も考えられるが、設備
設定や制御技術、設備のメンテナンス等に大幅な費用が
かかる。In order to extremely reduce the amount of decarburization, vacuum annealing or annealing in a carburizing atmosphere may be adopted. However, significant costs are required for equipment setting, control technology, equipment maintenance, and the like.
【0061】従って、窒素等の不活性ガスを適量,炉内
に導入して焼鈍を行なう方法が、製造コスト低減上有利
である。ここで、焼鈍後の粗形リング(鍛造リング)の
脱炭量を測定した結果、鍛造後と同様に測定位置により
脱炭量のバラツキがあるが、特に外輪外径部31aに脱
炭が多く、脱炭量が素材からの積み重なり、更にバラツ
キが大きくなる傾向を示した。Therefore, a method in which an appropriate amount of an inert gas such as nitrogen is introduced into a furnace to perform annealing is advantageous from the viewpoint of reducing manufacturing costs. Here, as a result of measuring the decarburization amount of the rough ring (forged ring) after annealing, there is a variation in the decarburization amount depending on the measurement position as in the case of forging, but the decarburization is particularly large in the outer ring outer diameter portion 31a. In addition, the amount of decarburization tended to increase from the raw material, and the variation further increased.
【0062】次に、CRF加工後の各位置での脱炭量を
測定したところ、図8に示す結果を得た。ここで、図8
(A)は外輪外径31aの最大値であり、図7の焼鈍後
の最大脱炭量とほぼ同じであるが、CRF加工で圧延さ
れ、若干深さが浅くなっている。一方、図8(B)は外
輪溝31bでの最大値であるが、当該外輪溝は脱炭量が
少なめの上に、CRFの溝加工のための強加工を受けて
脱炭層が浅く量も少なくなっている。図8(C)は内輪
溝32aでの最大値であり、当該内輪溝は脱炭量が比較
的多い位置であるが、強加工で脱炭層が浅く、少なくな
っている。図8(C)は内輪内径32bでの最大値であ
り、内輪内径は脱炭量の少ない位置だが加工度は低く、
多少深い。Next, when the decarburization amount at each position after the CRF processing was measured, the results shown in FIG. 8 were obtained. Here, FIG.
(A) is the maximum value of the outer diameter 31a of the outer ring, which is almost the same as the maximum decarburization amount after annealing in FIG. 7, but is slightly reduced in depth by rolling by CRF processing. On the other hand, FIG. 8 (B) shows the maximum value in the outer ring groove 31b, but the outer ring groove has a relatively small decarburization amount, and has been subjected to the strong processing for the CRF groove processing, so that the decarburized layer has a shallow depth. Is running low. FIG. 8 (C) shows the maximum value in the inner raceway groove 32a. The inner raceway groove is a position where the decarburization amount is relatively large, but the decarburization layer is shallow and small due to the heavy working. FIG. 8 (C) shows the maximum value at the inner ring inner diameter 32b. The inner ring inner diameter is a position where the decarburization amount is small, but the processing degree is low.
Somewhat deep.
【0063】以上のことから、熱間鍛造により製造され
た鍛造リングは、焼鈍後にCRF加工されると、外輪外
径部31aに大きな脱炭が残るが、その他の位置の脱炭
は微量であった。このことは、本発明のように、外輪外
径部31aに適量の脱炭層を積極的に残存させる軌道輪
においては、切削量が、全面切削する場合に比べて大幅
に減少し、もって加工手間の向上、切削工具の寿命向上
に大いに貢献することを示す。但し、その他の軌道面形
状仕上やシール溝成形及び端面調整に対しては必要最低
限の仕上旋削加工が必要である。From the above, when a forged ring manufactured by hot forging is subjected to CRF processing after annealing, large decarburization remains in the outer ring outer diameter portion 31a, but a small amount of decarburization in other positions. Was. This means that, as in the present invention, in a raceway in which an appropriate amount of decarburized layer is positively left in the outer ring outer diameter portion 31a, the amount of cutting is greatly reduced as compared with the case where the entire surface is cut. It greatly contributes to the improvement of cutting life and the life of cutting tools. However, for the other raceway surface shape finishing, seal groove forming, and end face adjustment, a minimum necessary finish turning is required.
【0064】ここで、測定の脱炭量は、その位置の円周
方向での最大値であり、全周ではなく部分的に存在する
ものである。一方、並径玉軸受の市場での使用状況等を
調査した結果、そのほとんどが表面損傷タイプの疲労状
況を示していた。Here, the measured decarburization amount is the maximum value of the position in the circumferential direction, and is present not partially but entirely. On the other hand, as a result of investigating the state of use of the parallel-diameter ball bearings in the market, most of them showed the fatigue state of the surface damage type.
【0065】そこで、軌道面の表面脱炭率を変えて、表
面起点で損傷を生じる、異物混入潤滑下試験を行なった
ところ、図9に示す結果を得た。図9の試験条件につい
ては後述する。Then, when the surface decarburization rate of the raceway surface was changed and a foreign matter mixed lubrication test in which damage was caused at the starting point of the surface was performed, the result shown in FIG. 9 was obtained. The test conditions in FIG. 9 will be described later.
【0066】図9から分かるように、軌道面については
脱炭が少しでも残留すると寿命が急激に低下してしまう
ので、軌道面に脱炭を残留させることはできない。ただ
し、本実施形態の製造法では軌道面を形状仕上するため
旋削加工を行っているので、熱処理後の研削加工と合わ
せて、十分脱炭層を取り除くことができる。すなわち、
軸受寿命は、従来品の軸受と同等となる。As can be seen from FIG. 9, if even a small amount of decarburization remains on the raceway surface, the life is sharply reduced, so that decarburization cannot be left on the raceway surface. However, in the manufacturing method of the present embodiment, since the turning is performed to finish the shape of the raceway surface, the decarburized layer can be sufficiently removed together with the grinding after the heat treatment. That is,
The bearing life is equivalent to that of conventional bearings.
【0067】上記説明では素材にSUJ2を用いた基礎
実験を行っているが、焼入、焼戻処理により軸受として
必要な品質が得られれば、その限りではない。軸受素材
の成分を以下の通りにすることで、軸受として必要な品
質が得られる。In the above description, a basic experiment was conducted using SUJ2 as a material, but this is not a limitation as long as the required quality as a bearing can be obtained by quenching and tempering. By setting the components of the bearing material as follows, the quality required for the bearing can be obtained.
【0068】すなわち、炭素は、軸受に必要な硬さと炭
化物を得るための重要な元素であり、寿命に必要な十分
な硬さと炭化物の面積率を得るためには最低でも0.8
%以上は必要である。しかし、1.2%を越えると製鋼
時に巨大炭化物の発生や偏析が強くなり、通常、SUJ
2材で行なっている、ソーキング処理では巨大炭化物や
偏析を十分に調整できなくなる場合が生じるため、その
後の温間圧延での炭化物微細化が不十分になる。That is, carbon is an important element for obtaining hardness and carbide necessary for bearings, and at least 0.8 to obtain sufficient hardness and carbide area ratio necessary for life.
% Or more is necessary. However, when the content exceeds 1.2%, generation and segregation of giant carbides during steelmaking become strong.
In the soaking treatment performed with two materials, giant carbides and segregation may not be sufficiently adjusted, so that carbide refinement in subsequent warm rolling becomes insufficient.
【0069】以上の理由から、素材の炭素量は0.8%
量%以上1.2重量%以下とすることが望ましい。Si
は、素材の製鋼時に脱酸剤として作用し、焼入性を向上
させるとともに基地マルテンサイトを強化するので、軸
受の寿命を延長するのに有効な元素であり、その効果を
出すためには最低0.1重量%は必要である。しかし、
Si含有量が多すぎると、被削性や鍛造性を含めた加工
性を劣化させるので上限を0.5重量%以下とするのが
望ましい。For the above reasons, the carbon content of the material is 0.8%
It is desirable that the amount is not less than the amount% and not more than 1.2% by weight. Si
Is an element that acts as a deoxidizer during steelmaking of the material, improves hardenability and strengthens base martensite, and is an effective element for extending the life of bearings. 0.1% by weight is required. But,
If the Si content is too large, the workability including machinability and forgeability deteriorates, so the upper limit is desirably 0.5% by weight or less.
【0070】以上の理由から、素材のSi量は0.1%
重量%以上0.5重量%以下とするのが望ましい。Mn
は、焼入性を向上させる元素であるが、その効果を出す
ためには最低0.2重量%は必要である。しかし、Mn
は素材のフェライトを強化する元素でもあり、特に素材
の炭素量が0.8%以上の場合は、Mnの含有量がを
1.1%を越えると冷間加工性が著しく低下するため上
限を1.1%とするのが望ましい。For the above reasons, the Si content of the material is 0.1%
It is desirable that the content be not less than 0.5% by weight and not more than 0.5% by weight. Mn
Is an element that improves the hardenability, but at least 0.2% by weight is necessary to achieve the effect. However, Mn
Is also an element that strengthens the ferrite of the material, and particularly when the carbon content of the material is 0.8% or more, the cold workability is remarkably reduced when the Mn content exceeds 1.1%. It is desirable to set it to 1.1%.
【0071】Crは、焼入性向上、焼戻軟化抵抗性向上
など基地を強化する元素であり、その効果を出すために
は最低0.1重量%が必要である。しかし、1.8重量
%を超えると、製鋼時に巨大炭化物の発生や偏析が強く
なり、通常SUJ2材で行っている、ソーキング処理で
は巨大炭化物や偏析を十分に調整できなくなる場合がで
てるため、その後の温間圧延での炭化物微細化が不十分
になる。Cr is an element that strengthens the matrix, such as improving hardenability and tempering softening resistance, and requires at least 0.1% by weight to exert its effect. However, when the content exceeds 1.8% by weight, the generation and segregation of giant carbides during steelmaking become strong, and the giant carbides and segregation cannot be sufficiently adjusted by the soaking process which is usually performed with SUJ2 material. Carbide refinement in the subsequent warm rolling becomes insufficient.
【0072】以上の理由から、素材のCr量は1.0重
量%以上1.8重量%以下とするのが望ましい。For the above reasons, the Cr content of the material is desirably 1.0% by weight or more and 1.8% by weight or less.
【0073】[0073]
【実施例】次に、本発明の妥当性を示す実施例を説明す
る。 軌道面の表面脱炭率と寿命について 本発明者らは玉軸受の市場での使用状況の詳細な調査を
行なった結果、一部の純粋なクリーン環境以外は、一般
にクリーンな環境と考えられていたシール付のグリース
封入タイプの玉軸受であっても、そのほとんどが表面損
傷タイプの疲労状況を示していた。Next, examples showing the validity of the present invention will be described. About the surface decarburization rate and life of the raceway surface The present inventors have conducted a detailed investigation of the usage of the ball bearings in the market, and as a result, it is generally considered to be a clean environment except for some pure clean environments. Most of the grease-filled ball bearings with seals also showed surface damage type fatigue.
【0074】従って、耐久寿命が十分な軸受であるため
には、表面起点の損傷に十分な寿命でなければならな
い。そこで、軌道面の表面脱炭率を変えて、表面起点の
損傷となる、異物混入潤滑下試験を行なってみた。Therefore, in order for a bearing to have a sufficient durable life, it must have a sufficient life to damage the surface starting point. Therefore, we conducted a lubrication test under contaminant contamination, which damages the surface starting point, by changing the surface decarburization rate of the raceway surface.
【0075】ここで、素材材料はSUJ2で、製造し機
能を評価した軸受は深溝玉軸受6304又はスラスト試
験片であり、条件は、次の通りである。 ・スラスト試験片の熱処理条件:温度810℃以上〜8
50℃以下で0.5〜1時間保持した後に焼入を行い、
次いで160〜200℃で2時間の焼戻しを行った。Here, the material is SUJ2, and the bearing manufactured and evaluated for its function is a deep groove ball bearing 6304 or a thrust test piece. The conditions are as follows.・ Heat treatment condition of thrust test piece: temperature 810 ° C or higher to 8
After holding for 0.5 to 1 hour at 50 ° C or less, quenching is performed,
Next, tempering was performed at 160 to 200 ° C. for 2 hours.
【0076】・異物混入潤滑下寿命試験条件:「特殊鋼
便覧」第一版(電気製鋼研究所編、理工学社、1969
年5月25日発行)第10〜21頁記載のスラスト型軸
受鋼寿命試験機を使用して、転動体にはSUJ2ボール
を用いて、各サンプルにフレーキングが発生した時点ま
での累積応力繰り返し回数(寿命)を調査してワイブル
プロットを作成し、各ワイブル分布の結果から各々のL
10寿命を求めた。-Life test conditions under lubrication with foreign substances mixed therein: "Special Steel Handbook" 1st edition (edited by Denki Steel Research Institute, Rigakusha, 1969)
May 25, 2013) Using a thrust type bearing steel life tester described on pages 10 to 21 and using SUJ2 balls as rolling elements, cumulative stress repetition up to the time when flaking occurred in each sample A Weibull plot is created by investigating the number of times (life), and each L is calculated from the result of each Weibull distribution.
Ten lifetimes were determined.
【0077】試験条件は、次の通りである。 試験面圧:最大4900 MPa 回転数:3000 C.P.M. 潤滑油:#68タービン油 混入異物: 組成 :ステンレス系粉 硬さ :HRC50 粒径 :65〜120μm 混入量:潤滑油中に300ppm 試験の結果は、図9の通りである。The test conditions are as follows. Test surface pressure: Maximum 4900 MPa Revolution: 3000 C.I. P. M. Lubricating oil: # 68 turbine oil Contaminating foreign matter: Composition: Stainless steel powder Hardness: HRC50 Particle size: 65 to 120 μm Contaminated amount: 300 ppm in lubricating oil The results of the test are as shown in FIG.
【0078】図9のように、軌道面に脱炭が少しでも残
留すると寿命が急激に低下してしまうので、軌道面に脱
炭を残留させることはできない。ただし、上記本発明の
軌道輪を製造するための実施形態に基づく製造法では、
軌道面を形状仕上するため旋削加工を行っている。この
結果、熱処理後の研削加工と合わせて、十分脱炭層が取
り除かれる。As shown in FIG. 9, if even a small amount of decarburized remains on the raceway surface, the life is sharply reduced, so that decarburization cannot be left on the raceway surface. However, in the manufacturing method based on the embodiment for manufacturing the bearing ring of the present invention,
Turning is performed to finish the raceway surface. As a result, the decarburized layer is sufficiently removed together with the grinding after the heat treatment.
【0079】内輪内径及び外輪外径の表面脱炭率と耐
フレティング特性について 軸受内輪の内径面は必要機能としてシャフト類とのはめ
合いに対する耐フレティング特性が、また、外輪外径面
はハウジング類とのはめ合いに対する耐フレティング特
性が挙げられる。Regarding the surface decarburization rate and anti-fretting characteristics of the inner ring inner diameter and outer ring outer diameter, the inner diameter surface of the bearing inner ring has a required function of anti-fretting characteristics against fitting with shafts, and the outer ring outer diameter surface is a housing. Fretting resistance to fitting with other types.
【0080】そこで、内輪内径部及び外輪外径部の表面
脱炭率を変えて、耐フレティング特性を評価した。な
お、軸受は、深溝玉軸受6304とした。試験は、各条
件の20個の軸受を評価し、試験時間毎にフレティング
の発生状況を確認し発生率を示した。各条件は、以下の
通りである。Thus, the anti-fretting characteristics were evaluated by changing the surface decarburization rate of the inner ring inner diameter portion and the outer ring outer diameter portion. The bearing was a deep groove ball bearing 6304. In the test, 20 bearings under each condition were evaluated, and the occurrence of fretting was confirmed at each test time to show the occurrence rate. Each condition is as follows.
【0081】6304の熱処理条件:温度810℃以上
〜850℃以下で0.5〜1時間保持した後焼入を行
い、次いで160〜200℃で2時間の焼戻しを行っ
た。Heat treatment conditions of 6304: After holding at a temperature of 810 ° C. to 850 ° C. for 0.5 to 1 hour, quenching was performed, and then tempering was performed at 160 to 200 ° C. for 2 hours.
【0082】耐フレティング特性の評価条件:試験機の
概要及び回転数の変動パターンを図11に示す通りとし
た。図10は、試験機を示すものであって、図10中、
符号1は試験軸受であり、符号3は、内輪をはめ合わせ
たシャフトであり、符号2は、外輪をはめ合うハウジン
グである。そして、モーター7の回転を、プーリー5か
らベルト6、プーリー4、シャフト3に伝達して試験軸
受1の内輪を回転させる。回転数は、図11のパターン
に示す通りにモーター7の回転数を変動させ繰り返し行
なう。荷重は、エアシリンダー9がモーター台10を押
し下げることでモーター7からプーリー5からベルト
6、プーリー4、シャフト3を介して試験軸受1に付加
される構造である。Evaluation conditions for anti-fretting characteristics: The outline of the tester and the fluctuation pattern of the rotation speed were as shown in FIG. FIG. 10 shows a testing machine, and in FIG.
Reference numeral 1 denotes a test bearing, reference numeral 3 denotes a shaft to which an inner ring is fitted, and reference numeral 2 denotes a housing to which an outer ring is fitted. Then, the rotation of the motor 7 is transmitted from the pulley 5 to the belt 6, the pulley 4, and the shaft 3, and the inner ring of the test bearing 1 is rotated. The number of rotations is repeated by changing the number of rotations of the motor 7 as shown in the pattern of FIG. A load is applied to the test bearing 1 from the motor 7 via the pulley 5 through the belt 6, the pulley 4, and the shaft 3 when the air cylinder 9 pushes down the motor base 10.
【0083】その試験条件は、次の通りである。 試験荷重:3200 MPa 回転数:5000〜8000rpm変動 潤滑油:アルバニア グリース2(昭和シェル石油製) はめ合い: 1)内輪内径評価試験の場合は+10〜20μmすきま
でシャフト3に軽圧入した状態で行なう。The test conditions are as follows. Test load: 3200 MPa Rotation speed: 5000-8000 rpm Fluctuation Lubricating oil: Albania grease 2 (manufactured by Showa Shell Sekiyu) Fit: 1) In the case of the inner ring inner diameter evaluation test, the test is performed with the shaft 3 lightly pressed up to a clearance of -10 to 20 μm. .
【0084】2)外輪外径評価試験の場合は±0でアル
ミ製ハウジング2に軽圧入した状態で行なう。 表1に、完成品の内輪内径における、その表面脱炭率や
脱炭深さに対する耐フレティング特性についての評価結
果を示す。2) In the case of the outer ring outer diameter evaluation test, the test is performed in a state of being lightly pressed into the aluminum housing 2 at ± 0. Table 1 shows the results of evaluating the anti-fretting properties with respect to the surface decarburization rate and decarburization depth of the inner ring inner diameter of the finished product.
【0085】[0085]
【表1】 [Table 1]
【0086】この表1においては、本発明品は、脱炭が
残留していないものと同等の耐フレティング特性を示し
た。すなわち、この表1から分かるように、本発明の範
囲に脱炭量を設定することで、脱炭が残留していないも
のと同等の耐フレティング特性を示した。In Table 1, the products of the present invention exhibited the same anti-fretting characteristics as those in which no decarburization remained. That is, as can be seen from Table 1, by setting the amount of decarburization within the range of the present invention, anti-fretting characteristics equivalent to those in which decarburization did not remain were exhibited.
【0087】一方、本発明範囲より脱炭率が高いものは
硬さが低下しすぎて、また、脱炭深さの深いものは最大
脱炭位置の範囲が広くなり、耐フレティング特性が劣化
してしまう。On the other hand, if the decarburization rate is higher than the range of the present invention, the hardness is too low, and if the decarburization depth is deep, the range of the maximum decarburization position is widened, and the fretting resistance is deteriorated. Resulting in.
【0088】すなわち、表面脱炭率が本発明の範囲であ
っても、NO. 6のように脱炭深さが本発明を越えている
と、耐フレティング特性が劣化してしまうことが分か
る。また、脱炭層が本発明の範囲であっても、NO. 5の
ように表面脱炭率が本発明の範囲よりも多くなると、耐
フレティング特性が劣化してしまうことが分かる。That is, even if the surface decarburization rate is within the range of the present invention, if the decarburization depth exceeds the present invention as in No. 6, the anti-fretting property is deteriorated. . In addition, even if the decarburized layer falls within the range of the present invention, when the surface decarburization rate becomes larger than the range of the present invention as in No. 5, the anti-fretting characteristics deteriorate.
【0089】また、完成品表面に脱炭が残留させないた
めに従来どうり旋削する場合には、コストが高くなる。
また、旋削せずに脱炭層を減らすため、焼鈍工程で浸炭
処理等を行なうと、表1に示すNO. 7及びNO. 8のよう
に、冷間加工性が劣化してしまう。すなわち、NO. 7及
びNO. 8は、本発明の範囲外であるが、脱炭量が少ない
ために耐フレティング特性は良好であるものの、後述の
ように冷間加工性が劣化して、本発明の軌道輪と比較し
てコスト高となる。In addition, when conventional turning is performed to prevent decarburization from remaining on the surface of the finished product, the cost increases.
Further, if carburizing treatment or the like is performed in the annealing step in order to reduce the decarburized layer without turning, the cold workability is deteriorated as in NO. 7 and NO. 8 shown in Table 1. That is, NO. 7 and NO. 8 are out of the range of the present invention, but the fretting resistance is good due to the small amount of decarburization, but the cold workability deteriorates as described later, The cost is higher than the race of the present invention.
【0090】以上のことから、製造コストを一番低減で
きる完成品での内輪内径は、その表面脱炭率が10%以
上50%以下で脱炭深さが0.4mm以内の脱炭層が必
要となることが分かる。As described above, the inner ring inner diameter of the finished product which can reduce the production cost most requires a decarburized layer with a surface decarburization rate of 10% to 50% and a decarburization depth of 0.4 mm or less. It turns out that it becomes.
【0091】但し、上記表1から、表面脱炭量が増える
と悪くなる傾向があるので、表面脱炭率が40%以下で
脱炭深さは0.3mm以内とすることが望ましい。次
に、表2に、完成品の外輪外径における、その表面脱炭
率や脱炭深さに対する耐フレティング特性についての評
価結果を示す。However, from Table 1 above, since the surface decarburization amount tends to become worse as the surface decarburization amount increases, it is desirable that the surface decarburization rate is 40% or less and the decarburization depth is 0.3 mm or less. Next, Table 2 shows the results of evaluating the anti-fretting characteristics with respect to the surface decarburization rate and the decarburization depth in the outer ring outer diameter of the finished product.
【0092】[0092]
【表2】 [Table 2]
【0093】この表2から分かるように、本発明の範囲
に脱炭量を設定することで、脱炭が残留していないもの
と同等の耐フレティング特性を示した。。一方、本発明
範囲内を越えた脱炭率や脱炭深さのものは耐フレティン
グ特性が劣化し、また、完成品表面に脱炭が残留してい
ないものは冷間加工性が劣化してしまう。As can be seen from Table 2, by setting the amount of decarburization within the range of the present invention, the same anti-fretting characteristics as those without residual decarburization were exhibited. . On the other hand, those having a decarburization rate and decarburization depth outside the range of the present invention have deteriorated fretting resistance, and those having no decarburization remaining on the finished product surface have deteriorated cold workability. Would.
【0094】すなわち、表面脱炭率が本発明の範囲であ
っても、NO. 6のように脱炭深さが本発明を越えている
と、耐フレティング特性が劣化してしまうことが分か
る。また、脱炭層が本発明の範囲であっても、NO. 5の
ように表面脱炭率が本発明の範囲よりも多くなると、耐
フレティング特性が劣化してしまうことが分かる。That is, even if the surface decarburization rate is within the range of the present invention, if the decarburization depth exceeds the present invention as in No. 6, the anti-fretting characteristics are deteriorated. . In addition, even if the decarburized layer falls within the range of the present invention, when the surface decarburization rate becomes larger than the range of the present invention as in No. 5, the anti-fretting characteristics deteriorate.
【0095】また、完成品表面に脱炭が残留させないた
めに従来どうり旋削する場合には、コストが高くなる。
また、旋削せずに脱炭層を減らすため、焼鈍工程で浸炭
処理等を行なうと、表2に示すNO. 7及びNO. 8のよう
に、冷間加工性が劣化してしまう。すなわち、NO. 7及
びNO. 8は、本発明の範囲外であるが、脱炭量が少ない
ために耐フレティング特性は良好であるものの、後述の
ように冷間加工性が劣化して、本発明の軌道輪と比較し
てコスト高となる。Further, in the case of conventional turning in order to prevent decarburization from remaining on the surface of the finished product, the cost increases.
Further, if carburizing treatment or the like is performed in the annealing step in order to reduce the decarburized layer without turning, the cold workability is deteriorated as in Nos. 7 and 8 shown in Table 2. That is, NO. 7 and NO. 8 are out of the range of the present invention, but the fretting resistance is good because the amount of decarburization is small, but the cold workability is deteriorated as described later, The cost is higher than the race of the present invention.
【0096】以上のことから、外輪外径は、その表面脱
炭率%が10%以上70%以下で脱炭深さが0.5mm
以内の脱炭層が必要となる。但し、表2に示されるよう
に、表面脱炭量が増えると悪くなる傾向があるので、表
面脱炭率が50%以下で脱炭深さは0.4mm以内が望
ましい。As described above, the outer diameter of the outer ring is such that the surface decarburization rate% is 10% or more and 70% or less and the decarburization depth is 0.5 mm
The decarburized layer within is required. However, as shown in Table 2, since the amount of surface decarburization tends to deteriorate as the amount of surface decarburization increases, it is desirable that the surface decarburization rate is 50% or less and the decarburization depth is 0.4 mm or less.
【0097】CRF工具寿命評価について ここで、CRF加工では、図5の12に示すマンドレル
が摩耗損傷し易く、消耗部品として加工コストに大きく
反映する。Regarding CRF tool life evaluation In the CRF processing, the mandrel shown at 12 in FIG. 5 is liable to wear and damage, and is greatly reflected in the processing cost as a consumable part.
【0098】この見地から、評価は、マンドレルの摩耗
が0.2mm以上となり、内輪の場合はマンドレルに段
差が付き、図4(C)の32bの形状が波打つ場合を、
また、外輪の場合は図4の(C)の31bに示す溝形状
が摩耗で崩れてしまう場合を寿命とした。From this viewpoint, the evaluation was made in the case where the wear of the mandrel was 0.2 mm or more, the mandrel had a step in the case of the inner ring, and the shape of 32b in FIG.
In the case of the outer ring, the life was defined as the case where the groove shape indicated by 31b in FIG.
【0099】次に、試験の条件を示す。 CRF工具寿命評価条件: 加工機:共栄精工製CRF70 加工荷重:5〜7ton 潤滑剤:(三工化学製)プレスホーマーPZ13 拡径率:外輪=1.4〜2.0倍、 内輪=1.1〜1.4倍 加工速度:600〜800個/時間 試験の結果は、上記表1及び表2に示す通りである。Next, the test conditions will be described. CRF tool life evaluation condition: Processing machine: CRF70 manufactured by Kyoei Seiko Processing load: 5 to 7 ton Lubricant: Press Homer PZ13 (manufactured by Sanko Chemical) Diameter expansion ratio: outer ring = 1.4 to 2.0 times, inner ring = 1. 1 to 1.4 times Processing speed: 600 to 800 pieces / hour The test results are as shown in Tables 1 and 2 above.
【0100】脱炭が多く硬さが低下したものが長寿命を
示した。ただし、表1及び表2のNO. 5及び6は長寿命
を示しているが、耐フレティング特性は低い。本発明範
囲より脱炭率が低い、表1及び表2に示すNO. 7及び8
は、硬さが高すぎて冷間加工性が劣化してしまう。Those with much decarburization and low hardness showed a long life. However, although Nos. 5 and 6 in Tables 1 and 2 show a long life, the anti-fretting characteristics are low. No. 7 and 8 shown in Tables 1 and 2 having a decarburization rate lower than the range of the present invention.
Is too high in hardness to degrade cold workability.
【0101】旋削工具寿命評価についてここで、高速
旋削加工では工具の摩耗が激しく、消耗部品として加工
コストに大きく反映する。Turning Tool Life Evaluation Here, in high-speed turning, tool wear is severe, and this is largely reflected in the machining cost as a consumable part.
【0102】この見地から、評価は、工具摩耗が0.2
mm以上となり、旋削面の粗さが劣化し、工具がびび
り、切削抵抗が上がる場合寿命とした。試験条件は次の
通りである。From this viewpoint, the evaluation was that the tool wear was 0.2%.
mm or more, the roughness of the turning surface is deteriorated, the tool chatters, and the cutting resistance is increased. The test conditions are as follows.
【0103】旋削工具寿命評価条件: 加工機:高速旋盤 工 具:P10(JIS B4053) 切り込み速度:200〜250m/分 送り量:0.2〜0.3mm/回転 切り込み深さ:0.6〜1.0mm 潤滑:コシロオイルNO.3(コシロ化学製) 試験結果は、上記表1及び表2に示される通りである。Turning tool life evaluation condition: Processing machine: High-speed lathe Tool: P10 (JIS B4053) Cutting speed: 200 to 250 m / min Feeding amount: 0.2 to 0.3 mm / rotation Cutting depth: 0.6 to 1.0mm Lubrication: Koshiro oil NO. 3 (manufactured by Koshiro Chemical Co., Ltd.) The test results are as shown in Tables 1 and 2 above.
【0104】この表から分かるように、脱炭が多く硬さ
が低下したものは、長寿命を示したが、表1及び表2の
NO. 5は硬さが低下しすぎて、粘りが出て硬さの割には
長寿命ではなかった。ただし、表1及び表2のNO. 6は
長寿命を示しているが、耐フレティング特性は低い。As can be seen from this table, those with a large amount of decarburization and a decrease in hardness exhibited a long life.
NO. 5 had too low hardness and became sticky, and did not have a long life for the hardness. However, although No. 6 in Tables 1 and 2 shows a long life, the anti-fretting property is low.
【0105】また、本発明範囲より脱炭率が低い表1及
び表2に示すNO. 7及び8は、硬さが高すぎて冷間加工
性が劣化してしまう。Further, in Nos. 7 and 8 shown in Tables 1 and 2 where the decarburization rate is lower than the range of the present invention, the hardness is too high and the cold workability deteriorates.
【0106】[0106]
【発明の効果】以上説明してきたように、本発明では、
熱処理後に研削加工を行って製造される転がり軸受の軌
道輪に、内輪内径及び外輪外径に適量の脱炭層を残存さ
せることで、CRF加工性や軌道面形状仕上やシール溝
成形及び端面調整に対して行なう仕上旋削加工性などが
良好になり、従来よりも製造コストが低減できる軌道輪
を提供できるという効果がある。As described above, according to the present invention,
By leaving an appropriate amount of decarburized layer on the inner ring inner diameter and outer ring outer diameter on the raceway ring of rolling bearings manufactured by grinding after heat treatment, CRF workability, raceway surface finish, seal groove formation and end surface adjustment This has the effect of improving the finish turning workability and the like, and providing a bearing ring that can reduce the manufacturing cost as compared with the prior art.
【0107】しかも、その脱炭層を最適化することで、
従来と異なり脱炭層を残存させても、外輪外径部及び内
輪内径部の耐フレッチングの劣化が抑えられ、また、軌
道面には、脱炭を残存させないので従来と同等の軸受寿
命を有する。Further, by optimizing the decarburized layer,
Even if the decarburized layer is left unlike the conventional case, the deterioration of the fretting resistance of the outer ring outer diameter portion and the inner ring inner diameter portion is suppressed, and since the decarburization does not remain on the raceway surface, the bearing life is the same as the conventional one.
【図1】従来における製造工程を示す図である。FIG. 1 is a view showing a conventional manufacturing process.
【図2】CRF加工を採用した製造を説明する図であ
る。FIG. 2 is a view for explaining manufacturing employing CRF processing.
【図3】CRF加工を説明するための図である。FIG. 3 is a diagram for explaining CRF processing.
【図4】CRF加工を採用しない場合の鍛造の説明図で
ある。FIG. 4 is an explanatory view of forging when CRF processing is not adopted.
【図5】本発明の実施の形態に係る製造工程を示す図で
ある。FIG. 5 is a diagram showing a manufacturing process according to the embodiment of the present invention.
【図6】従来の熱間鍛造後の脱炭量を示す図である。FIG. 6 is a diagram showing the amount of decarburization after conventional hot forging.
【図7】従来の軟化焼鈍後の脱炭量を示す図である。FIG. 7 is a diagram showing the amount of decarburization after conventional softening annealing.
【図8】従来のCRF加工の脱炭量を示す図であって、
(A)は外輪外径部での、(B)は外輪溝での、(C)
は内輪溝での、(D)は内輪内径部でのものをそれぞれ
示す。FIG. 8 is a view showing a decarburization amount of the conventional CRF processing,
(A) at the outer ring outer diameter portion, (B) at the outer ring groove, (C)
Indicates an inner ring groove, and (D) indicates an inner ring inner diameter portion.
【図9】軌道面での脱炭と寿命との関係を示す図であ
る。FIG. 9 is a diagram showing a relationship between decarburization on a raceway surface and life.
【図10】試験機を示す図である。FIG. 10 is a view showing a test machine.
【図11】試験パターンを示す図である。FIG. 11 is a diagram showing a test pattern.
21 素材 22,23 粗形リング 31,32 CRFリング(粗形リング) 31a 外輪外径部 31b 外輪溝 32a 内輪溝 32b 内輪内径部 21 Material 22, 23 Rough Ring 31, 32 CRF Ring (Rough Ring) 31a Outer Ring Outer Diameter 31b Outer Ring Groove 32a Inner Ring Groove 32b Inner Ring Inner Diameter
Claims (1)
れる転がり軸受の軌道輪において、完成した軌道輪にお
ける内輪内径部に、表面脱炭率が10%以上50%以下
で最大の脱炭深さが0.4mm以内の脱炭層が残存し、
外輪外径部に、表面脱炭率%が10%以上70%以下で
最大の脱炭深さが0.5mm以内の脱炭層が残存し、且
つ、軌道面には脱炭層が残存しないことを特徴とする転
がり軸受の軌道輪。但し、上記表面脱炭率(D)は、軸
受素材の炭素量に対する完成品表面の炭素量の変化率で
あって、下記(1)式で示す値である。 但し、上記表面炭素量は、円周方向全面における最大に
脱炭を生じている部分での炭素量とする。In a bearing ring of a rolling bearing manufactured by performing a grinding process after a heat treatment, the inner surface of an inner ring of a completed bearing ring has a maximum decarburization depth of 10% or more and 50% or less at a surface decarburization rate. A decarburized layer of less than 0.4 mm
A decarburized layer with a surface decarburization rate of 10% or more and 70% or less and a maximum decarburization depth of 0.5 mm or less remains on the outer ring outer diameter, and no decarburized layer remains on the raceway surface. Rolling bearing raceway features. However, the surface decarburization rate (D) is a change rate of the carbon content of the finished product surface with respect to the carbon content of the bearing material, and is a value represented by the following equation (1). However, the above surface carbon amount is the carbon amount in the portion where decarburization occurs most in the entire circumferential direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05832798A JP4269349B2 (en) | 1998-03-10 | 1998-03-10 | Rolling bearing race |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05832798A JP4269349B2 (en) | 1998-03-10 | 1998-03-10 | Rolling bearing race |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11257357A true JPH11257357A (en) | 1999-09-21 |
JP4269349B2 JP4269349B2 (en) | 2009-05-27 |
Family
ID=13081212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05832798A Expired - Fee Related JP4269349B2 (en) | 1998-03-10 | 1998-03-10 | Rolling bearing race |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4269349B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001227539A (en) * | 1999-12-08 | 2001-08-24 | Nsk Ltd | Linear guide rail and work method therefor |
JP2002046409A (en) * | 2000-05-22 | 2002-02-12 | Koyo Seiko Co Ltd | Bearing device for wheel |
JP2008202792A (en) * | 2001-10-15 | 2008-09-04 | Jtekt Corp | Rolling bearing unit |
JP2013006218A (en) * | 2007-01-16 | 2013-01-10 | Nsk Ltd | Manufacturing method for bearing outer ring |
JP2015092119A (en) * | 2015-02-09 | 2015-05-14 | 株式会社ジェイテクト | Double-row ball bering and pinion shaft support device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102528080B (en) * | 2012-01-12 | 2013-07-17 | 湖州以创轴承有限公司 | Tower part turning process |
-
1998
- 1998-03-10 JP JP05832798A patent/JP4269349B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001227539A (en) * | 1999-12-08 | 2001-08-24 | Nsk Ltd | Linear guide rail and work method therefor |
JP4586248B2 (en) * | 1999-12-08 | 2010-11-24 | 日本精工株式会社 | Processing method of linear motion guide rail |
JP2002046409A (en) * | 2000-05-22 | 2002-02-12 | Koyo Seiko Co Ltd | Bearing device for wheel |
JP2008202792A (en) * | 2001-10-15 | 2008-09-04 | Jtekt Corp | Rolling bearing unit |
JP2013006218A (en) * | 2007-01-16 | 2013-01-10 | Nsk Ltd | Manufacturing method for bearing outer ring |
JP2015092119A (en) * | 2015-02-09 | 2015-05-14 | 株式会社ジェイテクト | Double-row ball bering and pinion shaft support device |
Also Published As
Publication number | Publication date |
---|---|
JP4269349B2 (en) | 2009-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3605830B2 (en) | Continuous annealing furnace, annealing method and method for manufacturing inner and outer rings of rolling bearing | |
US5672014A (en) | Rolling bearings | |
JP5895493B2 (en) | Rolling bearing manufacturing method, induction heat treatment apparatus | |
EP1595966B1 (en) | Steel pipe for bearing elements, and methods for producing and cutting the same | |
US5336338A (en) | Bearing components and process for producing same | |
JP2002115030A (en) | Rolling bearing for spindle of machine tool | |
EP1873409B1 (en) | Rolling/sliding part and production method thereof | |
JP4114218B2 (en) | Rolling bearing | |
EP2514844B1 (en) | Rolling sliding member, method of manufacturing the same, and rolling bearing | |
WO2005075121A1 (en) | Cold-finished seamless steel pipe | |
CN114990447B (en) | Alloy material, hole expanding die and processing technology | |
EP0745695B1 (en) | Bearing part | |
JPH11257357A (en) | Race for rolling bearing | |
JP4810866B2 (en) | Mold for heat treatment of bearing race and method of manufacturing bearing race | |
JP5998631B2 (en) | Rolling bearing | |
JP2000204445A (en) | Rolling bearing parts for high temperature use | |
JP3941782B2 (en) | Rolling bearing | |
JP2003194072A (en) | Rolling device | |
JPH04280941A (en) | Steel for rolling parts | |
JP2522457B2 (en) | Steel pipe for bearing race suitable for cold rolling | |
JPH02209452A (en) | Steel for rolling parts and rolling parts using the steel | |
JPH11347673A (en) | Roller bearing, and its manufacture | |
JP4225061B2 (en) | Rolling bearing unit for wheel support | |
JP2006063355A (en) | Rolling bearing and method for manufacturing bearing ring thereof | |
JPH09242762A (en) | Rolling bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050223 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080617 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090203 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090216 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140306 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |