JPH11235097A - Prime elctric motor apparatus fitted with deterioration diagnostic apparatus - Google Patents
Prime elctric motor apparatus fitted with deterioration diagnostic apparatusInfo
- Publication number
- JPH11235097A JPH11235097A JP10038330A JP3833098A JPH11235097A JP H11235097 A JPH11235097 A JP H11235097A JP 10038330 A JP10038330 A JP 10038330A JP 3833098 A JP3833098 A JP 3833098A JP H11235097 A JPH11235097 A JP H11235097A
- Authority
- JP
- Japan
- Prior art keywords
- light
- deterioration
- degree
- coil
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006866 deterioration Effects 0.000 title claims abstract description 84
- 230000005540 biological transmission Effects 0.000 claims abstract description 57
- 239000003921 oil Substances 0.000 claims abstract description 43
- 239000003792 electrolyte Substances 0.000 claims abstract description 21
- 230000003287 optical effect Effects 0.000 claims abstract description 13
- 239000004065 semiconductor Substances 0.000 claims abstract description 11
- 239000010687 lubricating oil Substances 0.000 claims abstract description 9
- 238000002835 absorbance Methods 0.000 claims description 26
- 239000010705 motor oil Substances 0.000 claims description 12
- 238000003745 diagnosis Methods 0.000 claims description 11
- 239000000446 fuel Substances 0.000 claims description 8
- 239000008151 electrolyte solution Substances 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims 1
- 230000031700 light absorption Effects 0.000 claims 1
- 239000013307 optical fiber Substances 0.000 abstract description 10
- 239000000523 sample Substances 0.000 description 22
- 238000010586 diagram Methods 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000007689 inspection Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- -1 coil Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Eletrric Generators (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、エンジンの潤滑オ
イル,電動機,発電機等のコイル及び蓄電池の電解液の
劣化度を光学式センサを用いて診断し、その結果を表示
する装置を具備した原動電動装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a device for diagnosing the degree of deterioration of the electrolyte of a coil of an engine lubricating oil, an electric motor, a generator, etc. and a storage battery using an optical sensor and displaying the result. The present invention relates to a prime mover.
【0002】[0002]
【従来の技術】燃料の供給が容易なエンジンと電気エネ
ルギーを用いる電動機とを利用する原動電動装置には、
エンジンの潤滑オイル,電動機コイル,蓄電池の電解液
が用いられており、それぞれが使用によって劣化する。
そこで、エンジンの寿命延長にはエンジンオイルの管理
が重要で、蓄電池の寿命には電解液の管理が重要とな
る。また、電動機の寿命にはコイルの絶縁特性の管理が
重要である。従来、エンジンオイルは所定の走行距離以
上になると交換することになっている。例えば、走行距
離が約3,000km で交換するかどうかを所定距離走行
後にオイルゲージの先端に付着したオイルの汚れ程度を
目視等で判断し、交換の是非を判断していた。また、電
動機や蓄電池に対しては、交換時期を管理する有効な手
段がないのが現状である。2. Description of the Related Art A prime mover using an engine which can easily supply fuel and a motor using electric energy includes:
The lubricating oil of the engine, the motor coil, and the electrolyte of the storage battery are used, each of which is deteriorated by use.
Therefore, management of engine oil is important for extending the life of the engine, and management of electrolyte is important for the life of the storage battery. In addition, it is important to control the insulation properties of the coil for the life of the motor. Conventionally, the engine oil has to be changed when the distance exceeds a predetermined distance. For example, whether or not the replacement is performed at a travel distance of about 3,000 km is determined by visually observing the degree of contamination of the oil adhering to the tip of the oil gauge after traveling a predetermined distance, and the necessity of replacement is determined. At present, there is no effective means for managing the replacement time for electric motors and storage batteries.
【0003】[0003]
【発明が解決しようとする課題】本発明は、エンジンオ
イル,コイルの絶縁樹脂及び蓄電池の電解液の劣化度を
光学式センサを用いて判定し、交換時期を適格に把握す
ることにより、効率的な運転を可能とし、故障を未然に
防止することで、交通事故等の事故の発生を未然に防止
する原動電動装置を提供することにある。SUMMARY OF THE INVENTION According to the present invention, the degree of deterioration of the engine oil, the insulating resin of the coil, and the electrolyte of the storage battery is determined by using an optical sensor, and the replacement time is appropriately grasped, so that the efficiency is improved. It is an object of the present invention to provide a motor drive device that enables safe driving and prevents a failure before it occurs, thereby preventing an accident such as a traffic accident from occurring.
【0004】[0004]
【課題を解決するための手段】本発明者らは、エンジン
の潤滑オイルの劣化度と近赤外域における単位長さ当た
りの光透過損失スペクトル特性との関係を検討した結
果、近赤外短波長側の光透過損失の増大がスラッジ量
(不溶解成分量)や動粘度,全酸価の値と相関を有する
こと、電動機コイルの表面反射光強度の変化から劣化度
を測定できること、蓄電池電解液の劣化度と近赤外域に
おける光透過損失の変化から劣化度を測定できること、
且つ診断する部位を正確に確認できる劣化診断装置を見
い出した。The present inventors have studied the relationship between the degree of deterioration of the lubricating oil of the engine and the light transmission loss spectral characteristics per unit length in the near infrared region. That the increase in light transmission loss on the side has a correlation with the values of sludge amount (insoluble component amount), kinematic viscosity, and total acid value, that the degree of deterioration can be measured from changes in the surface reflected light intensity of the motor coil, The degree of deterioration can be measured from the degree of deterioration of light and the change in light transmission loss in the near infrared region,
In addition, a degradation diagnosis device capable of accurately confirming a part to be diagnosed has been found.
【0005】即ち本発明の要旨は次のとおりである。単
色光光源からの照射光を照射用導光体を用いてオイル,
コイル絶縁部及び電解液の表面あるいはバルク中に導
き、該照射用導光体からの出射光は透過距離aなるオイ
ル及び電解液中を透過後、対向して設置した受光用導光
体に入射後、受光部に導かれ、制御・演算部において単
位長さ当たりの光透過損失(α,dB/mm)および2波長
間の光透過損失差(Δα,dB/mm)を演算し、さらに予
め記憶されておいた該オイル及び電解液の劣化度と光透
過損失および光透過損失差との関係(マスターカーブ)
を比較演算することによって劣化度を判定することを特
徴とするオイル及び電解液の劣化診断方法及び装置と、
該照射用導光体からの出射光をコイル表面に照射し、コ
イル表面からの反射光を対向して設置した受光用導光体
に入射後、受光部に導かれ、制御・演算部において反射
吸光度および2波長間の反射吸光度差(ΔAλ)あるい
は反射吸光度比(Aλ′)を演算し、さらに予め記憶さ
れておいた該個コイルの劣化度と反射吸光度,反射吸光
度差および反射吸光度比との関係(マスターカーブ)を
比較演算することによって劣化度を判定することを特徴
とするコイル劣化診断方法及び装置とを具備した原動電
動装置にある。That is, the gist of the present invention is as follows. The irradiation light from the monochromatic light source is applied to the oil,
The light emitted from the light guide for irradiation is transmitted through the oil and the electrolyte having a transmission distance a, and then enters the light guide for light reception, which is installed oppositely, to the coil insulating part and the surface or bulk of the electrolyte. Thereafter, the light is guided to the light receiving unit, and the control / calculation unit calculates the light transmission loss per unit length (α, dB / mm) and the light transmission loss difference between the two wavelengths (Δα, dB / mm). Relationship between stored degree of deterioration of oil and electrolyte and light transmission loss and light transmission loss difference (master curve)
Oil and electrolyte deterioration diagnosis method and apparatus, characterized in that the degree of deterioration is determined by comparing and calculating
The light emitted from the irradiation light guide is irradiated on the coil surface, and the reflected light from the coil surface is incident on the light receiving light guide installed opposite thereto, guided to the light receiving unit, and reflected by the control / arithmetic unit. The absorbance and the reflection absorbance difference (ΔAλ) or the reflection absorption ratio (Aλ ′) between the two wavelengths are calculated, and the deterioration degree of the individual coil and the reflection absorption, the reflection absorption difference and the reflection absorption ratio stored in advance are calculated. A motor driving apparatus including a coil deterioration diagnosis method and apparatus characterized in that the degree of deterioration is determined by comparing and calculating a relationship (master curve).
【0006】なお、前記単色光光源としては、波長63
5nm以上1550nm以下のピーク波長を有する半導
体レーザ(LD)あるいは発光ダイオード(LED)が
入手容易で寿命も長く性能も安定しており好適である。
特に635,650,670,700,785,80
0,820,830,850,870,940,95
0,1300,1310,1550nm等のLD,LE
Dが好適である。上記領域以外の波長の光源では、オイ
ル等の劣化度が比較的小さいうちに受光部内の光検出器
がオーバーレンジとなり、測光不能となる場合がある。The monochromatic light source has a wavelength of 63.
A semiconductor laser (LD) or a light emitting diode (LED) having a peak wavelength of 5 nm or more and 1550 nm or less is preferable because it is easily available, has a long life, and has stable performance.
Especially 635, 650, 670, 700, 785, 80
0,820,830,850,870,940,95
LD, LE of 0, 1300, 1310, 1550 nm, etc.
D is preferred. In the case of a light source having a wavelength other than the above range, the photodetector in the light receiving unit may be overranged while the degree of deterioration of oil or the like is relatively small, and photometry may not be possible.
【0007】燃料を燃焼させて動作するエンジンとは、
ガソリン,軽油,LPG,メタノールを燃料とする原動
装置であり、原動電動装置とは、コイルに電流を流して
電動機を駆動する電動装置とエンジンを組み合わせた、
自動車,船舶,バイク等である。電源となる蓄電池とし
ては、Liイオン,Ni・水素,Pb,MCFC,Na
Sなどの二次電池が用いられ、その他太陽電池,コンデ
ンサ等を使用したものも用いられる。自動車用としては
図1,図2に示すような、エンジンを発電用として搭載
するシリーズ型とエンジンと電動機を連結するパラレル
型や両者を組み合わせたシリパラ型のハイブリット車が
ある。An engine that operates by burning fuel is:
A motor driven by gasoline, light oil, LPG, or methanol. A motor driven by a combination of a motor and an engine that drives an electric motor by passing a current through a coil.
Cars, ships, motorcycles, etc. As a storage battery serving as a power supply, Li ion, Ni.hydrogen, Pb, MCFC, Na
A secondary battery such as S is used, and a battery using a solar battery, a capacitor, or the like is also used. As shown in FIG. 1 and FIG. 2, there are a series type vehicle equipped with an engine for power generation, a parallel type connecting an engine and an electric motor, and a parallel type hybrid vehicle combining both types.
【0008】一般に、オイルや電解液の劣化度と近赤外
域における単位長さ当たりの光透過損失スペクトルと
は、図6で示されるような変化で代表される。これらの
光透過損失スペクトルは測定温度の影響を受けないた
め、運転前の始業点検時での測定でも、運転中の測定で
も同一値が得られる。ここで、2波長間の光透過損失差
でみると、初期ではA−A′間の傾きを、劣化(中)で
はB−B′間の傾きを、劣化(大)ではC−C′間の傾
きを示すことになり、劣化の進行に伴ってその傾きは大
きくなっていく。さらに、ベース値の光透過損失に着目
すると、A′,B′,C′の近傍のピーク(C−H結合
の高調波吸収ピーク)の大きさが変化していないことか
ら、A′,B′,C′の順にスラッジ等の影響に伴う光
散乱損失(いわゆるミー散乱)が増大していることにな
り、その不溶解成分量が検知できることになる。In general, the degree of deterioration of oil or electrolyte and the light transmission loss spectrum per unit length in the near infrared region are represented by changes as shown in FIG. Since these light transmission loss spectra are not affected by the measurement temperature, the same value can be obtained in both the measurement at the start of inspection before operation and the measurement during operation. Here, looking at the difference in the light transmission loss between the two wavelengths, the slope between A and A 'at the beginning, the slope between B and B' at the deterioration (medium), and the slope between C and C 'at the deterioration (large). , And the slope becomes larger as the deterioration progresses. Further focusing on the light transmission loss at the base value, the magnitudes of the peaks near A ', B', and C '(harmonic absorption peaks of the CH bond) do not change. The light scattering loss (so-called Mie scattering) due to the influence of sludge and the like increases in the order of ', C', and the amount of insoluble components can be detected.
【0009】さらに、図7には各種使用状況の異なる実
機エンジンオイルと初期品(新油)25の光透過損失ス
ペクトルを示したが、添加剤の影響でここに示した4種
の初期オイルは異なる色を呈しているが、700nm以
上の領域では光透過損失スペクトルは全く同一値を示し
ている。即ち、近赤外光を用いれば、異種オイルの影響
を受けずに診断できるといえる。一例として、図15に
は走行距離,車種,使用状況の異なる様々な実車のエン
ジンオイルの1310nmにおける光透過損失と40℃
における動粘度との関係図を、同様に図16には950
nmと1310nm間における光透過損失差と全酸価値
との関係図を示す。各パラメータは光透過損失及び光透
過損失差と良好な相関を有することがわかる。Further, FIG. 7 shows light transmission loss spectra of an actual engine oil and an initial product (new oil) 25 having different usage conditions. The four types of initial oils shown here are affected by additives. Although they have different colors, the light transmission loss spectrum shows exactly the same value in the region of 700 nm or more. In other words, it can be said that the diagnosis can be performed by using the near-infrared light without being affected by different kinds of oil. As an example, FIG. 15 shows light transmission loss at 1310 nm and 40 ° C. of engine oil of various actual vehicles having different running distances, vehicle types, and usage conditions.
FIG. 16 also shows the relationship between the kinematic viscosity and 950.
FIG. 3 shows a relationship diagram between the difference in light transmission loss between the nm and 1310 nm and the total acid value. It can be seen that each parameter has a good correlation with the light transmission loss and the light transmission loss difference.
【0010】オイルの劣化診断には、上記の方法の他
に、オイル中に含まれるカーボン粒子の量を粒子濃度に
よって変化するエバネツセント波の強度によって評価す
る光学式センサ,可視光と近赤外光の2波長の光源を用
いた吸光度値から劣化パターンに対応した1波長で劣化
度を評価する装置等の使用も可能である。[0010] In addition to the above-described method, the oil deterioration diagnosis is performed by an optical sensor that evaluates the amount of carbon particles contained in the oil based on the intensity of an evanescent wave that changes depending on the particle concentration, and visible light and near-infrared light. It is also possible to use a device or the like that evaluates the degree of deterioration at one wavelength corresponding to the deterioration pattern from the absorbance value using the two wavelength light source.
【0011】また、電動機コイルの劣化度と反射吸光度
スペクトルの変化とは、図10で示されるような変化で
代表される。該図のように劣化に伴って可視領域の短波
長側で反射吸光度は著しい増加を示す。この短波長側で
の反射吸光度の増加は、主に材料の熱酸化劣化反応によ
る電子遷移吸収損失の増大に起因するものである。ま
た、劣化度の増大に伴って反射吸光度Aλは短波長側ほ
ど増加するようになるので、任意の2波長間の反射吸光
度差ΔAλ(=Aλ1−Aλ2)あるいは反射吸光度比
Aλ′(=Aλ1/Aλ2)も同様に増加する。ここで、λ
1<λ2である。例えば、図10において、波長λ1
(nm)と波長λ2(nm)間の反射吸光度差ΔA
λを、劣化度の大きい材料から順にα1,α2,α3と
すればα1>α2>α3の関係が成立する。反射吸光度
比Aλ′に対しても同様のことが言える。The degree of deterioration of the motor coil and the change in the reflection absorbance spectrum are represented by changes as shown in FIG. As shown in the figure, the reflection absorbance shows a remarkable increase on the short wavelength side in the visible region with the deterioration. The increase in the reflection absorbance on the short wavelength side is mainly caused by an increase in the electron transition absorption loss due to the thermal oxidative degradation reaction of the material. Further, since the reflection absorbance A lambda with the deterioration degree of the increase would be increased toward the shorter wavelength side, the reflection absorbance difference between any two wavelengths ΔA λ (= A λ1 -A λ2 ) or the reflection absorbance ratio A lambda '(= A λ1 / A λ2 ) also increases. Where λ
1 <λ2. For example, in FIG.
(Nm) and reflection absorbance difference ΔA between wavelength λ2 (nm)
If λ is α1, α2, α3 in order from the material having the greatest degree of deterioration, the relationship α1>α2> α3 is established. The same can be said for the reflection absorbance ratio A λ '.
【0012】上記以外に、光センサを用いて明度,色度
で劣化度を評価する装置、光ファイバで導いた照射光を
絶縁材料と同じ材料で構成されているセンサ部を透過さ
せ、該透過光を受光用光ファイバを通して検出する透過
光方式によるL*a*b表色系に基づいた色度あるいは
色度差による表色演算診断装置等も用いることができ
る。In addition to the above, an apparatus for evaluating the degree of deterioration based on lightness and chromaticity using an optical sensor, irradiation light guided by an optical fiber is transmitted through a sensor portion made of the same material as an insulating material, and It is also possible to use a colorimetric operation diagnostic device or the like based on chromaticity or chromaticity difference based on the L * a * b color system based on a transmitted light system that detects light through a light receiving optical fiber.
【0013】この劣化に伴う光透過損失及び反射吸光度
の変化が前記オイルや電解液及びコイルの劣化度を示す
尺度となるパラメータと相関を有するため、光透過損失
及び反射吸光度を測定することのみでオイルや電解液及
びコイルの物性低下を診断できる。Since the change in light transmission loss and reflection absorbance due to the deterioration has a correlation with a parameter which is a measure of the degree of deterioration of the oil, the electrolyte and the coil, it is only necessary to measure the light transmission loss and reflection absorbance. Diagnosis of deterioration of physical properties of oil, electrolyte and coil can be made.
【0014】また、特開平3−226651 号公報に記載され
ているように、劣化度は換算時間θで表すことが一般的
である。換算時間θで表すことにより、様々な劣化履歴
を有する材料であっても、θが等しければ同じ劣化度で
あることを意味する。換算時間θは(1)式で定義され
る。As described in JP-A-3-226651, the degree of deterioration is generally represented by a converted time θ. By expressing by the conversion time θ, even if the materials have various deterioration histories, if the θ is equal, it means that the degree of deterioration is the same. The conversion time θ is defined by equation (1).
【0015】[0015]
【数1】 θ=t×exp(−ΔE/RT) …(1) ここで、ΔEは劣化のみかけの活性化エネルギー(J/m
ol)、Rは気体定数(J/K/mol)、Tは劣化の絶対温
度(K)、tは劣化時間(h)である。オイル及びコイ
ル劣化のΔEはアレニウスプロットにより容易に算出で
きる。さらに、予め求めておいたオイルやコイルの寿命
点における換算時間をθ0 とすれば、実測から求めた換
算時間θとの差Δθが余寿命に相当する換算時間とな
り、劣化度判定の尺度となる。即ち、余寿命Δθ(h)は
(2)式で表される。Θ = t × exp (−ΔE / RT) (1) where ΔE is the apparent activation energy (J / m
ol) and R are gas constants (J / K / mol), T is the absolute temperature of degradation (K), and t is the degradation time (h). ΔE of oil and coil deterioration can be easily calculated from an Arrhenius plot. Further, if the conversion time at the life point of the oil or coil previously obtained is θ 0 , the difference Δθ from the conversion time θ obtained from the actual measurement becomes the conversion time corresponding to the remaining life, and a scale for determining the degree of deterioration. Become. That is, the remaining life Δθ (h) is expressed by equation (2).
【0016】[0016]
【数2】 Δθ(=θ0−θ) …(2) (2)式より時間t以降のオイル及びコイルの平均使用
温度条件が定まれば、それぞれの余寿命の時間Δt(=
t0−t)を求めることもできる。Δθ (= θ 0 −θ) (2) If the average operating temperature conditions of the oil and the coil after the time t are determined from the equation (2), the respective remaining life times Δt (=
t 0 -t) can also be determined.
【0017】[0017]
【発明の実施の形態】本発明の実施例を図面を参照して
説明する。ただし、本発明はこれら実施例に限定される
ものではない。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to these examples.
【0018】(実施例1)図1〜図3はハイブリット車
のエンジンの潤滑オイル,コイルの絶縁樹脂及び蓄電池
の電解液の劣化診断装置の適用形態を示す模式図であ
る。また、図13に劣化度判定のための演算のフローチ
ャートを示す。図1において制御・演算部11は測定デ
ータ記憶用メモリー,読み出し専用メモリーを内蔵した
マイクロプロセッサからなっており、光源波長の切り替
え,受光強度測定,演算まで行う。本実施例では2波長
を用いた装置での説明をする。オイルの劣化度測定は、
光源としてλ1=950nmの発光ダイオード(LE
D)とλ2=1310nmの半導体レーザ(LD)を用
いた。まず、各光源波長のレファレンス光強度(I0,λ)
を測定する。λ1からの入射光20は光ファイバケーブ
ル8内を通り、透過型プローブ16に導かれる。透過型
プローブ16は図4に示すような内部構造を有してお
り、入射光20は透過型プローブ16内に形成された導
光体23内を伝送し、スリット22に到達する。スリッ
ト22は本実施例では光路長1.0mm に設定されている
が、0.5〜2.0mmまで可変である。スリット内に満た
されているオイル15を透過した後、透過光21′は対
向して設置された導光体23内に再び入射し、受光部1
0へと導かれる。受光部10にてλ1における透過光強
度(Iλ1)を検出し、制御・演算部11にて光透過損失
として演算・記憶される。同様にしてλ2からの入射光
20に対する透過光強度(Iλ2)を測定し、制御・演算
部11にてλ2の光透過損失として演算・記憶する。制
御・演算部11では図8及び図9に示したような予め記
憶されていたオイルの劣化と光透過損失及び光透過損失
差との関係図(マスターカーブ)からオイルの劣化度を
換算時間として算出し、結果を車内に設置されている警
告灯に表示する。(Embodiment 1) FIGS. 1 to 3 are schematic views showing an application form of a device for diagnosing deterioration of lubricating oil of an engine of a hybrid vehicle, insulating resin of a coil and electrolyte of a storage battery. FIG. 13 shows a flowchart of a calculation for determining the degree of deterioration. In FIG. 1, a control / calculation unit 11 is composed of a microprocessor having a built-in memory for storing measured data and a read-only memory, and performs switching of a light source wavelength, measurement of received light intensity, and calculation. In this embodiment, a description will be given of an apparatus using two wavelengths. Oil degradation degree measurement
As a light source, a light emitting diode with λ1 = 950 nm (LE
D) and a semiconductor laser (LD) with λ2 = 1310 nm were used. First, the reference light intensity (I 0, λ ) of each light source wavelength
Is measured. The incident light 20 from λ 1 passes through the optical fiber cable 8 and is guided to the transmission probe 16. The transmission probe 16 has an internal structure as shown in FIG. 4, and the incident light 20 transmits through the light guide 23 formed in the transmission probe 16 and reaches the slit 22. In this embodiment, the slit 22 is set to have an optical path length of 1.0 mm, but can be changed to a range of 0.5 to 2.0 mm. After passing through the oil 15 filled in the slit, the transmitted light 21 ′ re-enters the light guide 23 installed oppositely, and
Guided to zero. The transmitted light intensity (I λ1 ) at λ1 is detected by the light receiving unit 10 and is calculated and stored as the light transmission loss by the control / calculation unit 11. Similarly, the transmitted light intensity (I λ2 ) for the incident light 20 from λ2 is measured, and the control / calculation unit 11 calculates and stores the light transmission loss as λ2. The control / calculation unit 11 determines the degree of oil deterioration as a conversion time from a relationship diagram (master curve) between the oil deterioration and the light transmission loss and the light transmission loss difference stored in advance as shown in FIGS. Calculate and display the result on the warning light installed inside the vehicle.
【0019】また、コイルの劣化度測定は、光源として
λ1=650nmとλ2=830nmの半導体レーザ
(LD)を用いた。まず、各光源波長のレファレンス光
強度(I0,λ′)を測定する。λ1からの入射光20は
光ファイバケーブル8内を通り、反射型プローブ18に
導かれる。反射型プローブ18は図5に示すような内部
構造を有しており、入射光20は反射型プローブ18内
に形成された導光体23内を伝送し、コイル表面17に
照射される。コイル表面17からの反射光21″を対向
して設置された導光体23が受け、受光部10へと導か
れる。受光部10にてλ1における反射光強度
(Iλ1′)を検出し、制御・演算部11にて反射吸光度
として演算・記憶される。同様にしてλ2からの入射光
20に対する反射光強度(Iλ2′)を測定し、制御・演
算部11にてλ2の反射吸光度として演算・記憶する。
制御・演算部11では図11,図12に示したような予
め記憶されていたコイルの劣化と反射吸光度差及び反射
吸光度比との関係図(マスターカーブ)からコイルの劣
化度を換算時間として算出し、結果を車内に設置されて
いる警告灯に表示する。In measuring the degree of deterioration of the coil, a semiconductor laser (LD) having λ1 = 650 nm and λ2 = 830 nm was used as a light source. First, the reference light intensity (I 0, λ ′) of each light source wavelength is measured. The incident light 20 from λ1 passes through the optical fiber cable 8 and is guided to the reflection type probe 18. The reflection type probe 18 has an internal structure as shown in FIG. 5, and the incident light 20 is transmitted through the light guide 23 formed in the reflection type probe 18 and is irradiated on the coil surface 17. The light guide 23 disposed oppositely receives the reflected light 21 ″ from the coil surface 17 and is guided to the light receiving unit 10. The reflected light intensity at λ1 at the light receiving unit 10
( Iλ1 ') is detected, and is calculated and stored as reflected absorbance by the control / calculation unit 11. Similarly, the reflected light intensity (I λ2 ') for the incident light 20 from λ2 is measured, and the control / calculation unit 11 calculates and stores the reflected light absorbance at λ2.
The control / arithmetic unit 11 calculates the degree of deterioration of the coil as a conversion time from a relationship diagram (master curve) between the deterioration of the coil and the reflection absorbance difference and the reflection absorbance ratio stored in advance as shown in FIGS. Then, the result is displayed on a warning light installed in the vehicle.
【0020】さらに、電解液の劣化度測定は、光源とし
てλ1=635nmとλ2=830nmの半導体レーザ
(LD)を用いた他は、オイルの劣化度測定と同様に行
った。The measurement of the degree of deterioration of the electrolytic solution was performed in the same manner as the measurement of the degree of deterioration of the oil except that a semiconductor laser (LD) having λ1 = 635 nm and λ2 = 830 nm was used as a light source.
【0021】なお、この検査はエンジン始動後セルフチ
ェック機能として作動するシステムとなっている。This inspection is a system that operates as a self-check function after the engine is started.
【0022】(実施例2)図3は船舶のオイル,コイル
及び電解液劣化診断装置の適用形態を示す模式図であ
る。図14に示す内部構造の透過型プローブ16を用い
た場合の例を説明する。本実施例では2波長の光源とし
て、λ1=940nmの発光ダイオード(LED)とλ
2=1550nmの半導体レーザ(LD)を用いた。ま
ず、各光源波長のレファレンス光強度(I0,λ)を測定
する。λ1からの入射光20は光ファイバケーブル8内
を通り、透過型プローブ16に導かれる。入射光20は
透過型プローブ16内に形成された導光体23内を伝送
し、スリット22に到達する。スリット22は本実施例
では光路長0.5mm に設定されている。スリット内に満
たされているオイル15を透過した後、透過光21′は
対向して設置された導光体23内に再び入射し、受光部
10へと導かれる。受光部10にてλ1における透過光
強度(Iλ1)を検出し、制御・演算部11にて光透過損
失として演算・記憶される。同様にしてλ2からの入射
光20に対する透過光強度(Iλ2)を測定し、制御・演
算部11にてλ2の光透過損失として演算・記憶する。
制御・演算部11では図8及び図9に示したような予め
記憶されていたオイルの劣化と光透過損失及び光透過損
失差との関係図(マスターカーブ)からオイルの劣化度
を換算時間として算出し、結果を船舶内に設置されてい
る警告灯に表示する。(Embodiment 2) FIG. 3 is a schematic diagram showing an application form of a device for diagnosing oil, coil and electrolyte deterioration of a ship. An example in which the transmission probe 16 having the internal structure shown in FIG. 14 is used will be described. In the present embodiment, a light emitting diode (LED) of λ1 = 940 nm and a λ
A semiconductor laser (LD) of 2 = 1550 nm was used. First, the reference light intensity (I 0, λ ) at each light source wavelength is measured. The incident light 20 from λ 1 passes through the optical fiber cable 8 and is guided to the transmission probe 16. The incident light 20 travels through the light guide 23 formed in the transmission probe 16 and reaches the slit 22. In this embodiment, the slit 22 has an optical path length of 0.5 mm. After passing through the oil 15 filled in the slit, the transmitted light 21 ′ re-enters the opposing light guide 23 and is guided to the light receiving unit 10. The transmitted light intensity (I λ1 ) at λ1 is detected by the light receiving unit 10 and calculated and stored as the light transmission loss by the control / calculation unit 11. Similarly, the transmitted light intensity (I λ2 ) for the incident light 20 from λ2 is measured, and the control / calculation unit 11 calculates and stores the light transmission loss as λ2.
The control / calculation unit 11 determines the degree of oil deterioration as a conversion time from a relationship diagram (master curve) between the oil deterioration and the light transmission loss and the light transmission loss difference stored in advance as shown in FIGS. Calculate and display the result on the warning light installed in the ship.
【0023】また、コイルの劣化度測定は、光源として
λ1=635nmとλ2=800nmの半導体レーザ
(LD)を用いた。まず、各光源波長のレファレンス光
量(I0,λ′)を測定する。λ1からの入射光20は光
ファイバケーブル8内を通り、プローブ18に導かれ
る。入射光20はプローブ18内に形成された導光体2
3内を伝送し、コイル表面17に照射される。コイル表
面17からの反射光を対向して設置された導光体23が
受け、受光部10へと導かれる。受光部10にてλ1に
おける反射光強度(Iλ1′)を検出し、制御・演算部1
1にて反射吸光度として演算・記憶される。同様にして
λ2からの入射光20に対する反射光強度(Iλ2′)を
測定し、制御・演算部11にてλ2の反射吸光度として
演算・記憶する。制御・演算部11では図11,図12
に示したような予め記憶されていたコイルの劣化と反射
吸光度との関係図(マスターカーブ)からコイルの劣化
度を換算時間として算出し、結果を船舶内に設置されて
いる警告灯に表示する。なお、この検査はエンジン始動
後セルフチェック機能として作動するシステムとなって
いる。In measuring the degree of deterioration of the coil, a semiconductor laser (LD) having λ1 = 635 nm and λ2 = 800 nm was used as a light source. First, the reference light amount (I 0, λ ′) of each light source wavelength is measured. The incident light 20 from λ1 passes through the optical fiber cable 8 and is guided to the probe 18. The incident light 20 is emitted from the light guide 2 formed in the probe 18.
3 and irradiates the coil surface 17. The light reflected from the coil surface 17 is received by the light guide 23 installed facing the light, and is guided to the light receiving unit 10. The light receiving unit 10 detects the reflected light intensity (I λ1 ') at λ1, and the control / calculation unit 1
In step 1, it is calculated and stored as the reflection absorbance. Similarly, the reflected light intensity (I λ2 ') for the incident light 20 from λ2 is measured, and the control / calculation unit 11 calculates and stores the reflected light absorbance at λ2. In the control / arithmetic unit 11, FIGS.
The degree of deterioration of the coil is calculated as a conversion time from the relationship diagram (master curve) between the deterioration of the coil and the reflection absorbance stored in advance as shown in (1), and the result is displayed on a warning light installed in the ship. . This inspection is a system that operates as a self-check function after the engine is started.
【0024】(実施例3)図1に示す模式図でオイル劣
化診断装置のみ適用形態について説明する。本実施例で
は2波長の光源として、λ1=850nmの発光ダイオ
ード(LED)とλ2=1550nmの半導体レーザ
(LD)を用いた。まず、各光源波長のレファレンス光
強度(I0,λ)を測定する。λ1からの入射光20は光
ファイバケーブル8内を通り、透過型プローブ16に導
かれる。透過型プローブ16は図14に示すような内部
構造を有しており、入射光20は透過型プローブ16内
に形成された導光体23内を伝送し、スリット22に到
達する。スリット22は本実施例では光路長1.5mm に
設定されている。スリット内に満たされているオイル1
5を透過した後、透過光21′は対向して設置された導
光体23内に再び入射し、受光部10へと導かれる。受
光部10にてλ1における透過光強度(Iλ1)を検出
し、制御・演算部11にて光透過損失として演算・記憶
される。同様にしてλ2からの入射光20に対する透過
光強度(Iλ2)を測定し、制御・演算部11にてλ2の
光透過損失として演算・記憶する。制御・演算部11で
は図8及び図9に示したような予め記憶されていたオイ
ルの劣化と光透過損失及び光透過損失差との関係図(マ
スターカーブ)からオイルの劣化度を換算時間として算
出し、結果を車内に設置されている警告灯に表示する。
なお、この検査はエンジン始動後セルフチェック機能と
して作動するシステムとなっている。(Embodiment 3) An embodiment in which only the oil deterioration diagnosis apparatus is applied will be described with reference to the schematic diagram shown in FIG. In this embodiment, a light emitting diode (LED) with λ1 = 850 nm and a semiconductor laser (LD) with λ2 = 1550 nm were used as the two wavelength light sources. First, the reference light intensity (I 0, λ ) at each light source wavelength is measured. The incident light 20 from λ 1 passes through the optical fiber cable 8 and is guided to the transmission probe 16. The transmission probe 16 has an internal structure as shown in FIG. 14, and the incident light 20 transmits through the light guide 23 formed in the transmission probe 16 and reaches the slit 22. In this embodiment, the slit 22 has an optical path length of 1.5 mm. Oil 1 filled in the slit
5, the transmitted light 21 ′ is again incident on the light guide 23 installed opposite thereto, and is guided to the light receiving unit 10. The transmitted light intensity (I λ1 ) at λ1 is detected by the light receiving unit 10 and is calculated and stored as the light transmission loss by the control / calculation unit 11. Similarly, the transmitted light intensity (I λ2 ) for the incident light 20 from λ2 is measured, and the control / calculation unit 11 calculates and stores the light transmission loss as λ2. The control / calculation unit 11 determines the degree of oil deterioration as a conversion time from a relationship diagram (master curve) between the oil deterioration and the light transmission loss and the light transmission loss difference stored in advance as shown in FIGS. Calculate and display the result on the warning light installed inside the vehicle.
This inspection is a system that operates as a self-check function after the engine is started.
【0025】(実施例4)図1に示す模式図でコイル劣
化診断装置のみ適用形態について説明する。光源として
λ1=670nmとλ2=785nmの半導体レーザ
(LD)を用いた。まず、各光源波長のレファレンス光量
(I0,λ′)を測定する。λ1からの入射光20は光フ
ァイバケーブル8内を通り、反射型プローブ18に導か
れる。入射光20はプローブ18内に形成された導光体
23内を伝送し、コイル表面17に照射される。コイル
表面17からの反射光を対向して設置された導光体23
が受け、受光部10へと導かれる。受光部10にてλ1
における反射光強度(Iλ1′)を検出し、制御・演算部
11にて反射吸光度として演算・記憶される。同様にし
てλ2からの入射光20に対する反射光強度(Iλ2′)
を測定し、制御・演算部11にてλ2の反射吸光度とし
て演算・記憶する。制御・演算部11では図11,図1
2に示したような予め記憶されていたコイルの劣化と反
射吸光度との関係図(マスターカーブ)からコイルの劣
化度を換算時間として算出し、結果を車内に設置されて
いる警告灯に表示する。なお、この検査はエンジン始動
後セルフチェック機能として作動するシステムとなって
いる。(Embodiment 4) An embodiment in which only a coil deterioration diagnosis apparatus is applied will be described with reference to the schematic diagram shown in FIG. Semiconductor laser with λ1 = 670 nm and λ2 = 785 nm as light source
(LD) was used. First, the reference light amount (I 0, λ ′) of each light source wavelength is measured. The incident light 20 from λ1 passes through the optical fiber cable 8 and is guided to the reflection type probe 18. The incident light 20 is transmitted through the light guide 23 formed in the probe 18 and is irradiated on the coil surface 17. Light guide 23 installed to face reflected light from coil surface 17
Is received and guided to the light receiving unit 10. Λ1 at the light receiving unit 10
The reflected light intensity ( I.lambda.1 ') is detected, and the control / calculation unit 11 calculates and stores the reflected light absorbance. Similarly, the reflected light intensity ( Iλ2 ') for the incident light 20 from λ2
Is measured, and the control / calculation unit 11 calculates and stores it as the reflection absorbance of λ2. In the control / calculation unit 11, FIG.
The degree of deterioration of the coil is calculated as a conversion time from the relationship diagram (master curve) between the deterioration of the coil and the reflection absorbance stored in advance as shown in FIG. 2 and the result is displayed on a warning light installed in the vehicle. . This inspection is a system that operates as a self-check function after the engine is started.
【0026】[0026]
【発明の効果】本発明によれば、エンジンの潤滑オイ
ル,電動機コイルの絶縁樹脂及び蓄電池の電解液の劣化
度を測定温度や初期の色等の影響を受けることなく精度
よく劣化診断でき、これにより寿命前にオイル,コイ
ル,電解液を交換できるので、原動電動装置の突然の故
障による事故等を未然に防止できる。According to the present invention, the degree of deterioration of the lubricating oil of the engine, the insulating resin of the electric motor coil, and the electrolyte of the storage battery can be accurately diagnosed without being affected by the measured temperature, the initial color, and the like. As a result, the oil, the coil, and the electrolyte can be replaced before the end of the service life, so that an accident or the like due to a sudden failure of the driving motor can be prevented.
【図1】シリーズハイブリットシステム車のオイル,コ
イル及び電解液劣化診断装置の適用形態を示す模式図。FIG. 1 is a schematic diagram showing an application form of an oil, coil, and electrolyte deterioration diagnosis device of a series hybrid system vehicle.
【図2】パラレルハイブリットシステム車への適用形態
を示す模式図。FIG. 2 is a schematic diagram showing an application form to a parallel hybrid system vehicle.
【図3】プローブの設置形態を示す模式図。FIG. 3 is a schematic diagram showing an installation mode of a probe.
【図4】透過型プローブ内光センサの内部構造図。FIG. 4 is an internal structural diagram of the optical sensor in the transmission probe.
【図5】反射型プローブ内光センサの内部構造図。FIG. 5 is an internal structural diagram of the optical sensor in the reflection type probe.
【図6】劣化に伴う光透過損失スペクトルの変化。FIG. 6 shows a change in a light transmission loss spectrum due to deterioration.
【図7】各種使用状況の異なる実機エンジンオイルと新
油の光透過損失スペクトル。FIG. 7 is a graph showing light transmission loss spectra of an actual engine oil and a new oil in various use situations.
【図8】光透過損失をパラメータにした診断マスターカ
ーブの例。FIG. 8 is an example of a diagnostic master curve using light transmission loss as a parameter.
【図9】光透過損失差をパラメータにした診断マスター
カーブの例。FIG. 9 is an example of a diagnostic master curve using a light transmission loss difference as a parameter.
【図10】コイルの劣化に伴う反射吸光度スペクトルの
変化。FIG. 10 shows a change in a reflection absorbance spectrum accompanying deterioration of a coil.
【図11】反射吸光度差をパラメータにした診断マスタ
ーカーブの例。FIG. 11 is an example of a diagnostic master curve using a reflection absorbance difference as a parameter.
【図12】反射吸光度比をパラメータにした診断マスタ
ーカーブの例。FIG. 12 is an example of a diagnostic master curve using a reflection absorbance ratio as a parameter.
【図13】劣化度判定のための診断のフローチャート。FIG. 13 is a flowchart of a diagnosis for determining the degree of deterioration.
【図14】透過型プローブ内光センサの内部構造図。FIG. 14 is a diagram showing the internal structure of an optical sensor in a transmission probe.
【図15】各種使用状況の異なる実機エンジンオイルの
光透過損失と動粘度との関係図。FIG. 15 is a graph showing the relationship between light transmission loss and kinematic viscosity of actual engine oils in various use situations.
【図16】各種使用状況の異なる実機エンジンオイルの
光透過損失と全酸価との関係図。FIG. 16 is a graph showing the relationship between the light transmission loss and the total acid value of actual engine oils in various use situations.
1…エンジン、2…発電機、3…電動機、4…インバー
タ、5…蓄電池、6…減速機、7…診断装置、8…光フ
ァイバケーブル、9…光源部、10…受光部、11…制
御・演算部、12…メーターパネル、13…警告灯、1
4…変速機、15…オイル、16…透過型プローブ、1
7…コイル、18…反射型プローブ、19…電解液、2
0…入射光、21′…透過光、21″…反射光、22…
スリット、23…導光体、24…光遮へい部、25…初
期品。DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Generator, 3 ... Electric motor, 4 ... Inverter, 5 ... Storage battery, 6 ... Reduction gear, 7 ... Diagnostic device, 8 ... Optical fiber cable, 9 ... Light source part, 10 ... Light receiving part, 11 ... Control Calculation unit, 12: meter panel, 13: warning light, 1
4: transmission, 15: oil, 16: transmission probe, 1
7 ... coil, 18 ... reflective probe, 19 ... electrolyte, 2
0: incident light, 21 ': transmitted light, 21 ": reflected light, 22:
Slit, 23: light guide, 24: light shielding part, 25: initial product.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H02K 7/18 H02K 7/18 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H02K 7/18 H02K 7/18 B
Claims (8)
電池よりコイルに電流を流して動作する回転電動機によ
り駆動する原動電動装置において、前記エンジンの潤滑
オイル及び前記蓄電池の劣化度を光学式センサを用いて
診断し、その結果を表示する装置を具備したことを特徴
とする原動電動装置。1. An engine which operates by burning fuel and a driving motor driven by a rotary electric motor which operates by passing an electric current from a storage battery to a coil, wherein an optical sensor measures lubricating oil of the engine and a deterioration degree of the storage battery. An electric motor for driving, comprising: a device for diagnosing by using the device and displaying a result of the diagnosis.
1550nmにピーク波長を有する半導体レーザあるい
は発光ダイオードを用いることを特徴とする請求項1に
記載の原動電動装置。2. A light source for an optical sensor having a wavelength of 635 to 635.
The driving motor according to claim 1, wherein a semiconductor laser or a light emitting diode having a peak wavelength at 1550 nm is used.
の単色光光源を用い、2波長間の光吸収損失差でエンジ
ンオイル及び蓄電池の電解液の劣化度を判定し、2波長
間の反射吸光度差あるいは反射吸光度比で電動機コイル
の劣化度を判定することを特徴とする請求項1,2に記
載の原動電動装置。3. A light source comprising at least two types of monochromatic light sources having different wavelengths, wherein the degree of deterioration of the engine oil and the electrolyte of the storage battery is determined based on the difference in light absorption loss between the two wavelengths, and the reflection absorbance between the two wavelengths is determined. The driving motor according to claim 1, wherein the degree of deterioration of the motor coil is determined based on a difference or a reflection absorbance ratio.
イルに電流を流して電動機を駆動する原動電動装置に、
下記(a),(b),(c) (a)光源と、該光源からの照射光をエンジンオイル中
に導く照射用導光体と、該照射用導光体からの出射光が
オイル中を透過後、該透過光を外部に導く受光用導光体
と、該受光用導光体からの伝送光強度を測定する受光部
と、予め記憶させておいた該オイルの劣化度と伝送光強
度を比較演算することによって劣化度を判定する制御・
演算部とを備えた装置と (b)光源と、該光源からの照射光を電動機コイル表面
に導く照射用導光体と、該照射用導光体からの出射光が
コイル表面を反射後、該反射光を外部に導く受光用導光
体と、該受光用導光体からの伝送光強度を測定する受光
部と、予め記憶させておいた該コイルの劣化度と伝送光
強度を比較演算することによって劣化度を判定する制御
・演算部とを備えた装置及び (c)光源と、該光源からの照射光を蓄電池の電解液中
に導く照射用導光体と、該照射用導光体からの出射光が
電解液中を透過後、該透過光を外部に導く受光用導光体
と、該受光用導光体からの伝送光強度を測定する受光部
と、予め記憶させておいた該電解液の劣化度と伝送光強
度を比較演算することによって劣化度を判定する制御・
演算部とを備えた装置、とを少なくとも1種以上を具備
したことを特徴とする請求項2,3に記載の原動電動装
置。4. An engine that operates by burning fuel and a driving motor that drives an electric motor by passing an electric current through a coil.
(A), (b), (c) (a) a light source, an irradiation light guide for guiding irradiation light from the light source into the engine oil, and an emission light from the irradiation light guide in the oil. A light guide for guiding the transmitted light to the outside after transmitting the light, a light receiving unit for measuring the intensity of the transmission light from the light guide for light reception, and a degree of deterioration and transmission light of the oil stored in advance. Control to determine the degree of deterioration by comparing the strength
(B) a light source, an irradiation light guide for guiding irradiation light from the light source to the surface of the motor coil, and light emitted from the irradiation light guide reflecting from the coil surface. A light-receiving light guide for guiding the reflected light to the outside, a light-receiving unit for measuring the intensity of the transmitted light from the light-receiving light guide, and a comparison calculation of the deterioration degree and the transmitted light intensity of the coil stored in advance. (C) a light source, an irradiation light guide for guiding irradiation light from the light source into the electrolyte of the storage battery, and the irradiation light guide. After light emitted from the body passes through the electrolytic solution, a light receiving light guide for guiding the transmitted light to the outside, and a light receiving unit for measuring the intensity of light transmitted from the light receiving light guide are stored in advance. Control to determine the degree of deterioration by comparing and calculating the degree of deterioration of the electrolyte solution and the transmitted light intensity.
The driving motor apparatus according to claim 2, further comprising at least one kind of a device including a calculation unit.
イルに電流を流して電動機を駆動する原動電動装置に、 (a)光源と、該光源からの照射光をエンジンオイル中
に導く照射用導光体と、該照射用導光体からの出射光が
オイル中を透過後、該透過光を外部に導く受光用導光体
と、該受光用導光体からの伝送光強度を測定する受光部
と、予め記憶させておいた該オイルの劣化度と伝送光強
度を比較演算することによって劣化度を判定する制御・
演算部とを備えた装置 (b)光源と、該光源からの照射光を電動機コイル表面
に導く照射用導光体と、該照射用導光体からの出射光が
コイル表面を反射後、該反射光を外部に導く受光用導光
体と、該受光用導光体からの伝送光強度を測定する受光
部と、予め記憶させておいた該コイルの劣化度と伝送光
強度を比較演算することによって劣化度を判定する制御
・演算部とを備えた装置、を具備したことを特徴とする
請求項2,3に記載の原動電動装置。5. An engine that operates by burning fuel, a driving motor that drives an electric motor by passing a current through a coil, and (a) a light source and an irradiation light for guiding irradiation light from the light source into engine oil. After the light emitted from the light guide for irradiation and the light emitted from the light guide for irradiation pass through the oil, the light guide for light reception for guiding the transmitted light to the outside, and the intensity of light transmitted from the light guide for light reception are measured. Control to determine the degree of deterioration by comparing and calculating the light receiving unit and the degree of deterioration of the oil and the transmitted light intensity stored in advance.
(B) a light source, an irradiation light guide for guiding irradiation light from the light source to the motor coil surface, and an emission light from the irradiation light guide after reflecting the coil surface. A light receiving light guide for guiding the reflected light to the outside, a light receiving unit for measuring the intensity of the transmitted light from the light receiving light guide, and a comparison between the deterioration degree of the coil and the transmitted light intensity stored in advance. The driving electric device according to claim 2, further comprising: a device including a control / arithmetic unit that determines a degree of deterioration by the operation.
イルに電流を流して電動機を駆動する原動電動装置に、
光源と、該光源からの照射光をエンジンオイル中に導く
照射用導光体と、該照射用導光体からの出射光がオイル
中を透過後、該透過光を外部に導く受光用導光体と、該
受光用導光体からの伝送光強度を測定する受光部と、予
め記憶させておいた該オイルの劣化度と伝送光強度を比
較演算することによって劣化度を判定する制御・演算部
とを備えた装置を具備したことを特徴とする請求項2,
3に記載の原動電動装置。6. An engine that operates by burning fuel, and a driving motor that drives an electric motor by passing an electric current through a coil,
A light source, an irradiation light guide for guiding irradiation light from the light source into the engine oil, and a light reception guide for guiding the transmitted light to the outside after light emitted from the irradiation light guide passes through the oil. Body, a light receiving unit for measuring the intensity of the transmitted light from the light guide for light reception, and control / calculation for determining the degree of deterioration by comparing and calculating the degree of deterioration of the oil and the transmitted light intensity stored in advance. 3. An apparatus comprising:
4. The driving electric device according to 3.
イルに電流を流して電動機を駆動する原動電動装置に、
光源と、該光源からの照射光を電動機コイル表面に導く
照射用導光体と、該照射用導光体からの出射光がコイル
表面を反射後、該反射光を外部に導く受光用導光体と、
該受光用導光体からの伝送光強度を測定する受光部と、
予め記憶させておいた該コイルの劣化度と伝送光強度を
比較演算することによって劣化度を判定する制御・演算
部とを備えた装置を具備したことを特徴とする請求項
2,3に記載の原動電動装置。7. An engine that operates by burning fuel and a driving motor that drives an electric motor by passing an electric current through a coil.
A light source, an irradiation light guide for guiding irradiation light from the light source to the motor coil surface, and a light receiving light guide for guiding the reflected light to the outside after light emitted from the irradiation light guide reflects off the coil surface Body and
A light receiving unit for measuring the intensity of the transmitted light from the light receiving light guide,
4. The apparatus according to claim 2, further comprising: a control / calculation unit that determines a degree of deterioration by comparing and calculating a degree of deterioration of the coil and a transmission light intensity stored in advance. Prime mover.
電池を介してコイルに電流を流して電動機を駆動する原
動電動装置に、光源と、該光源からの照射光を蓄電池の
電解液中に導く照射用導光体と、該照射用導光体からの
出射光が電解液中を透過後、該透過光を外部に導く受光
用導光体と、該受光用導光体からの伝送光強度を測定す
る受光部と、予め記憶させておいた該電解液の劣化度と
伝送光強度を比較演算することによって劣化度を判定す
る制御・演算部とを備えた装置とを具備したことを特徴
とする請求項2,3に記載の原動電動装置。8. An engine that operates by burning fuel, a driving motor that drives an electric motor by passing an electric current through a coil through a storage battery, a light source, and irradiating light from the light source into an electrolyte of the storage battery. A light guide for irradiation, a light guide for light reception for guiding the transmitted light to the outside after light emitted from the light guide for irradiation passes through the electrolytic solution, and a transmission light from the light guide for light reception A device having a light receiving unit for measuring the intensity and a control / calculation unit for judging the degree of deterioration by comparing and calculating the degree of deterioration of the electrolytic solution and the transmitted light intensity stored in advance. The driving motor apparatus according to claim 2, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03833098A JP3484966B2 (en) | 1998-02-20 | 1998-02-20 | Motor drive device equipped with deterioration diagnosis device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03833098A JP3484966B2 (en) | 1998-02-20 | 1998-02-20 | Motor drive device equipped with deterioration diagnosis device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11235097A true JPH11235097A (en) | 1999-08-27 |
JP3484966B2 JP3484966B2 (en) | 2004-01-06 |
Family
ID=12522280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03833098A Expired - Fee Related JP3484966B2 (en) | 1998-02-20 | 1998-02-20 | Motor drive device equipped with deterioration diagnosis device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3484966B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6852992B2 (en) * | 2001-06-29 | 2005-02-08 | Hitachi, Ltd. | Method and apparatus of diagnosing deterioration of an article |
US6993202B2 (en) | 2001-02-28 | 2006-01-31 | Canon Kabushiki Kaisha | Decoding apparatus, method, and storage medium for inputting and decoding variable-length coded data |
JP2010501843A (en) * | 2006-08-21 | 2010-01-21 | エスペートロワアッシュ | A method for ensuring the safety of components of a vehicle drive train following the deterioration of fuel |
WO2013099779A1 (en) * | 2011-12-27 | 2013-07-04 | ナブテスコ株式会社 | Machine provided with lubricating oil deterioration sensor and industrial robot |
WO2013111787A1 (en) * | 2012-01-25 | 2013-08-01 | ナブテスコ株式会社 | Machine configured to detect degradation of lubricating oil, speed reducer for industrial robot, and industrial robot |
WO2013122129A1 (en) * | 2012-02-17 | 2013-08-22 | ナブテスコ株式会社 | Lubricating oil deterioration sensor and machine provided with same |
WO2013162031A1 (en) * | 2012-04-26 | 2013-10-31 | ナブテスコ株式会社 | Lubricating oil degradation sensor and machine provided therewith |
JP2014142200A (en) * | 2013-01-22 | 2014-08-07 | Jfe Steel Corp | Device and method for diagnosing deterioration in low-voltage ac motor |
WO2015002196A1 (en) * | 2013-07-02 | 2015-01-08 | ナブテスコ 株式会社 | State determination method and state determination device |
KR102039677B1 (en) * | 2019-09-16 | 2019-11-01 | (주)네프 | Energy storage system capable of judging battery deterioration step by step |
KR102082776B1 (en) * | 2019-11-21 | 2020-02-28 | 주식회사 대경산전 | Apparatus for monitoring deterioration of Energy Storage Device |
KR102122920B1 (en) * | 2019-11-21 | 2020-06-16 | 주식회사 대경산전 | Degradation monitoring apparatus for energy storage system with external noise blocking |
WO2021049512A1 (en) * | 2019-09-12 | 2021-03-18 | ヤマシンフィルタ株式会社 | Measurement apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106885698B (en) * | 2017-02-22 | 2019-02-05 | 广西科技大学 | The detection method of engine lubrication system failure |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177434A (en) * | 1986-01-31 | 1987-08-04 | Honda Motor Co Ltd | Detection of solution |
JPS62180753U (en) * | 1986-05-08 | 1987-11-17 | ||
JPH0231316U (en) * | 1988-08-19 | 1990-02-27 | ||
JPH0278920A (en) * | 1988-09-14 | 1990-03-19 | Toshiba Corp | Diagnostic method for deterioration of coil |
JPH02236440A (en) * | 1989-03-10 | 1990-09-19 | Komatsu Ltd | Method and device for detecting deterioration of lubricating oil |
JPH0634541A (en) * | 1992-07-14 | 1994-02-08 | Nippon Oil Co Ltd | Monitoring apparatus of degradation of lubricating oil |
JPH06341954A (en) * | 1993-02-17 | 1994-12-13 | Tomihiko Okayama | Battery electric capacity measuring method and its device |
JPH0712723A (en) * | 1992-09-30 | 1995-01-17 | Mitsubishi Heavy Ind Ltd | Device for measuring degradation degree of lubrication oil |
JPH0772072A (en) * | 1993-07-05 | 1995-03-17 | Nippondenso Co Ltd | Apparatus for detecting concentration of particle in liquid |
JPH07311147A (en) * | 1994-05-19 | 1995-11-28 | Hitachi Building Syst Eng & Service Co Ltd | Method for discriminating deterioration of hydraulic fluid |
JPH0815131A (en) * | 1994-06-29 | 1996-01-19 | Hitachi Ltd | Deterioration diagnostic system |
JPH0862207A (en) * | 1994-08-22 | 1996-03-08 | Japan Energy Corp | Degradation detection method for lubricating oil |
JPH09107601A (en) * | 1995-10-06 | 1997-04-22 | Aqueous Res:Kk | Hybrid vehicle |
-
1998
- 1998-02-20 JP JP03833098A patent/JP3484966B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177434A (en) * | 1986-01-31 | 1987-08-04 | Honda Motor Co Ltd | Detection of solution |
JPS62180753U (en) * | 1986-05-08 | 1987-11-17 | ||
JPH0231316U (en) * | 1988-08-19 | 1990-02-27 | ||
JPH0278920A (en) * | 1988-09-14 | 1990-03-19 | Toshiba Corp | Diagnostic method for deterioration of coil |
JPH02236440A (en) * | 1989-03-10 | 1990-09-19 | Komatsu Ltd | Method and device for detecting deterioration of lubricating oil |
JPH0634541A (en) * | 1992-07-14 | 1994-02-08 | Nippon Oil Co Ltd | Monitoring apparatus of degradation of lubricating oil |
JPH0712723A (en) * | 1992-09-30 | 1995-01-17 | Mitsubishi Heavy Ind Ltd | Device for measuring degradation degree of lubrication oil |
JPH06341954A (en) * | 1993-02-17 | 1994-12-13 | Tomihiko Okayama | Battery electric capacity measuring method and its device |
JPH0772072A (en) * | 1993-07-05 | 1995-03-17 | Nippondenso Co Ltd | Apparatus for detecting concentration of particle in liquid |
JPH07311147A (en) * | 1994-05-19 | 1995-11-28 | Hitachi Building Syst Eng & Service Co Ltd | Method for discriminating deterioration of hydraulic fluid |
JPH0815131A (en) * | 1994-06-29 | 1996-01-19 | Hitachi Ltd | Deterioration diagnostic system |
JPH0862207A (en) * | 1994-08-22 | 1996-03-08 | Japan Energy Corp | Degradation detection method for lubricating oil |
JPH09107601A (en) * | 1995-10-06 | 1997-04-22 | Aqueous Res:Kk | Hybrid vehicle |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6993202B2 (en) | 2001-02-28 | 2006-01-31 | Canon Kabushiki Kaisha | Decoding apparatus, method, and storage medium for inputting and decoding variable-length coded data |
US6852992B2 (en) * | 2001-06-29 | 2005-02-08 | Hitachi, Ltd. | Method and apparatus of diagnosing deterioration of an article |
KR101351135B1 (en) * | 2006-08-21 | 2014-01-14 | 에스 뻬 트루와 아쉬 | Method for ensuring the safety of the components of the drive train of a vehicle following the deterioration of the fuel |
JP2010501843A (en) * | 2006-08-21 | 2010-01-21 | エスペートロワアッシュ | A method for ensuring the safety of components of a vehicle drive train following the deterioration of fuel |
TWI563163B (en) * | 2011-12-27 | 2016-12-21 | Nabtesco Corp | |
JP2013134245A (en) * | 2011-12-27 | 2013-07-08 | Nabtesco Corp | Machine with lubricant deterioration sensor and industrial robot |
WO2013099779A1 (en) * | 2011-12-27 | 2013-07-04 | ナブテスコ株式会社 | Machine provided with lubricating oil deterioration sensor and industrial robot |
CN104024829A (en) * | 2011-12-27 | 2014-09-03 | 纳博特斯克有限公司 | Machine provided with lubricating oil deterioration sensor and industrial robot |
TWI586951B (en) * | 2012-01-25 | 2017-06-11 | Nabtesco Corp | A machine for detecting the deterioration of the lubricating oil, a reducer for industrial robots, and an industrial robot |
CN104081186A (en) * | 2012-01-25 | 2014-10-01 | 纳博特斯克有限公司 | Machine configured to detect degradation of lubricating oil, speed reducer for industrial robot, and industrial robot |
WO2013111787A1 (en) * | 2012-01-25 | 2013-08-01 | ナブテスコ株式会社 | Machine configured to detect degradation of lubricating oil, speed reducer for industrial robot, and industrial robot |
JP2013152166A (en) * | 2012-01-25 | 2013-08-08 | Nabtesco Corp | Machine provided with lubrication oil degradation sensor, speed reducer for industrial robot and industrial robot |
WO2013122129A1 (en) * | 2012-02-17 | 2013-08-22 | ナブテスコ株式会社 | Lubricating oil deterioration sensor and machine provided with same |
JP2013170822A (en) * | 2012-02-17 | 2013-09-02 | Nabtesco Corp | Lubricant deterioration sensor and machine with the same |
WO2013162031A1 (en) * | 2012-04-26 | 2013-10-31 | ナブテスコ株式会社 | Lubricating oil degradation sensor and machine provided therewith |
JP2014142200A (en) * | 2013-01-22 | 2014-08-07 | Jfe Steel Corp | Device and method for diagnosing deterioration in low-voltage ac motor |
WO2015002196A1 (en) * | 2013-07-02 | 2015-01-08 | ナブテスコ 株式会社 | State determination method and state determination device |
JPWO2015002196A1 (en) * | 2013-07-02 | 2017-02-23 | ナブテスコ株式会社 | State determination method and state determination device |
US10281449B2 (en) | 2013-07-02 | 2019-05-07 | Nabtesco Corporation | State determination method and state determination device |
WO2021049512A1 (en) * | 2019-09-12 | 2021-03-18 | ヤマシンフィルタ株式会社 | Measurement apparatus |
KR102039677B1 (en) * | 2019-09-16 | 2019-11-01 | (주)네프 | Energy storage system capable of judging battery deterioration step by step |
KR102082776B1 (en) * | 2019-11-21 | 2020-02-28 | 주식회사 대경산전 | Apparatus for monitoring deterioration of Energy Storage Device |
KR102122920B1 (en) * | 2019-11-21 | 2020-06-16 | 주식회사 대경산전 | Degradation monitoring apparatus for energy storage system with external noise blocking |
Also Published As
Publication number | Publication date |
---|---|
JP3484966B2 (en) | 2004-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3484966B2 (en) | Motor drive device equipped with deterioration diagnosis device | |
KR102271939B1 (en) | Battery management based on internal optical sensing | |
US5949219A (en) | Optical state-of-charge monitor for batteries | |
US8434940B2 (en) | Electrical unit working in accordance with galvanic principles, for example a lithium-ion accumulator, having a temperature sensor | |
WO2022037589A1 (en) | Methods and system for in operando battery state monitoring | |
US20170131357A1 (en) | Method and apparatus for monitoring and determining energy storage device characteristics using fiber optics | |
KR100517104B1 (en) | Non-destructive diagnostic method and non-destructive diagnostic apparatus | |
US5774228A (en) | Deterioration diagnosis method and device of electrical machine and apparatus | |
US20020069021A1 (en) | Automobile oil deterioration diagnosing apparatus | |
JP2000130240A (en) | Automobile provided with oil deterioration diagnostic device | |
US10711668B2 (en) | Lubrication system monitoring assembly and method | |
JP2013015409A (en) | Gas sensor | |
CN112179519A (en) | Electric vehicle battery temperature monitoring and alarming system and using method thereof | |
JP3860846B2 (en) | Material degradation degree measuring system and measuring device | |
JP2001307924A (en) | Degradation diagnostic device for oil-immersed transformer | |
KR100307120B1 (en) | Method of diagnosing deterioration of oil and diagnostic apparatus for carrying out the same | |
WO2023169875A1 (en) | Optical liquid detection system | |
JP2001027635A (en) | Apparatus for diagnosing degree of deterioration of oil | |
JP2000131405A (en) | Method and apparatus for measuring remaining capacity of lithium cell | |
JPH10300670A (en) | Method and system for diagnosing deterioration of oil-filled electric apparatus | |
JPH07140074A (en) | Deterioration monitoring system for machine | |
JP3205212B2 (en) | Degradation diagnostic device | |
JP2004077469A (en) | Degradation level measurement system and measurement device for material | |
JPH09222393A (en) | Device for diagnosing degree of deterioration | |
US20240077415A1 (en) | Transformer lifetime evaluation apparatus and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071024 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081024 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |