JP2004077469A - Degradation level measurement system and measurement device for material - Google Patents
Degradation level measurement system and measurement device for material Download PDFInfo
- Publication number
- JP2004077469A JP2004077469A JP2003204213A JP2003204213A JP2004077469A JP 2004077469 A JP2004077469 A JP 2004077469A JP 2003204213 A JP2003204213 A JP 2003204213A JP 2003204213 A JP2003204213 A JP 2003204213A JP 2004077469 A JP2004077469 A JP 2004077469A
- Authority
- JP
- Japan
- Prior art keywords
- light
- deterioration
- measured
- degree
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、稼働中の機器の運転を停止することなく、機器に使用されている絶縁材料や構造材料の劣化度を非破壊で測定できる材料の劣化度測定システムおよび測定装置に関している。
【0002】
【従来の技術】
回転電機等の絶縁材料や構造材料の劣化度を評価する非破壊測定システムとしては、下記特許文献1に開示されているように、白色の標準光源から光ファイバで導いた照射光を絶縁材料と同じ材料で構成されているセンサ部で反射させ、この反射光を受光用光ファイバを通して検出し、L*a*b*表色系に基づいた色度あるいは色度差によって表色演算を行う診断装置が提案されている。ここでL*は明度指数で明るさを表し、a*及びb*はクロマティック指数と呼び、色度(色相と彩度)を表す。
【0003】
また、下記特許文献2に記載されているように、白色の標準光源から光ファイバで導いた照射光を絶縁材料と同じ材料で構成されているセンサ部を透過させ、該透過光を受光用光ファイバを通して検出する透過光方式によるL*a*b*表色系に基づいた色度あるいは色度差による表色演算診断装置も提案されている。
【0004】
【特許文献1】
特開昭64−84162号公報
【特許文献2】
特開平3−226651号公報
【0005】
【発明が解決しようとする課題】
前記従来技術では、回転電機等の機器製造時に機器の絶縁層中に、予め照射用光ファイバ,受光用光ファイバ及びセンサ部をそれぞれ埋設しておく必要があり、これらを埋設していない既存の機器には適用できないという本質的な問題があった。
【0006】
さらにL*a*b*表色系に基づいた色度あるいは色度差による反射光に基づく表色演算方法では、表面が塵芥等で汚損した被測定物、あるいは凹凸を有する被測定物の場合には絶対反射光量の変動の影響が大きいため、正確な値を求められない等の問題点を有していた。
【0007】
本発明の目的は、上記の課題を解決し、稼働中の機器の運転を特に停止することなく、機器に使用されている絶縁材料や構造材料の劣化度を非破壊で測定できる材料の劣化度測定システムおよび測定装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、樹脂やオイル等の劣化度と光学物性との関係を検討した結果、熱劣化に伴う樹脂やオイル等の表面反射光強度の変化から劣化度を判定でき、かつ、表面が塵芥等で汚損した被測定物、あるいは凹凸を有する被測定物、あるいは半透明性を有する被測定物の場合に対しても適用し得る劣化度測定システムを見出し本発明に到達した。即ち、本発明の要旨は次のとおりである。
【0009】
(1)波長が相異なる少なくとも2種の単色光光源からの照射光を照射用光ファイバで導き被測定物表面に照射し、該被測定物表面からの反射光を受光用光ファイバを用いて光量測定部に導き、劣化度演算部において該光量測定部からの出力より各波長における反射吸光度(Aλ)を(1)式で算出後、各波長間の反射吸光度差(ΔAλ)あるいは反射吸光度比(Aλ′)を(2)式あるいは(3)式で演算し、さらに予め被測定物の劣化度と各波長間の反射吸光度差あるいは反射吸光度比との関係を記憶させた関数発生部からの出力とを比較演算することによって劣化度を判定することを特徴とする材料の劣化度測定システムにある。
【0010】
【数10】
Aλ=−log(Rλ/100) …(1)
ΔAλ=Aλ 1−Aλ 2(ただし、λ1<λ2) …(2)
Aλ′=Aλ 1/Aλ 2(ただし、λ1<λ2) …(3)
(波長λ(nm)における被測定物の反射率をRλ(%)とする)
(2)波長が相異なる少なくとも2種の単色光光源と,該光源光を照射用光ファイバに導く光結合器と,該光源光を被測定物表面に照射する照射用光ファイバと,該被測定物表面からの反射光を受光して光量測定部に導く受光用光ファイバと,前記各波長における反射光強度を検出して測定値を電気信号として外部出力できる光量測定部と,該光量測定部からの出力値より各波長における反射吸光度
(Aλ)を前記(1)式で算出後、各波長間の反射吸光度差(ΔAλ)あるいは反射吸光度比(Aλ′)を前記(2)式あるいは(3)式で演算し、さらに予め被測定物の劣化度と各波長間の反射吸光度差あるいは反射吸光度比との関係を記憶させた関数発生部からの出力とを比較演算することによって劣化度を判定する劣化度演算部を備えたことを特徴とする材料の劣化度測定装置にある。
【0011】
なお、光源として使用する単色光は、波長660〜850nmにピーク波長を有するLEDが入手容易で、寿命も長く性能も安定しており好適である。特に、660,780,800,820,830,850nm等のLED光源が好適である。上記領域以外の波長の光源では、被測定物の劣化の程度が比較的小さいうちに検出器(光量測定部)がオーバーレンジとなり、測光不能となる場合がある。被測定物がもともと透明性の高いアクリル樹脂,ポリカーボネート樹脂等である場合には、660,780,800nm等の800nm以下の波長の光を用いることがより好ましい。一方、被測定物がもともと着色しているアルキッド樹脂,不飽和ポリエステル樹脂、あるいはすぐに黒く変色してしまうエポキシ樹脂、あるいは顔料等を含む不透明な樹脂等については、780,800,820,830,850nm等の近赤外領域の波長を用いることがより好ましい。
【0012】
本発明においては、照射用光ファイバおよび受光用光ファイバを機器中に予め埋設しておく必要がないので、これら光ファイバもそれ自身の耐熱性を特に要求されないために、光ファイバとして口径の大きなプラスチック光ファイバの使用が可能であり、受光能を向上する上で有利である。
【0013】
(3)白色連続光を照射するハロゲンランプからの照射光を照射用光ファイバで導き被測定物表面に照射し、該被測定物表面からの反射光を受光用光ファイバを用いて分光器を有する光量測定部に導き、劣化度演算部において該光量測定部からの出力より各波長における反射吸光度(Aλ)を(1)式で算出後、任意の2波長間の反射吸光度差(ΔAλ)あるいは反射吸光度比(Aλ′)を(2)式あるいは(3)式で演算し、さらに予め被測定物の劣化度と各波長間の反射吸光度差あるいは反射吸光度比との関係を記憶させた関数発生部からの出力とを比較演算することによって劣化度を判定することを特徴とする材料の劣化度測定システムにある。
【0014】
【数11】
Aλ=−log(Rλ/100) …(1)
ΔAλ=Aλ 1−Aλ 2(ただし、λ1<λ2) …(2)
Aλ′=Aλ 1/Aλ 2(ただし、λ1<λ2) …(3)
(波長λ(nm)における被測定物の反射率をRλ(%)とする)
(4)白色連続光を照射するハロゲンランプの光源と,該光源光を被測定物表面に照射する照射用光ファイバと,被測定物表面からの反射光を受光し分光器を有する光量測定部に導く受光用光ファイバと,該分光器で分光された各波長における反射光強度を検出して測定値を電気信号として外部出力できる光量測定部と,該光量測定部からの出力値より各波長における反射吸光度(Aλ)を前記(1)式で算出後、任意の2波長間の反射吸光度差(ΔAλ)あるいは反射吸光度比
(Aλ′)を前記(2)式あるいは(3)式で演算し、さらに予め被測定物の劣化度と各波長間の反射吸光度差あるいは反射吸光度比との関係を記憶させた関数発生部からの出力とを比較演算することによって劣化度を判定する劣化度演算部を備えたことを特徴とする材料の劣化度測定装置にある。
【0015】
(5)被測定物の厚さ(t,mm)の入力を受け付ける入力手段を有し、波長が相異なる少なくとも2種の単色光光源からの照射光を照射用光ファイバで導き被測定物表面に照射し、該被測定物表面からの反射光を受光用光ファイバを用いて光量測定部に導き、劣化度演算部において該光量測定部からの出力より各波長における反射損失(Lλ,dB/mm)を(4)式で算出後、各波長間の反射損失差
(ΔLλ,dB/mm)を(5)式で演算し、さらに予め被測定物の劣化度と各波長間の反射損失差との関係を記憶させた関数発生部からの出力とを比較演算することによって劣化度を判定することを特徴とする材料の劣化度測定システムにある。
【0016】
【数12】
Lλ=−(10/t)log(Rλ/100) …(4)
ΔLλ=Lλ 1−Lλ 2(ただし、λ1<λ2) …(5)
(波長λ(nm)における被測定物の反射率をRλ(%)とする)
なお、前記厚さの入力を受け付ける入力手段は、さらに、被測定物の光線透過率、または厚さ補正の有無の入力を受け付けるものであり、
該入力手段の受け付けた光線透過率が50%以上である場合、あるいは厚み補正“有”の指示を受けている場合には、(4)式における厚さtとして該入力手段の受け付けた厚さの値を採用し、
該入力手段の受け付けた光線透過率が50%未満である場合、あるいは厚み補正“無”の指示を受けている場合には、(4)式における厚さtとして10を採用する。即ち、実質的に(1)式と等価となる。
【0017】
【作用】
一般に、単一材料からなる有機材料の熱劣化に伴う反射吸光度スペクトルの変化は、図3で示されるような変化で代表される。該図のように劣化に伴って可視領域の短波長側で反射吸光度は著しい増加を示すので、検出器(光量測定部)の測定レンジ上の制約から660nm未満の波長領域では機器の寿命点まで、使用されている材料の反射吸光度を測定し続けることが実質的に困難となってしまう。この短波長側での反射吸光度の増加は、主に材料の熱酸化劣化反応による電子遷移吸収損失の増大に起因するものである。
【0018】
また、劣化度の増大に伴って反射吸光度Aλは短波長側ほど増加するようになるので、任意の2波長間の反射吸光度差ΔAλ(=Aλ 1−Aλ 2)あるいは反射吸光度比Aλ′(=Aλ 1/Aλ 2)も同様に増加する。ここで、λ1<λ2である。例えば図3において、波長λ1(nm)と波長λ2(nm)間の反射吸光度差ΔAλを、劣化度の大きい材料から順にα1,α2,α3とすれば、α1>α2>α3の関係が成立する。反射吸光度比Aλ′に対しても同様のことが言える。
【0019】
図5には、表面汚損の無い絶縁材料表面上で測定した場合の反射吸光度スペクトルと、同じ劣化度で表面汚損の有る絶縁材料表面上で測定した場合の反射吸光度スペクトルを示す。波長λ1及び波長λ2間における反射吸光度差ΔAλを表面汚損が無いときΔα,表面汚損が有るときΔα′とすれば、絶縁材料が同じ劣化度であれば汚損の有無に関係なくΔα≒Δα′となる。表面の汚損は反射光の絶対強度を変化(増大させる場合も低下させる場合もある)させるが、一般に波長依存性が小さく、特に本発明の測定波長領域では波長に依らず一定であると考えてよい。同様のことは、凹凸を有する表面における測定に対しても言える。このように、本発明で定義したように2波長間の反射吸光度差ΔAλを用いれば、被測定物の表面の汚損並びに形状の影響をほとんど受けないで劣化度を測定することができる。上記の効果は、反射吸光度比Aλ′に対しても同様のことが言える。
【0020】
光線透過率50%以上を有する樹脂等の場合、表面反射光のみでなく樹脂中を透過後、裏表面で反射した光の影響を受ける。そこで樹脂等の厚さ(光路長)で補正する必要がある。光線透過率が50%未満になると裏表面で反射する光の割合は減少し、裏表面からの反射光の影響はほとんど無視できるようになる。そこで光線透過率が50%未満の場合には、厚さ補正をすることは不要となる。この場合には、(4)式においてt=10とおいて適用すればよい。このように、光線透過率50%以上を有する樹脂等の反射光強度を厚さ(光路長)で補正することにより、より正確な反射光による劣化診断を行うことができる。
【0021】
また、特開平3−226651 号公報に記載されているように、劣化度は換算時間θで表すことが一般的である。換算時間θで表すことにより、様々な熱履歴を有する材料であっても、θが等しければ同じ劣化程度であることを意味する。換算時間θ(h)は(6)式で定義される。
【0022】
【数13】
【0023】
ここで、ΔEは熱劣化のみかけの活性化エネルギー(J/mol)、Rは気体定数(J/K/mol)、Tは熱劣化の絶対温度(K)、tは劣化時間(h)である。樹脂やオイル等のΔEは、数種の劣化温度に対する反射吸光度差ΔAλ 1 λ 2の変化をアレニウスプロットすることによって容易に算出できる。
【0024】
さらに、予め求めておいた該樹脂や該オイル等を用いた機器の寿命点における換算時間をθ0 とすれば、実測から求めた換算時間θとの差Δθ(=θ0−θ)が余寿命に相当する換算時間となり、劣化度判定の尺度となる。即ち、余寿命Δθ(h)は(7)式で表される。
【0025】
【数14】
【0026】
(7)式より、時間t以降の機器の使用温度条件が定まれば、余寿命の時間 Δt(=t0−t)を求めることができる。
【0027】
【発明の実施の形態】
以下、実施例を用いて本発明を詳細に説明する。
【0028】
(実施例1)
図1は劣化度測定システムの構成を示すブロック図である。図1において、劣化度演算部1は測定の手順に沿って自動的に切替制御部2に切替部3,4,5の切替命令信号を送信している。まず、各波長に対するレファレンス光量を測定する。レファレンス光ファイバ7は測定用の光ファイバ(照射用光ファイバ9+受光用光ファイバ13)と同一長さを有する。光源6から発生したピーク波長λ1の単色光は、切替部3から切替部4を通り、さらにレファレンス光ファイバ7から切替部5を通り光量測定部8に伝送される。光量測定部8では光源6からのピーク波長λ1の単色光のレファレンス光量I1 を計測し、劣化度演算部1に測定値を出力する。劣化度演算部1では光源6のレファレンス光量I1 を記憶する。同様にして、光源14から発生したλ1とは相異なるピーク波長λ2の単色光を用いて同じ操作が行われ、劣化度演算部1において光源14のレファレンス光量I2 が記憶される。次に、絶縁材料表面の反射光量を測定する。光源6からのピーク波長λ1の単色光は、切替部3から切替部4を通り、さらに照射用光ファイバ9を伝送して反射光測定部10内で絶縁材料11の表面に照射される。反射光測定部10は、図2に示したように外部の迷光を遮断する構造を有している。絶縁材料11の表面からの反射光12を受光用光ファイバ13が受け、その伝送光は切替部5を通り光量測定部8に送られ、反射光量I1′ が測定され劣化度演算部1に結果I1′ が出力される。劣化度演算部1では、λ1における反射率 Rλ 1(=100×I1′/I1)が算出,記憶される。同様にして、光源14から発生したλ1とは相異なるピーク波長λ2の単色光を用いて同じ操作が行われ、劣化度演算部1においてλ2における反射率Rλ 2(=100×I2′/I2)が算出,記憶される。このようにして、波長λ1と波長λ2における反射率が得られるので、劣化度演算部1において2波長間の反射吸光度差ΔAλ(=Aλ 1−Aλ 2)が求められる。関数発生部15には、図4に示したような絶縁材料の劣化度に対応した反射吸光度差がマスターカーブとして予め記憶されており、劣化度演算部1に出力する。この記憶された関数値と実測の反射吸光度差ΔAλから劣化度演算部1で比較演算して劣化度を判定し、外部(図示省略)のプリンタ等に測定結果として出力する。なお、劣化度判定のための演算のフローチャートを図10に示した。
【0029】
(実施例2)
図6には3波長(λ1〜λ3)を同時に用いた劣化度測定システムの構成図を示す。3波長を1本の光ファイバ中で伝送しても、光には干渉性がないのでシステムは良好に動作する。光量測定部8にはそれぞれの波長に対応したフィルタが組み込まれており、フィルタを時分割で動作させることにより各波長での光量を瞬時に測定できる。それぞれの波長の光は光結合器16を介して照射用光ファイバ9中に同時に送られる。実施例1と同様に各波長に対するレファレンス光量及び反射光量を測定する。絶縁材料11の表面からの反射光12を受光用光ファイバ13が受け、その伝送光は光量測定部8に送られ、反射光量が測定され劣化度演算部1に結果が出力される。劣化度演算部1では、波長λ1〜波長λ3における反射率Rλ 1〜Rλ 3が算出,記憶される。このようにして、波長λ1〜波長λ3における反射率が得られるので、劣化度演算部1において3波長間のデータのうち任意の2波長間の反射吸光度差ΔAλ(=Aλ−Aλ′)が求められる。関数発生部15には、図4に示したような絶縁材料の劣化度に対応した反射吸光度差がマスターカーブとして予め記憶されており、劣化度演算部1に出力する。この記憶された関数値と実測の反射吸光度差ΔAλから劣化度演算部1で劣化度を比較演算して判定し、外部に測定結果として出力する。
【0030】
(実施例3)
図7には白色光源(ハロゲンランプ)を光源に用いた劣化度測定システムの構成図を示す。白色光源(ハロゲンランプ)を光源に用いても、システムは良好に動作する。光量測定部8には干渉フィルタからなる分光器が組み込まれており、各波長(500〜900nm)での光量を瞬時に測定できる。実施例1と同様に各波長(500〜900nm)に対するレファレンス光量及び反射光量を測定する。絶縁材料11の表面からの反射光12を受光用光ファイバ13が受け、その伝送光は光量測定部8に送られ、反射光量が測定され劣化度演算部1に結果が出力される。劣化度演算部1では、波長500〜900nmにおける反射率R500〜R900 が連続的に算出,記憶される。このようにして、波長500〜900 nmにおける反射率が得られるので、劣化度演算部1において任意の2波長間の反射吸光度差ΔAλ(=Aλ−Aλ′)が求められる。関数発生部15には、図4に示したような絶縁材料の劣化度に対応した反射吸光度差がマスターカーブとして予め記憶されており、劣化度演算部1に出力する。この記憶された関数値と実測の反射吸光度差ΔAλから劣化度演算部1で比較演算して劣化度を判定し、外部に測定結果として出力する。
【0031】
なお、前記各実施例においては、固体の絶縁材料の場合について説明したが、オイル等の液体の材料についても同様にして劣化度を測定することができる。
【0032】
(実施例4)
図8は劣化度測定装置の機能構成を示すブロック図である。図8において、劣化度演算部1はハードディスクユニット15が内蔵されたノートブック型パーソナルコンピュータを用いている。まず、各波長に対するレファレンス光量を測定する。レファレンス光量は絶縁材料11の位置に酸化アルミナ板を設置して測定した。酸化アルミナ板を用いないで白色普通紙やクロームメッキされた金属板等を用いても一向に差し支えない。光源6から発生したピーク波長660nmの単色光は、2ヶのプラスチック光結合器16を通り、照射用光ファイバ9に導かれ、酸化アルミナ板上で反射される。この反射光は受光用光ファイバ13を通り光量測定部8に伝送される。光量測定部8はフォトダイオードを内蔵した光パワーメータを用いている。光量測定部8では光源6からのピーク波長660nmの単色光のレファレンス光量I1 を計測し、劣化度演算部1に測定値をピンジャックから電圧値としてアナログ出力する。劣化度演算部1のパーソナルコンピュータはアナログ出力データを直接入力することはできないので、12ビットA/D (アナログ/デジタル)変換器19を拡張コネクタに接続してある。12ビットA/D変換器19は5ボルトの電圧値を4096(=212)分割して取り込む能力を有する。劣化度演算部1では、光源6のレファレンス光量I1 をメモリ上に記憶する。同様にして、光源14から発生したピーク波長780nmの単色光を用いて同じ操作が行われ、劣化度演算部1において光源14のレファレンス光量I2 が記憶される。同様にして、光源18から発生したピーク波長850nmの単色光を用いて同じ操作が行われ、劣化度演算部1において光源18のレファレンス光量I3 が記憶される。次に、絶縁材料表面の反射光量を測定する。光源6からのピーク波長660nmの単色光は、2ヶのプラスチック光結合器16を通り、照射用光ファイバ9に導かれ、反射光測定部10内で絶縁材料11の表面に照射される。反射光測定部10は、図2に示したように外部の迷光を遮断する構造を有している。絶縁材料11の表面からの反射光を受光用光ファイバ13が受け、その伝送光は光量測定部8に送られ、反射光量I1′ が測定され劣化度演算部1に結果I1′ が出力される。劣化度演算部1では、660nmにおける反射率R660(=100×I1′/I1)が算出、メモリ上に記憶される。同様にして、光源14から発生したピーク波長780nmの単色光を用いて同じ操作が行われ、劣化度演算部1において780nmにおける反射率R780(=100×I2′/I2 )が算出、メモリ上に記憶される。同様にして、光源18から発生したピーク波長850nmの単色光を用いて同じ操作が行われ、劣化度演算部1において850nmにおける反射率R850(=100×I3′/I3)が算出、メモリ上に記憶される。このようにして、660,780,850nmにおける反射率が得られるので、劣化度演算部1において任意の2波長間の反射吸光度差ΔAλ
(=Aλ 1−Aλ 2)が求められる。ハードディスクユニットからなる関数発生部15には、図4に示したような絶縁材料の劣化度に対応した反射吸光度差がマスターカーブとして予め記憶されており、劣化度演算部1に出力する。この記憶された関数値と実測の反射吸光度差ΔAλの値から劣化度演算部1で比較演算して劣化度を判定し、外部(図示省略)のプリンタ等に測定結果として出力する。
【0033】
なお、本実施例では3波長を用いた材料の劣化度測定装置を説明したが、2波長のみでも測定装置は良好に動作する。
【0034】
(実施例5)
実施例1と同様の劣化度測定システムを用いて、絶縁材料11の波長λ1と波長λ2における反射率を得た後、劣化度演算部1において2波長間の反射吸光度比Aλ′(=Aλ 1/Aλ 2)を求める。関数発生部15には、図9に示したような絶縁材料の劣化度に対応した反射吸光度比がマスターカーブとして予め記憶されており、劣化度演算部1に出力する。この記憶された関数値と実測の反射吸光度比Aλ′から劣化度演算部1で比較演算して劣化度を判定し、外部(図示省略)のプリンタ等に測定結果として出力する。
【0035】
(実施例6)
実施例2と同様の劣化度測定システムを用いて、絶縁材料11の波長λ1〜波長λ3における反射率を得た後、劣化度演算部1において3波長間のデータのうち任意の2波長間の反射吸光度比Aλ′(=Aλ 1/Aλ 2)を求める。関数発生部15には、図9に示したような絶縁材料の劣化度に対応した反射吸光度比がマスターカーブとして予め記憶されており、劣化度演算部1に出力する。この記憶された関数値と実測の反射吸光度比Aλ′から劣化度演算部1で劣化度を比較演算して判定し、外部に測定結果として出力する。
【0036】
(実施例7)
実施例3と同様の劣化度測定システムを用いて、絶縁材料11の波長500〜900nmにおける反射率を得た後、劣化度演算部1において任意の2波長間の反射吸光度比Aλ′(=Aλ 1/Aλ 2)を求める。関数発生部15には、図9に示したような絶縁材料の劣化度に対応した反射吸光度比がマスターカーブとして予め記憶されており、劣化度演算部1に出力する。この記憶された関数値と実測の反射吸光度比Aλ′から劣化度演算部1で比較演算して劣化度を判定し、外部に測定結果として出力する。
【0037】
なお、前記各実施例においては、固体の絶縁材料の場合について説明したが、オイル等の液体の材料についても同様にして劣化度を測定することができる。
【0038】
(実施例8)
実施例4と同様の劣化度測定装置を用いて、絶縁材料11の660,780,850nmにおける反射率を得た後、劣化度演算部1において任意の2波長間の反射吸光度比Aλ′(=Aλ 1/Aλ 2)を求める。ハードディスクユニットからなる関数発生部15には、図9に示したような絶縁材料の劣化度に対応した反射吸光度比がマスターカーブとして予め記憶されており、劣化度演算部1に出力する。この記憶された関数値と実測の反射吸光度比Aλ′の値から劣化度演算部1で比較演算して劣化度を判定し、外部(図示省略)のプリンタ等に測定結果として出力する。
【0039】
なお、本実施例では3波長を用いた材料の劣化度測定装置を説明したが、2波長のみでも測定装置は良好に動作する。
【0040】
(実施例9)
図11は厚さの入力手段20を有する劣化度測定システムの構成を示すブロック図である。図11において、劣化度演算部1は測定の手順に沿って自動的に切替制御部2に切替部3,4,5の切替命令信号を送信している。まず、各波長に対するレファレンス光量を測定する。レファレンス光ファイバ7は測定用の光ファイバ(照射用光ファイバ9+受光用光ファイバ13)と同一長さを有する。光源6から発生したピーク波長λ1の単色光は、切替部3から切替部4を通り、さらにレファレンス光ファイバ7から切替部5を通り光量測定部8に伝送される。光量測定部8では光源6からのピーク波長λ1の単色光のレファレンス光量I1 を計測し、劣化度演算部1に測定値を出力する。劣化度演算部1では光源6のレファレンス光量I1 を記憶する。同様にして、光源14から発生したλ1とは相異なるピーク波長λ2の単色光を用いて同じ操作が行われ、劣化度演算部1において光源14のレファレンス光量I2 が記憶される。次に、絶縁材料表面の反射光量を測定する。光源6からのピーク波長λ1の単色光は、切替部3から切替部4を通り、さらに照射用光ファイバ9を伝送して反射光測定部10内で絶縁材料11の表面に照射される。反射光測定部10は、図2に示したように外部の迷光を遮断する構造を有している。絶縁材料11の表面からの反射光12を受光用光ファイバ13が受け、その伝送光は切替部5を通り光量測定部8に送られ、反射光量I1′が測定され劣化度演算部1に結果I1′が出力される。劣化度演算部1では、λ1における反射率Rλ 1(=100×I1′/I1)が算出,記憶される。同様にして、光源14から発生したλ1とは相異なるピーク波長λ2の単色光を用いて同じ操作が行われ、劣化度演算部1においてλ2における反射率Rλ 2(=100×I2′/I2)が算出,記憶される。このようにして、波長λ1と波長 λ2における反射率が得られるので、劣化度演算部1において2波長間の反射損失差ΔLλ(=Lλ 1−Lλ 2)が求められる。関数発生部15には、図12に示したような絶縁材料の劣化度に対応した反射損失差がマスターカーブとして予め記憶されており、劣化度演算部1に出力する。この記憶された関数値と実測の反射損失差ΔLλから劣化度演算部1で比較演算して劣化度を判定し、外部(図示省略)のプリンタ等に測定結果として出力する。図13には透過率50%の絶縁皮膜について、厚さ補正の有無によるデータのバラツキの様子を示すグラフを示した。図13において、aは厚さ補正なしのプロット、bは厚さ補正ありのプロットを示す。厚さ補正によってデータのバラツキが大幅に低減されたことがわかる。
【0041】
【発明の効果】
本発明によれば、実働中の機器の運転を停止することなく、機器に使用されている絶縁材料や構造材料の劣化度を非破壊で測定できる。さらに、表面が塵芥等で汚損した被測定物、あるいは凹凸を有する被測定物の場合にも適用できる劣化度測定システムを得ることが可能となる。
【図面の簡単な説明】
【図1】実施例1の劣化度測定システムの構成を示すブロック図。
【図2】実施例1の光ファイバ測定端部を示す模式斜視図。
【図3】絶縁材料の反射吸光度スペクトルの例。
【図4】劣化度判定の基準となる反射吸光度差マスターカーブの一例。
【図5】表面汚損の有無と反射吸光度スペクトルの関係を示すグラフ。
【図6】実施例2の劣化度測定システムの構成を示すブロック図。
【図7】実施例3の劣化度測定システムの構成を示すブロック図。
【図8】実施例4の劣化度測定装置の構成を示すブロック図。
【図9】劣化度判定の基準となる反射吸光度比マスターカーブの一例。
【図10】劣化度判定のための演算のフローチャート図。
【図11】実施例9の劣化度測定システムの構成を示すブロック図。
【図12】劣化度判定の基準となる反射損失差マスターカーブの一例。
【図13】透過率50%の絶縁皮膜についての厚さ補正の有無を示すグラフ。
【符号の説明】
1…劣化度演算部、2…切替制御部、3,4,5…切替部、6…光源(波長 λ1)、7…レファレンス光ファイバ、8…光量測定部、9…照射用光ファイバ、10…反射光測定部、11…絶縁材料、12…反射光、13…受光用光ファイバ、14…光源(波長λ2)、15…関数発生部、16…光結合器、17…光源(ハロゲンランプ)、18…光源(850nm)、19…12ビットA/D変換器、20…厚さの入力手段。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a material deterioration degree measuring system and a measuring device capable of non-destructively measuring the deterioration degree of an insulating material or a structural material used in an apparatus without stopping the operation of the operating apparatus.
[0002]
[Prior art]
As a non-destructive measurement system for evaluating the degree of deterioration of an insulating material or a structural material of a rotating electric machine or the like, as disclosed in
[0003]
Further, as described in
[0004]
[Patent Document 1]
JP-A-64-84162
[Patent Document 2]
JP-A-3-226651
[0005]
[Problems to be solved by the invention]
In the above-described conventional technology, it is necessary to embed an irradiation optical fiber, a light receiving optical fiber, and a sensor unit in advance in an insulating layer of the device at the time of manufacturing the device such as a rotating electric machine. There was an essential problem that it could not be applied to equipment.
[0006]
Furthermore, in the colorimetric calculation method based on the chromaticity based on the L * a * b * color system or the reflected light based on the chromaticity difference, the measured object whose surface is contaminated by dust or the like, or the measured object having irregularities. Has a problem that an accurate value cannot be obtained because the influence of the fluctuation of the absolute reflected light amount is large.
[0007]
An object of the present invention is to solve the above-described problems and to measure non-destructively the degree of deterioration of insulating materials and structural materials used in equipment without particularly stopping the operation of the equipment during operation. A measurement system and a measurement device are provided.
[0008]
[Means for Solving the Problems]
The present inventors have studied the relationship between the degree of degradation of resin and oil and the optical properties, and as a result, can determine the degree of degradation from the change in surface reflected light intensity of resin and oil due to thermal degradation, and the surface is The present inventors have found a deterioration degree measurement system that can be applied to a measurement object contaminated with dust or the like, a measurement object having irregularities, or a measurement object having translucency, and have reached the present invention. That is, the gist of the present invention is as follows.
[0009]
(1) Irradiation light from at least two types of monochromatic light sources having different wavelengths is guided by an irradiation optical fiber and irradiates the surface of an object to be measured, and reflected light from the surface of the object is reflected by an optical fiber for light reception. It is led to a light quantity measuring section, and a reflection degree (A) at each wavelength is obtained from an output from the light quantity measuring section in a deterioration degree calculating section.λ) Is calculated by the equation (1), and the reflection absorbance difference (ΔA) between the wavelengths is calculated.λ) Or reflection absorbance ratio (Aλ′) Is calculated by the equation (2) or (3), and the output from the function generating unit in which the relationship between the degree of deterioration of the object to be measured and the reflection absorbance difference between each wavelength or the reflection absorbance ratio is stored in advance. Are compared to determine the degree of deterioration.
[0010]
(Equation 10)
Aλ= -Log (Rλ/ 100) ... (1)
ΔAλ= Aλ 1-Aλ 2(However, λ1 <λ2) ... (2)
Aλ'= Aλ 1/ Aλ 2(However, λ1 <λ2) ... (3)
(The reflectance of the DUT at wavelength λ (nm) is Rλ(%)
(2) At least two types of monochromatic light sources having different wavelengths, an optical coupler for guiding the light source light to an irradiation optical fiber, an irradiation optical fiber for irradiating the light source light to the surface of the object to be measured, and A light receiving optical fiber that receives reflected light from the surface of the object and guides the reflected light to the light amount measuring unit; a light amount measuring unit that detects reflected light intensity at each of the wavelengths and externally outputs a measured value as an electric signal; Absorbance at each wavelength from the output value from the section
(Aλ) Is calculated by the above equation (1), and the reflection absorbance difference (ΔA) between the wavelengths is calculated.λ) Or reflection absorbance ratio (Aλ′) Is calculated by the above equation (2) or (3), and further output from a function generator storing the relationship between the degree of deterioration of the object to be measured and the difference in reflection absorbance between each wavelength or the ratio of reflection absorbance. And a deterioration degree calculating unit for judging the degree of deterioration by comparing and calculating the degree of deterioration.
[0011]
As the monochromatic light used as the light source, an LED having a peak wavelength at a wavelength of 660 to 850 nm is easily available, and has a long life and stable performance. In particular, LED light sources of 660, 780, 800, 820, 830, and 850 nm are suitable. In the case of a light source having a wavelength outside the above range, the detector (light amount measuring unit) may be in an overrange while the degree of deterioration of the object to be measured is relatively small, and photometry may not be possible. When the object to be measured is originally a highly transparent acrylic resin, polycarbonate resin, or the like, it is more preferable to use light having a wavelength of 800 nm or less, such as 660, 780, or 800 nm. On the other hand, 780, 800, 820, 830, 780, 800, 820, 830, etc. are used for alkyd resins, unsaturated polyester resins, epoxy resins that quickly turn black, or opaque resins containing pigments, etc. It is more preferable to use a wavelength in the near infrared region such as 850 nm.
[0012]
In the present invention, the irradiation optical fiber and the light receiving optical fiber do not need to be embedded in the device in advance, so that these optical fibers are not particularly required to have their own heat resistance. A plastic optical fiber can be used, which is advantageous in improving the light receiving ability.
[0013]
(3) Irradiation light from a halogen lamp for irradiating continuous white light is guided through an irradiation optical fiber to irradiate the surface of an object to be measured, and reflected light from the surface of the object is reflected by a spectroscope using an optical fiber for light reception. To the light quantity measuring unit having the light, and the reflection absorbance (A) at each wavelength from the output from the light quantity measuring unit in the deterioration degree calculating unit.λ) Is calculated by equation (1), and then the reflection absorbance difference (ΔA) between any two wavelengths is calculated.λ) Or reflection absorbance ratio (Aλ′) Is calculated by the equation (2) or (3), and the output from the function generating unit in which the relationship between the degree of deterioration of the object to be measured and the reflection absorbance difference between each wavelength or the reflection absorbance ratio is stored in advance. Are compared to determine the degree of deterioration.
[0014]
[Equation 11]
Aλ= -Log (Rλ/ 100) ... (1)
ΔAλ= Aλ 1-Aλ 2(However, λ1 <λ2) ... (2)
Aλ'= Aλ 1/ Aλ 2(However, λ1 <λ2) ... (3)
(The reflectance of the DUT at wavelength λ (nm) is Rλ(%)
(4) A light source of a halogen lamp for irradiating continuous white light, an irradiating optical fiber for irradiating the light of the light source to the surface of the object to be measured, and a light amount measuring unit having a spectroscope for receiving light reflected from the surface of the object to be measured A light receiving optical fiber for guiding the light, a reflected light intensity at each wavelength separated by the spectroscope, a light quantity measuring unit capable of externally outputting a measured value as an electric signal, and each wavelength based on an output value from the light quantity measuring unit. Absorbance at (Aλ) Is calculated by the above equation (1), and the reflection absorbance difference (ΔA) between any two wavelengths is calculated.λ) Or reflection absorbance ratio
(Aλ′) Is calculated by the above equation (2) or (3), and further output from a function generator storing the relationship between the degree of deterioration of the object to be measured and the difference in reflection absorbance between each wavelength or the ratio of reflection absorbance. And a deterioration degree calculating unit for judging the degree of deterioration by comparing and calculating the degree of deterioration.
[0015]
(5) Input means for receiving an input of the thickness (t, mm) of the object to be measured is provided, and irradiation light from at least two types of monochromatic light sources having different wavelengths is guided by an irradiation optical fiber to the surface of the object to be measured. And the reflected light from the surface of the object to be measured is guided to a light quantity measuring section using a light receiving optical fiber, and a reflection loss (L) at each wavelength is obtained from an output from the light quantity measuring section in a deterioration degree calculating section.λ, DB / mm) according to equation (4), and then the return loss difference between the wavelengths.
(ΔLλ, DB / mm) by the formula (5), and further, by comparing the output from the function generating unit in which the relationship between the degree of deterioration of the object to be measured and the reflection loss difference between the wavelengths is stored in advance. A system for measuring a degree of deterioration of a material, wherein the degree of deterioration is determined.
[0016]
(Equation 12)
Lλ=-(10 / t) log (Rλ/ 100) ... (4)
ΔLλ= Lλ 1-Lλ 2(However, λ1 <λ2) ... (5)
(The reflectance of the DUT at wavelength λ (nm) is Rλ(%)
The input means for receiving the input of the thickness further receives an input of the light transmittance of the object to be measured or the presence or absence of the thickness correction.
When the light transmittance received by the input means is 50% or more, or when an instruction to correct the thickness is received, the thickness t received by the input means is used as the thickness t in equation (4). The value of
When the light transmittance received by the input means is less than 50%, or when an instruction for thickness correction “absent” is received, 10 is adopted as the thickness t in the equation (4). That is, it is substantially equivalent to the equation (1).
[0017]
[Action]
In general, a change in the reflection absorbance spectrum due to thermal deterioration of an organic material composed of a single material is represented by a change as shown in FIG. As shown in the figure, the reflection absorbance shows a remarkable increase on the short wavelength side of the visible region due to deterioration. Therefore, due to the restriction on the measurement range of the detector (light amount measurement unit), the wavelength range of less than 660 nm extends to the lifetime of the device. This makes it substantially difficult to continue measuring the reflection absorbance of the material used. This increase in the reflection absorbance on the short wavelength side is mainly due to an increase in the electron transition absorption loss due to the thermal oxidation degradation reaction of the material.
[0018]
In addition, the reflection absorbance AλIncreases on the shorter wavelength side, so that the reflection absorbance difference ΔA between any two wavelengthsλ(= Aλ 1-Aλ 2) Or reflection absorbance ratio Aλ'(= Aλ 1/ Aλ 2) Increases as well. Here, λ1 <λ2. For example, in FIG. 3, the reflection absorbance difference ΔA between the wavelength λ1 (nm) and the wavelength λ2 (nm)λAre set to α1, α2, and α3 in order from the material having the greatest degree of deterioration, the relationship α1> α2> α3 is established. Reflection absorbance ratio AλThe same can be said for '.
[0019]
FIG. 5 shows a reflection absorbance spectrum measured on the surface of the insulating material without surface contamination and a reflection absorbance spectrum measured on the surface of the insulating material with the same degree of deterioration and surface contamination. Reflection absorbance difference ΔA between wavelength λ1 and wavelength λ2λIs Δα when there is no surface contamination and Δα ′ when there is surface contamination, and Δα で あ れ ば Δα ′ regardless of the presence or absence of contamination if the insulating material has the same degree of deterioration. Surface contamination changes (in some cases increases or decreases) the absolute intensity of the reflected light, but generally has small wavelength dependence, and is considered to be constant irrespective of wavelength in the measurement wavelength region of the present invention. Good. The same is true for measurements on surfaces having irregularities. Thus, the reflection absorbance difference ΔA between the two wavelengths as defined in the present inventionλBy using the method, it is possible to measure the degree of deterioration without being substantially affected by contamination and shape of the surface of the object to be measured. The above effect is obtained by the reflection absorbance ratio AλThe same can be said for '.
[0020]
In the case of a resin or the like having a light transmittance of 50% or more, not only the surface reflected light but also the light reflected on the back surface after passing through the resin is affected. Therefore, it is necessary to correct the thickness by the thickness of the resin or the like (optical path length). When the light transmittance is less than 50%, the proportion of light reflected on the back surface decreases, and the effect of light reflected from the back surface becomes almost negligible. Therefore, when the light transmittance is less than 50%, it is not necessary to correct the thickness. In this case, it is sufficient to apply t = 10 in the equation (4). As described above, by correcting the reflected light intensity of a resin or the like having a light transmittance of 50% or more by the thickness (optical path length), it is possible to perform more accurate deterioration diagnosis by reflected light.
[0021]
Further, as described in Japanese Patent Application Laid-Open No. Hei 3-226651, the degree of deterioration is generally represented by a conversion time θ. By expressing by the conversion time θ, even if the materials have various thermal histories, if the θ is equal, it means that the deterioration degree is the same. The conversion time θ (h) is defined by equation (6).
[0022]
(Equation 13)
[0023]
Here, ΔE is the apparent activation energy (J / mol) of thermal degradation, R is the gas constant (J / K / mol), T is the absolute temperature of thermal degradation (K), and t is the degradation time (h). is there. ΔE of resin, oil, etc. is the reflection absorbance difference ΔA for several kinds of deterioration temperature.λ 1 λ 2Can be easily calculated by Arrhenius plotting.
[0024]
Further, the conversion time at the life point of the device using the resin or the oil or the like obtained in advance is θ0, The difference Δθ from the conversion time θ obtained from the actual measurement (= θ0−θ) is the conversion time corresponding to the remaining life, and is a measure for determining the degree of deterioration. That is, the remaining life Δθ (h) is expressed by equation (7).
[0025]
[Equation 14]
[0026]
From the equation (7), if the operating temperature condition of the device after the time t is determined, the remaining life time Δt (= t0−t) can be obtained.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to examples.
[0028]
(Example 1)
FIG. 1 is a block diagram showing a configuration of the deterioration degree measuring system. In FIG. 1, the deterioration
[0029]
(Example 2)
FIG. 6 shows a configuration diagram of a deterioration degree measurement system using three wavelengths (λ1 to λ3) simultaneously. Even if three wavelengths are transmitted in one optical fiber, the system works well because the light has no coherence. Filters corresponding to the respective wavelengths are incorporated in the light
[0030]
(Example 3)
FIG. 7 shows a configuration diagram of a deterioration degree measuring system using a white light source (halogen lamp) as a light source. The system works well even when a white light source (halogen lamp) is used as the light source. The light
[0031]
In each of the above embodiments, the case of a solid insulating material has been described. However, the degree of deterioration can be measured in the same manner for a liquid material such as oil.
[0032]
(Example 4)
FIG. 8 is a block diagram showing a functional configuration of the deterioration degree measuring device. In FIG. 8, the deterioration
(= Aλ 1-Aλ 2) Is required. In the
[0033]
In this embodiment, the apparatus for measuring the degree of deterioration of a material using three wavelengths has been described, but the measuring apparatus operates well even with only two wavelengths.
[0034]
(Example 5)
After obtaining the reflectance at the wavelength λ1 and the wavelength λ2 of the insulating material 11 using the same deterioration degree measuring system as in the first embodiment, the deterioration
[0035]
(Example 6)
After obtaining the reflectivity of the insulating material 11 at the wavelengths λ1 to λ3 using the same deterioration degree measurement system as in the second embodiment, the deterioration
[0036]
(Example 7)
After obtaining the reflectance of the insulating material 11 at a wavelength of 500 to 900 nm using the same deterioration degree measuring system as in the third embodiment, the
[0037]
In each of the above embodiments, the case of a solid insulating material has been described. However, the degree of deterioration can be measured in the same manner for a liquid material such as oil.
[0038]
(Example 8)
After obtaining the reflectance of the insulating material 11 at 660, 780, and 850 nm using the same deterioration degree measuring apparatus as in the fourth embodiment, the deterioration
[0039]
In this embodiment, the apparatus for measuring the degree of deterioration of a material using three wavelengths has been described, but the measuring apparatus operates well even with only two wavelengths.
[0040]
(Example 9)
FIG. 11 is a block diagram showing a configuration of a deterioration degree measuring system having a thickness input means 20. In FIG. 11, the deterioration
[0041]
【The invention's effect】
According to the present invention, it is possible to non-destructively measure the degree of deterioration of an insulating material or a structural material used in a device without stopping operation of the device in operation. Further, it is possible to obtain a deterioration degree measurement system that can be applied to a measured object whose surface is contaminated with dust or the like or a measured object having irregularities.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a deterioration degree measurement system according to a first embodiment.
FIG. 2 is a schematic perspective view showing an optical fiber measuring end according to the first embodiment.
FIG. 3 is an example of a reflection absorbance spectrum of an insulating material.
FIG. 4 is an example of a reflection absorbance difference master curve serving as a reference for determining the degree of deterioration.
FIG. 5 is a graph showing the relationship between the presence or absence of surface contamination and the reflectance absorbance spectrum.
FIG. 6 is a block diagram illustrating a configuration of a deterioration degree measurement system according to a second embodiment.
FIG. 7 is a block diagram illustrating a configuration of a deterioration degree measurement system according to a third embodiment.
FIG. 8 is a block diagram illustrating a configuration of a deterioration degree measuring apparatus according to a fourth embodiment.
FIG. 9 is an example of a reflection absorbance ratio master curve serving as a reference for determining the degree of deterioration.
FIG. 10 is a flowchart of a calculation for determining the degree of deterioration.
FIG. 11 is a block diagram illustrating a configuration of a deterioration degree measurement system according to a ninth embodiment.
FIG. 12 is an example of a reflection loss difference master curve serving as a reference for determining the degree of deterioration.
FIG. 13 is a graph showing the presence or absence of thickness correction for an insulating film having a transmittance of 50%.
[Explanation of symbols]
DESCRIPTION OF
Claims (15)
該入力手段の受け付けた光線透過率が50%以上である場合、あるいは厚み補正“有”の指示を受けている場合には、(4)式における厚さtとして該入力手段の受け付けた厚さの値を採用し、
該入力手段の受け付けた光線透過率が50%未満である場合、あるいは厚み補正“無”の指示を受けている場合には、(4)式における厚さtとして10を採用することを特徴とする請求項13記載の材料の劣化度測定システム。The input means for receiving the input of the thickness further receives the input of the light transmittance of the measured object, or the presence or absence of the thickness correction,
When the light transmittance received by the input means is 50% or more, or when an instruction to correct the thickness is received, the thickness t received by the input means is used as the thickness t in equation (4). The value of
When the light transmittance received by the input means is less than 50%, or when an instruction of thickness correction “absent” is received, 10 is adopted as the thickness t in the equation (4). The material deterioration degree measuring system according to claim 13.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003204213A JP2004077469A (en) | 1994-02-25 | 2003-07-31 | Degradation level measurement system and measurement device for material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2779594 | 1994-02-25 | ||
JP2003204213A JP2004077469A (en) | 1994-02-25 | 2003-07-31 | Degradation level measurement system and measurement device for material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01666795A Division JP3860846B2 (en) | 1994-02-25 | 1995-02-03 | Material degradation degree measuring system and measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004077469A true JP2004077469A (en) | 2004-03-11 |
Family
ID=32031933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003204213A Pending JP2004077469A (en) | 1994-02-25 | 2003-07-31 | Degradation level measurement system and measurement device for material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004077469A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007083488A1 (en) * | 2006-01-17 | 2007-07-26 | Omron Corporation | Solder material inspecting method, solder material inspecting apparatus, control program and computer readable recording medium |
JP2007285930A (en) * | 2006-04-18 | 2007-11-01 | Fuji Electric Systems Co Ltd | Deterioration diagnosis method and device of polymer material |
WO2010071078A1 (en) * | 2008-12-17 | 2010-06-24 | 三菱製紙株式会社 | Etching solution for copper or copper alloy, etching method, and method for managing reproduction of etching solution |
JP2011007662A (en) * | 2009-06-26 | 2011-01-13 | Hitachi Ltd | Method and apparatus for diagnosing remaining life and program |
JP2011252846A (en) * | 2010-06-03 | 2011-12-15 | Hitachi Ltd | Residual service life assessment method, residual service life assessment device, and program |
WO2012120779A1 (en) * | 2011-03-09 | 2012-09-13 | パナソニック株式会社 | Recycled resin evaluation device and method for producing recycled article from recycled resin |
-
2003
- 2003-07-31 JP JP2003204213A patent/JP2004077469A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007083488A1 (en) * | 2006-01-17 | 2007-07-26 | Omron Corporation | Solder material inspecting method, solder material inspecting apparatus, control program and computer readable recording medium |
JP2007192596A (en) * | 2006-01-17 | 2007-08-02 | Omron Corp | Method and device for inspecting solder material, control program, and computer readable recording medium |
JP2007285930A (en) * | 2006-04-18 | 2007-11-01 | Fuji Electric Systems Co Ltd | Deterioration diagnosis method and device of polymer material |
JP4710701B2 (en) * | 2006-04-18 | 2011-06-29 | 富士電機システムズ株式会社 | Deterioration diagnosis method and apparatus for polymer material |
WO2010071078A1 (en) * | 2008-12-17 | 2010-06-24 | 三菱製紙株式会社 | Etching solution for copper or copper alloy, etching method, and method for managing reproduction of etching solution |
JPWO2010071078A1 (en) * | 2008-12-17 | 2012-05-31 | 三菱製紙株式会社 | Etching solution for copper or copper alloy, etching method, and regeneration management method of etching solution |
JP5604307B2 (en) * | 2008-12-17 | 2014-10-08 | 三菱製紙株式会社 | Etching solution for copper or copper alloy, etching method, and regeneration management method of etching solution |
JP2011007662A (en) * | 2009-06-26 | 2011-01-13 | Hitachi Ltd | Method and apparatus for diagnosing remaining life and program |
JP2011252846A (en) * | 2010-06-03 | 2011-12-15 | Hitachi Ltd | Residual service life assessment method, residual service life assessment device, and program |
WO2012120779A1 (en) * | 2011-03-09 | 2012-09-13 | パナソニック株式会社 | Recycled resin evaluation device and method for producing recycled article from recycled resin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101294795B (en) | Apparatus and method for measuring film thickness | |
KR100242670B1 (en) | Method and device for spectral remission and transmission measurement | |
CN101514888B (en) | Apparatus and method of measuring film thickness | |
JP4710701B2 (en) | Deterioration diagnosis method and apparatus for polymer material | |
CA2511960A1 (en) | Detection apparatus, optical path length measuring apparatus, device for measurement, method for evaluating optical member, and method for detecting change in temperature | |
JPS6223245B2 (en) | ||
KR100517104B1 (en) | Non-destructive diagnostic method and non-destructive diagnostic apparatus | |
US5774228A (en) | Deterioration diagnosis method and device of electrical machine and apparatus | |
JP3860846B2 (en) | Material degradation degree measuring system and measuring device | |
JP2004077469A (en) | Degradation level measurement system and measurement device for material | |
JP3794290B2 (en) | Article deterioration diagnosis method, quality inspection method, material judgment method and diagnostic device, article deterioration management method | |
JPH0815131A (en) | Deterioration diagnostic system | |
JPH09222393A (en) | Device for diagnosing degree of deterioration | |
JP4617438B2 (en) | Spectral characteristic measuring device | |
JP2000035315A (en) | Method and apparatus for measurement of thickness of transparent material | |
JP3205212B2 (en) | Degradation diagnostic device | |
JPH1074628A (en) | Method and apparatus for electric device deterioration diagnosis | |
JPS6189543A (en) | Method and device for measuring dual beam spectral transmittance | |
JP5245942B2 (en) | Film thickness measuring device | |
JP4111170B2 (en) | Degradation diagnosis method and diagnostic apparatus by fluorescence measurement | |
JPH0781840B2 (en) | Optical film thickness measuring device | |
JP2001307924A (en) | Degradation diagnostic device for oil-immersed transformer | |
JPH0599747A (en) | Industrial colorimeter compensating aging of lamp and color measurement method | |
JPH10281985A (en) | Method of diagnosing degree of deterioration | |
JPWO2011048743A1 (en) | Color densitometer and density measuring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050530 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060417 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060417 |
|
RD04 | Notification of resignation of power of attorney |
Effective date: 20060417 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060613 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Effective date: 20060721 Free format text: JAPANESE INTERMEDIATE CODE: A912 |