[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11235011A - Driving of gate/base of power semiconductor switch - Google Patents

Driving of gate/base of power semiconductor switch

Info

Publication number
JPH11235011A
JPH11235011A JP4899498A JP4899498A JPH11235011A JP H11235011 A JPH11235011 A JP H11235011A JP 4899498 A JP4899498 A JP 4899498A JP 4899498 A JP4899498 A JP 4899498A JP H11235011 A JPH11235011 A JP H11235011A
Authority
JP
Japan
Prior art keywords
gate
switch
mosfet
soff
turn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4899498A
Other languages
Japanese (ja)
Other versions
JP4052714B2 (en
Inventor
Katsuji Iida
克二 飯田
Hideki Ochiai
英樹 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP04899498A priority Critical patent/JP4052714B2/en
Publication of JPH11235011A publication Critical patent/JPH11235011A/en
Application granted granted Critical
Publication of JP4052714B2 publication Critical patent/JP4052714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce time delay from a control signal of a turn-ON timing of power semiconductor to be controlled by perfectly turning ON the off-drive switch only for an extremely short period after application of off gate/base control signal and thereafter operating the switch with the threshold by the resistance between drain and gate. SOLUTION: A MOSFET is used for off-drive switch Soff and a resistor Rgd is connected between the drain and gate of the MOSFET. The MOSFET is perfectly turned ON only for an extremely short period immediately after application of off-gate/base control signal and Soff is then operated in the active area until turn ON of the semiconductor switch Q1 to be controlled. Thereby, when Q1 has turned OFF, the gate signal source of the MOSFET depends only on the resistor Rgd and Soff is driven by the gate threshold. Therefore, time delay from the control signal of the turn ON timing of the power semiconductor to be controlled can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電圧駆動形素子であ
るIGBT(絶縁ゲート形バイポーラトランジスタ)、
SIサイリスタ(静電誘導サイリスタ)や電流駆動形素
子であるGTO(ゲートターンオフサイリスタ)、パワ
ートランジスタ等の電力用半導体スイッチのゲート/ベ
ース駆動方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an IGBT (insulated gate bipolar transistor) which is a voltage-driven element,
The present invention relates to a method for driving a gate / base of a power semiconductor switch such as an SI thyristor (static induction thyristor), a GTO (gate turn-off thyristor) which is a current-driven element, and a power transistor.

【0002】[0002]

【従来の技術】電力用半導体スイッチのオン・オフを行
うゲート/ベース駆動回路の従来例の基本的なものとし
て、図3に示す構成のものがある。図3においてQ1は
オン・オフ制御される被制御電力用半導体スイッチで同
図ではGTOで示している。E1,E2はそれぞれオン
駆動用、オフ駆動用の直流電源、Son、Soffはそ
れぞれオン駆動用、オフ駆動用のスイッチであり同図で
は、それぞれPチャンネルMOSFET、Nチャンネル
MOSFETを使用して示し、それぞれゲート抵抗Ro
n、Roffを通してゲートパルス発生装置PGより制
御される。GTO等をターンオフする場合には非常に短
時間の間に大きなオフ引き抜き電流を流す必要がある
が、最近、高速で大電流を流すことが出来る比較的低圧
のパワーMOSFETが出回り、これをオン・オフ駆動
用スイッチとして使用する例が多くなってきた。このオ
フ駆動用MOSFETは電力用半導体スイッチQ1をオ
フしている期間中、MOSFETのゲート、ソース間に
閾値よりかなり高い電圧を印加し、充分低抵抗状態とな
るようにしていた。
2. Description of the Related Art A basic example of a conventional gate / base drive circuit for turning on / off a power semiconductor switch is shown in FIG. In FIG. 3, Q1 is a controlled power semiconductor switch that is turned on / off, and is indicated by GTO in FIG. E1 and E2 denote on-drive and off-drive DC power sources, respectively, and Son and Soff denote on-drive and off-drive switches, respectively. In the figure, P-channel MOSFET and N-channel MOSFET are used, respectively. Gate resistance Ro
It is controlled by the gate pulse generator PG through n and Roff. When turning off a GTO or the like, it is necessary to flow a large off-drawing current in a very short time. Recently, however, relatively low-voltage power MOSFETs that can flow a large current at a high speed have been available. Examples of use as an off-drive switch are increasing. This off-drive MOSFET applies a voltage considerably higher than the threshold value between the gate and the source of the MOSFET while the power semiconductor switch Q1 is off, so as to be in a sufficiently low resistance state.

【0003】[0003]

【発明が解決しようとする課題】オフ駆動用に使用する
MOSFETは図3に示すように、ゲート−ソース間、
ゲート−ドレイン間およびドレイン−ソース間にそれぞ
れ比較的静電容量の大きい容量Cgs、Cgd、Cds
が存在し、かつドレイン−ソース間の電圧Vdsによっ
て容量が2桁のオーダーで変化し、Vdsが低いときに
大きく、高いときに小さくなる。したがってMOSFE
TがオンしてVdsが充分低いときにはゲートから見た
容量(入力容量Ciss=Cgs+Cgd)は非常に大
きく数千PF以上となる。このためMOSFETをオフ
するためにこのコンデンサに蓄積されている電荷を放電
しなければならず、したがって充電されている電圧すな
わちゲート−ソース電圧Vgsが高いほど放電に要する
時間は長くなり、ゲート回路条件にもよるがターンオン
時間は数百nsecと大きい。一方、オフ状態ではCg
dは数十PFと小さくターンオン時間はターンオフ時間
の半分以下となる。
As shown in FIG. 3, the MOSFET used for the off-drive is a gate-source,
Capacitances Cgs, Cgd, Cds having relatively large capacitances between the gate and the drain and between the drain and the source, respectively
Exists, and the capacitance changes in the order of two digits depending on the voltage Vds between the drain and the source. The capacitance changes when Vds is low and decreases when Vds is high. Therefore, MOSFE
When T is turned on and Vds is sufficiently low, the capacitance (input capacitance Ciss = Cgs + Cgd) seen from the gate is very large and is several thousand PF or more. Therefore, in order to turn off the MOSFET, the charge stored in this capacitor must be discharged. Therefore, the higher the charged voltage, that is, the gate-source voltage Vgs, the longer the time required for discharging, and the gate circuit condition However, the turn-on time is as long as several hundred nsec. On the other hand, in the off state, Cg
d is as small as several tens of PF, and the turn-on time is less than half the turn-off time.

【0004】このターンオフ時間が数百nsecあると
制御信号印加から被制御素子である電力用半導体スイッ
チQ1のターンオンまでの時間遅れが許されない用途、
例えば共振形インバータにおいて半導体スイッチQ1が
零を含む最低電圧に到達時にターンオンさせる、いわゆ
る零電圧スイッチング(ZVS)を行うような場合に不
都合となる。また、上述したようにMOSFETのター
ンオフ時間がターンオン時間より大きいことも問題とな
る、すなわち被制御の半導体スイッチQ1をターンオン
させる場合に、オフ用駆動スイッチSoffをオフし、
オン用駆動スイッチSonを同時か、若干遅れてオンさ
せる必要があるが、両スイッチを同一の信号で駆動する
とターンオン・ターンオフ時間の相違により、両スイッ
チのオン状態がラップし直流電源から大きなクロスオー
バー電流が流れ、両スイッチの損失を増大させ、動作周
波数を上げることが出来ないばかりではなく、このスイ
ッチを破壊する恐れもあった。このため両スイッチを駆
動するゲートパルスを別々とし、互いに時間差を付ける
等を行っており、ゲートパルス発生装置が複雑なものと
なっていた。
If the turn-off time is several hundred nsec, a time delay from application of a control signal to turn-on of the power semiconductor switch Q1, which is a controlled element, is not allowed.
For example, it is inconvenient to perform so-called zero voltage switching (ZVS) in which a semiconductor switch Q1 is turned on when the semiconductor switch Q1 reaches a minimum voltage including zero in a resonant inverter. Another problem is that the turn-off time of the MOSFET is longer than the turn-on time as described above. That is, when the controlled semiconductor switch Q1 is turned on, the off drive switch Soff is turned off,
It is necessary to turn on the ON drive switches Son at the same time or with a slight delay. However, if both switches are driven by the same signal, the ON state of both switches wraps due to the difference in turn-on and turn-off times, causing a large crossover from the DC power supply A current flows, increasing the loss of both switches, not only increasing the operating frequency, but also destroying the switches. For this reason, gate pulses for driving both switches are separated from each other, and a time difference is made between them, so that the gate pulse generator is complicated.

【0005】本発明は上述した問題点を解決するために
提案されたもので、その目的とするところは、オフ用駆
動スイッチSoffのターンオフ時間を早めることで、
被制御の電力用半導体スイッチQ1のターンオンの遅れ
を少なくすることができ、またスイッチの損失等を抑制
し、動作周波数を高めることを可能としたゲート/ベー
ス駆動回路を提供することにある。
The present invention has been proposed in order to solve the above-mentioned problems, and an object of the present invention is to shorten the turn-off time of an off drive switch Soff,
It is an object of the present invention to provide a gate / base drive circuit that can reduce the delay of turn-on of the controlled power semiconductor switch Q1, suppress switch loss and the like, and increase the operating frequency.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、電力用半導体スイッチのオン駆動用スイッ
チとオフ駆動用スイッチを直列接続したものを直列接続
された正・負の直流電源の両端に並列に接続し、このス
イッチの接続点を前記電力用半導体スイッチのゲート/
ベースに、前記直流電源の接続点を前記電力用半導体ス
イッチのカソード/エミッタにそれぞれ接続してなる回
路を形成した回路において、前記オフ駆動用スイッチに
MOSFETを使用し、該MOSFETのドレインとゲ
ートの間に抵抗を接続し、該MOSFETをオフゲート
/ベース制御信号印加直後の極短時間(ゲート/ベース
オフ電流が零となるまでの時間)だけ完全にオンし、そ
の後は前記ドレインとゲート間の抵抗によりMOSFE
Tを閾値で動作させる。
In order to achieve the above object, the present invention provides a positive / negative DC power supply in which a power semiconductor switch in which an ON drive switch and an OFF drive switch are connected in series is connected. Are connected in parallel to both ends of the power semiconductor switch.
In a circuit in which a connection point of the DC power supply is connected to a cathode / emitter of the power semiconductor switch on a base, a MOSFET is used for the off drive switch, and a drain and a gate of the MOSFET are connected to each other. The MOSFET is completely turned on for a very short time (time until the gate / base off current becomes zero) immediately after the application of the off-gate / base control signal, and thereafter, the resistance between the drain and the gate is turned off. MOSFE
Operate T at the threshold.

【0007】すなわち、被制御半導体スイッチQ1をタ
ーンオフする場合にゲート/ベースに逆電圧を加え、ゲ
ート/ベースまわりに蓄積された電荷を引き抜くように
急速に大きな電流を流す必要があるが、Q1がオフ能力
を回復した後はゲート/ベース電流は流れない。したが
ってオフ駆動用スイッチSoffはこの期間だけ完全に
オン状態にすれば良く、その後の次のQ1のターンオン
まではSoffは能動領域で動作するようにする。この
ようにすることにより、被制御半導体スイッチQ1のタ
ーンオフ完了後はオフ駆動用スイッチSoffであるM
OSFETのゲート信号源はドレインとゲートの間に接
続した抵抗によるものだけとする。これによりSoff
はMOSFETの原理により、ベース−ソース間電圧V
gs=ドレイン−ソース間電圧Vdsすなわちゲート閾
値で駆動される。このためSoffをオフさせる時にゲ
ート電圧を閾値まで下げるのに要するターンオフ遅れ時
間が不要になりターンオフ時間が1/2以下となる。
That is, when the controlled semiconductor switch Q1 is turned off, it is necessary to apply a reverse voltage to the gate / base and rapidly flow a large current so as to extract the charge accumulated around the gate / base. After the off capability is restored, no gate / base current flows. Therefore, the off-drive switch Soff only needs to be completely turned on for this period, and the Soff operates in the active region until the next turn-on of Q1. By doing so, after the turn-off of the controlled semiconductor switch Q1 is completed, the off-drive switch Soff M
The gate signal source of the OSFET is based solely on the resistance connected between the drain and the gate. By this, Soff
Is the base-source voltage V due to the MOSFET principle.
gs = drain-source voltage Vds, that is, driven by the gate threshold. For this reason, the turn-off delay time required for lowering the gate voltage to the threshold value when turning off the Soff becomes unnecessary, and the turn-off time becomes 1 / or less.

【0008】[0008]

【発明の実施の形態】以下、図面に沿って本発明の実施
例を説明する。図1は本発明の実施例の回路図、図2は
動作説明図である。図1において、Q1はオン、オフさ
れる被制御電力用半導体スイッチ、E1,E2はそれぞ
れオン、オフ駆動用直流電源で直列接続し、Son、S
offはそれぞれオン、オフ用駆動スイッチで直列接続
したものを前記直流電源に並列接続し、Son、Sof
fの接続点およびE1、E2の接続点をそれぞれQ1の
ゲート/ベースおよびカソード/エミッタに接続する。
実施例ではSonにPチャンネル、SoffにNチャン
ネルのMOSFETを使用して示している。ここまでは
従来例と同じであるが、両スイッチのゲート駆動方法に
違いがある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of an embodiment of the present invention, and FIG. 2 is an operation explanatory diagram. In FIG. 1, Q1 is a semiconductor switch for controlled power to be turned on and off, and E1 and E2 are connected in series by a DC power supply for on and off driving, respectively.
off is a switch connected in series with an on / off drive switch, and is connected in parallel to the DC power supply.
The connection point of f and the connection points of E1 and E2 are connected to the gate / base and cathode / emitter of Q1, respectively.
In this embodiment, a P-channel MOSFET is used for Son and an N-channel MOSFET is used for Soff. Up to this point, it is the same as the conventional example, but there is a difference in the gate drive method of both switches.

【0009】オン・オフゲートパルスを共通に一信号と
し、バッファ回路BFから出力し、オン用駆動スイッチ
Sonのゲートへゲート抵抗Ronを経て供給、またオ
フ用駆動スイッチSoffのゲートには微分コンデンサ
Cとダイオードの並列接続したものとゲート抵抗Rof
fを直列接続したものを経て供給している。さらにこの
直列点とSoffのドレインとの間に抵抗Rgdを接続
する。ここで微分コンデンサCの容量はSoffの入力
容量Cissより大きく(大体2倍以上)、抵抗Rgd
はゲート抵抗Roff(通常10オーム以下)より充分
大きく選ぶ。被制御半導体スイッチQ1がオンつまりS
on、Soffがそれぞれオン、オフしている状態で、
図2に示す時間t0で制御信号が印加されバッファ回路
BFの出力が”L”から”H”へ切り替わると、微分コ
ンデンサC→ゲート抵抗Roff→Soffゲート(入
力容量Ciss)で形成される微分回路に電流が流れC
issを充電する。この時抵抗RgdはRoffに較べ
非常に大きいのでこの微分動作にはほとんど影響を与え
ない。
An on / off gate pulse is commonly used as one signal, output from the buffer circuit BF, supplied to the gate of the on drive switch Son via a gate resistor Ron, and a differential capacitor C is connected to the gate of the off drive switch Soff. And a diode connected in parallel and a gate resistor Rof
f are supplied in series. Further, a resistor Rgd is connected between the series point and the drain of Soff. Here, the capacity of the differential capacitor C is larger than the input capacity Ciss of Soff (about twice or more), and the resistance Rgd
Is selected sufficiently larger than the gate resistance Roff (usually 10 ohms or less). The controlled semiconductor switch Q1 is turned on, ie, S
With on and Soff turned on and off respectively,
When a control signal is applied at time t0 shown in FIG. 2 and the output of the buffer circuit BF switches from “L” to “H”, a differentiating circuit formed by a differential capacitor C → a gate resistance Roff → Soff gate (input capacitance Ciss). Current flows through C
Charge the iss. At this time, since the resistance Rgd is very large as compared with Roff, it hardly affects the differential operation.

【0010】またCの容量はCissより大きいので、
Cissの充電電圧は充分高くなり、つまりSoffを
完全にオンさせ、被制御半導体スイッチQ1のゲート/
ベースから急速に大きな引き抜き電流を流すようにな
る。一方、微分動作が終了後には、Soffが完全にオ
ンしているので、Soffの入力容量Cissはゲート
抵抗Roffおよび抵抗RgdおよびSoffのオン抵
抗により放電して行き、Soffのゲート−ソース間電
圧Vgsが低くなり閾値近くなると、Soffのドレイ
ン−ソース間電圧Vdsが上昇しはじめ、Vgs=Vd
sで平衡し安定する。このため前述したように次のSo
ffターンオフ時にはVgsを閾値まで下げるターンオ
フ遅れ時間を不要とするのでSoffのターンオフが早
くなる。また、微分コンデンサCはさらに充電され、
(E1+E2−Vgs)に充電される。このコンデンサ
Cに充電された電荷は時間t1で制御信号が変化し、バ
ッファ回路出力が”H”から”L”に切り替わるとSo
ffのゲートーソース間に逆電圧を加えることになり、
Soffのターンオフをさらに早めるのに貢献する。
Since the capacity of C is larger than Ciss,
The charging voltage of Ciss becomes sufficiently high, that is, Soff is completely turned on, and the gate of the controlled semiconductor switch Q1 is turned on.
A large extraction current flows rapidly from the base. On the other hand, after the differentiation operation is completed, the Soff is completely turned on, so that the input capacitance Ciss of the Soff is discharged by the gate resistance Roff and the on-resistance of the resistance Rgd and the Soff, and the gate-source voltage Vgs of the Soff is discharged. Becomes lower and becomes closer to the threshold, the drain-source voltage Vds of Soff starts to increase, and Vgs = Vd
Equilibrate and stable at s. Therefore, as described above, the next So
At the time of ff turn-off, a turn-off delay time for lowering Vgs to a threshold is not required, so that the turn-off of Soff is quickened. Further, the differential capacitor C is further charged,
(E1 + E2-Vgs). When the control signal of the electric charge charged in the capacitor C changes at time t1 and the output of the buffer circuit switches from “H” to “L”, So
A reverse voltage will be applied between the gate and the source of ff,
This will help turn off Soff even faster.

【0011】上述したようにSoffのターンオフ時間
が短縮され、Sonのターンオン時間に近づきSonと
Soffの同時オン時間が無くなるので、これによる損
失の発生もなく、高周波での動作が可能となり、さらに
制御信号からの被制御半導体スイッチのターンオンタイ
ミングの遅れも、少なくすることが出来る。以上の説明
でSoffのターンオン直後だけゲート電圧Vgsを高
くする方法として、図1の実施例では微分回路を使用し
て説明したが同様の効果を奏するものであればどのよう
な方法でも良いこと、被制御半導体スイッチQ1をGT
Oで説明したが、IGBT,SIサイリスタ、パワート
ランジスタ等の半導体スイッチに適用できることは言う
までもない。
As described above, the turn-off time of the Soff is shortened, and the turn-on time of the Son is approached, so that the simultaneous on-time of the Son and the Soff is eliminated. The delay of the turn-on timing of the controlled semiconductor switch from the signal can also be reduced. In the above description, as a method of increasing the gate voltage Vgs only immediately after the turn-off of the Soff, the description has been made using the differentiating circuit in the embodiment of FIG. 1, but any method may be used as long as the same effect can be obtained. GT controlled semiconductor switch Q1
Although described with O, it goes without saying that the present invention can be applied to semiconductor switches such as IGBTs, SI thyristors, and power transistors.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
被制御電力用半導体のターンオンタイミングの制御信号
からの時間遅れを少なくすることができ、さらにオン・
オフ駆動用スイッチの同時オンによる、クロスオーバー
電流による大きな損失の発生が抑制され高周波動作を可
能ならしめる等の効果がある。
As described above, according to the present invention,
The time delay from the control signal of the turn-on timing of the controlled power semiconductor can be reduced, and
There is an effect that generation of a large loss due to a crossover current due to simultaneous turning-on of the off-drive switches is suppressed and high-frequency operation is enabled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】図1の動作の説明図である。FIG. 2 is an explanatory diagram of the operation of FIG.

【図3】従来の技術を示す回路図である。FIG. 3 is a circuit diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

Q1……被制御電力用半導体スイッチ E1……オン用直流電源 E2……オフ用直流電源 Son……オン用駆動スイッチ Soff……オフ用駆動スイッチ Ron、Roff……ゲート抵抗 BF……バッファ回路 C……微分コンデンサ D……ダイオード Rgd……ドレイン、ゲート間抵抗 PG……信号発生器 Q1 ... Controlled power semiconductor switch E1 ... On DC power supply E2 ... Off DC power supply Son ... On drive switch Soff ... Off drive switch Ron, Roff ... Gate resistance BF ... Buffer circuit C …… Differential capacitor D …… Diode Rgd… Drain-gate resistance PG …… Signal generator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力用半導体スイッチのオン駆動用のス
イッチとオフ駆動用スイッチを直列接続したものを、直
列接続された正・負の直流電源の両端に並列に接続し、
このスイッチの接続点を前記電力用半導体スイッチのゲ
ート/ベースに、前記直流電源の接続点を前記電力用半
導体スイッチのカソード/エミッタにそれぞれ接続して
なる回路を形成した回路において、前記オフ駆動用スイ
ッチにMOSFETを使用し、該MOSFETのドレイ
ンとゲートの間に抵抗を接続し、該MOSFETをオフ
ゲート/ベース制御信号印加直後の極短時間(ゲート/
ベースオフ電流が零となるまでの時間)だけ完全にオン
し、その後は前記ドレインとゲート間の抵抗によりMO
SFETを閾値で動作させることを特徴とする電力用半
導体スイッチのゲート/ベース駆動方法。
A power semiconductor switch in which an on-drive switch and an off-drive switch are connected in series is connected in parallel to both ends of a series-connected positive / negative DC power supply,
In a circuit formed by connecting a connection point of the switch to a gate / base of the power semiconductor switch and a connection point of the DC power supply to a cathode / emitter of the power semiconductor switch, A MOSFET is used for the switch, a resistor is connected between the drain and the gate of the MOSFET, and the MOSFET is turned on for an extremely short time (gate / gate) immediately after the off-gate / base control signal is applied.
(The time until the base-off current becomes zero), and then completely turns on.
A gate / base driving method for a power semiconductor switch, comprising operating an SFET at a threshold value.
JP04899498A 1998-02-13 1998-02-13 Gate / base driving method for power semiconductor switch Expired - Lifetime JP4052714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04899498A JP4052714B2 (en) 1998-02-13 1998-02-13 Gate / base driving method for power semiconductor switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04899498A JP4052714B2 (en) 1998-02-13 1998-02-13 Gate / base driving method for power semiconductor switch

Publications (2)

Publication Number Publication Date
JPH11235011A true JPH11235011A (en) 1999-08-27
JP4052714B2 JP4052714B2 (en) 2008-02-27

Family

ID=12818777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04899498A Expired - Lifetime JP4052714B2 (en) 1998-02-13 1998-02-13 Gate / base driving method for power semiconductor switch

Country Status (1)

Country Link
JP (1) JP4052714B2 (en)

Also Published As

Publication number Publication date
JP4052714B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
CN111404529B (en) Segmented direct gate driving circuit of depletion type GaN power device
CN100511248C (en) Bootstrap diode emulator with dynamic back-gate biasing
US7602229B2 (en) High frequency control of a semiconductor switch
JP3067687B2 (en) IGBT drive circuit
JP4804142B2 (en) High-speed gate drive circuit
JPH03117211A (en) Drive circuit for semiconductor element
JP6842837B2 (en) Gate drive circuit
CN113497610B (en) Gate driving circuit capable of reducing conduction loss of power semiconductor
US11641201B2 (en) Hybrid power devices
JP3430878B2 (en) MOS gate type element driving circuit
Krein et al. Autonomous control technique for high-performance switches
JP4952112B2 (en) Drive circuit for voltage-driven element
US8638134B2 (en) Gate drive circuit and power semiconductor module
US6813169B2 (en) Inverter device capable of reducing through current
CN111669034B (en) Silicon carbide and silicon mixed parallel switch tube driving circuit
KR102026929B1 (en) Gate driving circuit for power switch
JP2018074676A (en) Gate drive circuit
JP4052714B2 (en) Gate / base driving method for power semiconductor switch
CN114977744A (en) Drive circuit and control method
US20210152158A1 (en) Wide band gap power semiconductor system and driving method thereof
JP2004088892A (en) Gate circuit of insulated gate type semiconductor element
JP2022027042A (en) Gate driving circuit and power source circuit
JP7537704B2 (en) Drive circuit
JP3911204B2 (en) Gate drive circuit of voltage driven semiconductor device
WO2023162032A1 (en) Gate drive circuit and power conversion device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term