[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3430878B2 - MOS gate type element driving circuit - Google Patents

MOS gate type element driving circuit

Info

Publication number
JP3430878B2
JP3430878B2 JP25441797A JP25441797A JP3430878B2 JP 3430878 B2 JP3430878 B2 JP 3430878B2 JP 25441797 A JP25441797 A JP 25441797A JP 25441797 A JP25441797 A JP 25441797A JP 3430878 B2 JP3430878 B2 JP 3430878B2
Authority
JP
Japan
Prior art keywords
transistor
type element
turned
gate type
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25441797A
Other languages
Japanese (ja)
Other versions
JPH1197994A (en
Inventor
由成 簑谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25441797A priority Critical patent/JP3430878B2/en
Publication of JPH1197994A publication Critical patent/JPH1197994A/en
Application granted granted Critical
Publication of JP3430878B2 publication Critical patent/JP3430878B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、半導体電力変換
器の主回路を構成するIGBT,パワーMOSFETな
どのMOSゲート形素子の駆動回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive circuit for a MOS gate type element such as an IGBT or a power MOSFET which constitutes a main circuit of a semiconductor power converter.

【0002】[0002]

【従来の技術】半導体電力変換器(以下、単に電力変換
器と称する)においては、近年、種々の法的規制から該
電力変換器を構成する前記MOSゲート形素子のスイッ
チング動作に伴って発生するノイズを低減させることが
求められている。図5はこの種の電力変換器の従来例を
示す回路構成図である。
2. Description of the Related Art In a semiconductor power converter (hereinafter, simply referred to as a power converter), in recent years, due to various legal regulations, this occurs along with the switching operation of the MOS gate type element constituting the power converter. It is required to reduce noise. FIG. 5 is a circuit configuration diagram showing a conventional example of this type of power converter.

【0003】図5において、1はこの電力変換器のMO
Sゲート形素子としてのIGBT、2は誘導性負荷、3
は誘導性負荷2の環流ダイオードを示し、主回路電源
(VM)からIGBT1のオン・オフに基づいて誘導性
負荷2に電力が供給され、IGBT1がオフしたときの
誘導性負荷2の電流は環流ダイオード3に流れる。この
IGBT1をオン・オフさせる駆動回路10には、図示
の駆動回路電源(VDD)とIGBT1のエミッタ端子と
の間に直列接続されるPチャネルのMOSFET11及
びNチャネルのMOSFET12と、NチャネルのMO
SFET13と、駆動信号に基づいてMOSFET11
〜13を制御するバッファ素子15,16、アンド素子
17、比較器18からなる制御回路14とを備えてい
る。
In FIG. 5, 1 is an MO of this power converter.
IGBT as S gate type element, 2 is inductive load, 3
Represents a wheeling diode of the inductive load 2, power is supplied to the inductive load 2 on the basis of the main circuit power supply (V M) to IGBT1 on and off, the inductive load 2 current when IGBT1 is turned off It flows to the free wheeling diode 3. The drive circuit 10 for turning on / off the IGBT 1 includes a P-channel MOSFET 11 and an N-channel MOSFET 12 which are connected in series between the drive circuit power supply (V DD ) shown in the figure and the emitter terminal of the IGBT 1, and an N-channel MO.
SFET 13 and MOSFET 11 based on the drive signal
Buffer elements 15 and 16, which control the elements 13 to 13, an AND element 17, and a control circuit 14 including a comparator 18.

【0004】図5に示した駆動回路10の動作を、図6
(A,B)に示す動作波形図を参照しつつ、以下に説明
する。図6(A)はIGBT1のスイッチング動作に伴
うノイズを抑制するために、MOSFET11,12の
オン抵抗が比較的大きい素子を選定したときの動作波形
を示し、IGBT1のターンオン時には、図示の如くI
GBT1のゲート電圧VGEのdV/dtを小さくするこ
とにより、IGBT1のコレクタ電流IC (図示の太実
線)及びコレクタ−エミッタ電圧VCE(図示の細実線)
の変化を緩やかにしている。
The operation of the drive circuit 10 shown in FIG.
This will be described below with reference to the operation waveform charts shown in (A, B). FIG. 6A shows operation waveforms when an element having a relatively large on-resistance of the MOSFETs 11 and 12 is selected in order to suppress noise associated with the switching operation of the IGBT 1, and when the IGBT 1 is turned on, as shown in FIG.
By reducing the dV / dt of the gate voltage V GE of the GBT 1, the collector current I C of the IGBT 1 (thick solid line in the figure) and the collector-emitter voltage V CE (thin solid line in the figure).
Is slowly changing.

【0005】同様に、図6(A)において、IGBT1
のターンオフ時には図示の如くIGBT1のゲート電圧
GEのdV/dtを小さくして、IGBT1のコレクタ
電流IC 及びコレクタ−エミッタ電圧(VCE)の変化を
緩やかにしている。一方、図6(B)は、IGBT1の
スイッチング動作を速くするために、MOSFET1
1,12のオン抵抗が比較的小さい素子を選定したとき
の動作波形を示し、IGBT1のターンオン時には図示
の如くIGBT1のゲート電圧VGEのdV/dtを大き
くして、IGBT1のコレクタ電流IC (図示の太実
線)及びコレクタ−エミッタ電圧VCE(図示の細実線)
の変化を速くしているが、その結果、IGBT1のター
ンオン中に図示の如くコレクタ電流IC に振動現象が発
生し、この振動とIGBT1のIC およびVCEの変化と
がノイズ源となる。
Similarly, in FIG. 6 (A), the IGBT 1
At the time of turn-off, the gate voltage V GE of the IGBT 1 is reduced dV / dt as shown in the figure to moderate the changes in the collector current I C and the collector-emitter voltage (V CE ) of the IGBT 1. On the other hand, FIG. 6 (B) shows the MOSFET 1 in order to speed up the switching operation of the IGBT 1.
The operation waveforms when the elements having a relatively low on-resistance of 1 and 12 are selected are shown, and when the IGBT1 is turned on, the gate voltage V GE of the IGBT1 is increased to increase dV / dt so that the collector current I C of the IGBT 1 ( (Thick solid line shown) and collector-emitter voltage V CE (thin solid line shown)
As a result, an oscillating phenomenon occurs in the collector current I C during turn-on of the IGBT 1, and this oscillation and the changes in I C and V CE of the IGBT 1 serve as a noise source.

【0006】同様に、図6(B)において、IGBT1
のターンオフ時には、図示の如くIGBT1のゲート電
圧VGEのdV/dtを大きくして、IGBT1のコレク
タ電流IC 及びコレクタ−エミッタ電圧VCEの変化を速
くしているが、その結果、IGBT1のターンオフ中に
図示の如くコレクタ−エミッタ電圧VCEに振動現象が発
生し、この振動とIGBT1のIC およびVCEの変化と
がノイズ源となる。
Similarly, in FIG. 6B, the IGBT 1
At the time of turn-off, the gate voltage V GE of the IGBT 1 is increased as shown to increase the collector current I C of the IGBT 1 and the collector-emitter voltage V CE quickly. As shown in the figure, a vibration phenomenon occurs in the collector-emitter voltage V CE , and this vibration and changes in I C and V CE of the IGBT 1 become noise sources.

【0007】なお、図5に示した比較器18は、駆動信
号が変化してゲート電圧VGEがVG2まで下降すると動作
をし(図6(A,B)参照)、その結果、アンド素子1
7を介してMOSFET13がオンしてゲート電圧VGE
の下降を速め、IGBT1のターンオフ時間を短縮して
オフ保持するために供されている。また、IGBT1が
ターンオンするときには、比較器18の出力に関わら
ず、オン駆動信号の入力によりアンド素子17を介して
MOSFET13がオフする。
The comparator 18 shown in FIG. 5 operates when the drive signal changes and the gate voltage V GE drops to V G2 (see FIGS. 6A and 6B), and as a result, the AND element. 1
7 turns on the MOSFET 13 to turn on the gate voltage V GE
Of the IGBT 1 is accelerated, the turn-off time of the IGBT 1 is shortened, and the turn-off time is maintained. When the IGBT 1 is turned on, the MOSFET 13 is turned off via the AND element 17 by the input of the ON drive signal regardless of the output of the comparator 18.

【0008】[0008]

【発明が解決しようとする課題】上述の如く従来の駆動
回路10では、IGBT1のスイッチング動作に伴うノ
イズを抑制するために、MOSFET11,12のオン
抵抗が比較的大きい素子を選定している。その結果、駆
動信号が変化し、ゲート電圧VGEがVG1まで上昇してI
GBT1がターンオンを開始するまでの時間(図6
(A)のT1 )が図6(B)のT3 に比して長くなり、
同様に、駆動信号が変化してIGBT1がターンオフを
開始するまでの時間(図6(A)のT2 )が図6(B)
のT4 に比して長くなるという難点があった。
As described above, in the conventional drive circuit 10, the elements having relatively large on-resistances of the MOSFETs 11 and 12 are selected in order to suppress noise accompanying the switching operation of the IGBT 1. As a result, the drive signal changes, the gate voltage V GE rises to V G1 , and I
Time until GBT1 starts to turn on (Fig. 6
(A) T 1 ) is longer than T 3 in FIG. 6B,
Similarly, the time (T 2 in FIG. 6A) until the drive signal changes and the IGBT 1 starts to turn off is shown in FIG. 6B.
There was a problem that it became longer than T 4 of.

【0009】この発明の目的は上記問題点を解決し、電
力変換器の主回路を構成するMOSゲート形素子のター
ンオン時間・ターンオフ時間の双方、又はターンオン若
しくはターンオフのいずれか一方の時間を短くしつつ、
該MOSゲート形素子のスイッチング動作に伴うノイズ
を抑制する駆動回路を提供することにある。
An object of the present invention is to solve the above problems and shorten both the turn-on time and the turn-off time of the MOS gate type element that constitutes the main circuit of the power converter, or either the turn-on time or the turn-off time. While
It is an object of the present invention to provide a drive circuit that suppresses noise accompanying switching operation of the MOS gate type element.

【0010】[0010]

【課題を解決するための手段】この第1の発明は、半導
体電力変換器の主回路を構成するMOSゲート形素子の
駆動回路であって、該駆動回路には第1トランジスタと
第2トランジスタと第3トランジスタと第4トランジス
タと制御回路とを備え、前記駆動回路の電源の一端と前
記MOSゲート形素子のソース端子又はエミッタ端子と
の間に、第1トランジスタと第2トランジスタとを直列
に接続すると共に、第3トランジスタと第4トランジス
タとを直列に接続し、第1トランジスタと第2トランジ
スタの接続点と、第3トランジスタと第4トランジスタ
の接続点と、前記MOSゲート形素子のゲート端子とを
接続し、前記制御回路は入力される駆動信号に基づいて
第1トランジスタと第2トランジスタとを交互にオン・
オフさせ、第1トランジスタをオンさせた時から所定の
期間のみ所定の振幅で第3トランジスタをオンさせ、第
2トランジスタをオンさせた時から所定の期間及び第2
トランジスタをオンさせたことに基づいて前記MOSゲ
ート形素子のゲート電圧が所定の値以下になったときに
第4トランジスタをオンさせるものとする。
The first aspect of the present invention is a drive circuit for a MOS gate type element constituting a main circuit of a semiconductor power converter, wherein the drive circuit includes a first transistor and a second transistor. A third transistor, a fourth transistor, and a control circuit are provided, and the first transistor and the second transistor are connected in series between one end of the power source of the drive circuit and the source terminal or the emitter terminal of the MOS gate type element. In addition, the third transistor and the fourth transistor are connected in series, the connection point of the first transistor and the second transistor, the connection point of the third transistor and the fourth transistor, and the gate terminal of the MOS gate type element. And the control circuit alternately turns on the first transistor and the second transistor based on the input drive signal.
The third transistor is turned on with a predetermined amplitude only for a predetermined period from when the first transistor is turned off and the first transistor is turned on, and the second transistor is turned on for a predetermined period and the second period.
It is assumed that the fourth transistor is turned on when the gate voltage of the MOS gate type element becomes equal to or lower than a predetermined value based on the turning on of the transistor.

【0011】また第2の発明は、半導体電力変換器の主
回路を構成するMOSゲート形素子の駆動回路であっ
て、該駆動回路には第1トランジスタと第2トランジス
タと第3トランジスタと制御回路とを備え、前記駆動回
路の電源の一端と前記MOSゲート形素子のソース端子
又はエミッタ端子との間に、第1トランジスタと第2ト
ランジスタとを直列に接続し、第1トランジスタと第2
トランジスタの接続点と前記MOSゲート形素子のゲー
ト端子とを接続し、第1トランジスタの両端に第3トラ
ンジスタを並列接続し、前記制御回路は入力される駆動
信号に基づいて第1トランジスタと第2トランジスタと
を交互にオン・オフさせ、第1トランジスタをオンさせ
た時から所定の期間のみ所定の振幅で第3トランジスタ
をオンさせるものとする。
A second invention is a drive circuit for a MOS gate type element which constitutes a main circuit of a semiconductor power converter, wherein the drive circuit includes a first transistor, a second transistor, a third transistor and a control circuit. And a first transistor and a second transistor connected in series between one end of the power source of the drive circuit and the source terminal or the emitter terminal of the MOS gate type element, and the first transistor and the second transistor.
The connection point of the transistor and the gate terminal of the MOS gate type element are connected, the third transistor is connected in parallel to both ends of the first transistor, and the control circuit is configured to connect the first transistor and the second transistor based on the input drive signal. The transistor and the transistor are alternately turned on and off, and the third transistor is turned on with a predetermined amplitude for a predetermined period from when the first transistor is turned on.

【0012】さらに第3の発明は、半導体電力変換器の
主回路を構成するMOSゲート形素子の駆動回路であっ
て、該駆動回路には第1トランジスタと第2トランジス
タと第3トランジスタと制御回路とを備え、前記駆動回
路の電源の一端と前記MOSゲート形素子のソース端子
又はエミッタ端子との間に、第1トランジスタと第2ト
ランジスタとを直列に接続し、第1トランジスタと第2
トランジスタの接続点と前記MOSゲート形素子のゲー
ト端子とを接続し、第2トランジスタの両端に第3トラ
ンジスタを並列接続し、前記制御回路は入力される駆動
信号に基づいて第1トランジスタと第2トランジスタと
を交互にオン・オフさせ、第2トランジスタをオンさせ
た時から所定の期間及び第2トランジスタをオンさせた
ことに基づいて前記MOSゲート形素子のゲート電圧が
所定の値以下になったときに第3トランジスタをオンさ
せるものとする。
A third aspect of the present invention is a drive circuit for a MOS gate type element constituting a main circuit of a semiconductor power converter, wherein the drive circuit includes a first transistor, a second transistor, a third transistor and a control circuit. And a first transistor and a second transistor connected in series between one end of the power source of the drive circuit and the source terminal or the emitter terminal of the MOS gate type element, and the first transistor and the second transistor.
The connection point of the transistor and the gate terminal of the MOS gate type element are connected to each other, the third transistor is connected in parallel to both ends of the second transistor, and the control circuit controls the first transistor and the second transistor based on the input drive signal. The gate voltage of the MOS-gated element becomes less than or equal to a predetermined value based on turning on and off the transistor alternately and turning on the second transistor for a predetermined period from turning on the second transistor. Sometimes the third transistor is turned on.

【0013】この発明によれば、後述の如く、電力変換
器の主回路を構成するMOSゲート形素子のターンオン
時間・ターンオフ時間の双方、又はターンオン若しくは
ターンオフのいずれか一方の時間を短くしつつ、該MO
Sゲート形素子のスイッチング動作に伴うノイズを抑制
することができる。
According to the present invention, as will be described later, while shortening both the turn-on time and the turn-off time of the MOS gate type element which constitutes the main circuit of the power converter, or either one of the turn-on time and the turn-off time, The MO
Noise associated with the switching operation of the S-gate element can be suppressed.

【0014】[0014]

【発明の実施の形態】図1は、この発明の第1の実施例
を示す電力変換器の回路構成図であり、図5に示した従
来例回路と同一機能を有するものには同一符号を付して
いる。すなわち図1において、IGBT1の駆動回路2
0には第1トランジスタとしてのPチャネルのMOSF
ET21と、第2トランジスタとしてのNチャネルのM
OSFET22と、第3トランジスタとしてのNチャネ
ルのMOSFET23と、第4トランジスタとしてのN
チャネルのMOSFET24と、制御回路25とを備え
ている。この制御回路25はバッファ素子26,27と
反転素子28と入力される信号の立ち上がり時に所定の
時間動作するワンショット回路29,30と比較器31
とアンド素子32とオア素子33とから構成されてい
る。
1 is a circuit configuration diagram of a power converter showing a first embodiment of the present invention, and those having the same functions as those of the conventional circuit shown in FIG. Attached. That is, in FIG. 1, the drive circuit 2 of the IGBT 1
0 is a P-channel MOSF as the first transistor
ET21 and N-channel M as the second transistor
OSFET 22, N-channel MOSFET 23 as a third transistor, and N as a fourth transistor
A channel MOSFET 24 and a control circuit 25 are provided. The control circuit 25 includes buffer elements 26 and 27, an inversion element 28, and one-shot circuits 29 and 30 that operate for a predetermined time at the rising edge of a signal input thereto and a comparator 31.
And an AND element 32 and an OR element 33.

【0015】図1に示した駆動回路20の動作を、図2
に示す動作波形図を参照しつつ、以下に説明する。な
お、図2の動作波形を具現するためのMOSFET21
〜24の選定条件として、MOSFET21,22はオ
ン抵抗の比較的大きい素子とし、MOSFET23,2
4はオン抵抗の比較的小さい素子としている。
The operation of the drive circuit 20 shown in FIG.
A description will be given below with reference to the operation waveform diagram shown in FIG. In addition, the MOSFET 21 for realizing the operation waveform of FIG.
As a selection condition of 24 to 24, the MOSFETs 21 and 22 are elements having a relatively large on-resistance, and the MOSFETs 23 and 2 are
The element 4 has a relatively small on-resistance.

【0016】先ず、駆動信号(図2(イ)参照)が図示
の如くHighからLowに変化してIGBT1にオン
指令が発せられると、バッファ素子26(図2(ロ)参
照)によりMOSFET21がオン状態となり、ワンシ
ョット回路29(図2(ハ)参照)によりMOSFET
23も振幅VH のゲート電圧でオン状態となり、その結
果、IGBT1のゲート電圧VGE(図2(ホ)参照)は
急速に立ち上がり、IGBT1の閾値VG1を超えて平坦
期間(IGBT1のミラー容量充電期間)に入りつつ、
IGBT1がターンオン動作を開始する。
First, when the drive signal (see FIG. 2A) changes from High to Low as shown and an ON command is issued to the IGBT 1, the MOSFET 21 is turned on by the buffer element 26 (see FIG. 2B). Then, the one-shot circuit 29 (see FIG. 2C) turns on the MOSFET.
23 is also turned on by the gate voltage of the amplitude V H , and as a result, the gate voltage V GE of the IGBT 1 (see FIG. 2E) rises rapidly and exceeds the threshold value V G1 of the IGBT 1 for a flat period (the mirror capacitance of the IGBT 1). Charging period),
The IGBT1 starts the turn-on operation.

【0017】このミラー容量充電期間は、ワンショット
回路29の時限T2 を、図示の如くT1 より若干大きく
設定し、振幅VH はIGBT1の閾値VG1を超えない値
に設定することにより、T1 の間のゲート容量充電にM
OSFET21,23が寄与してこの時間の短縮が図ら
れ、その後、IGBT1のゲート電圧がVG1に近づくに
つれてMOSFET23のゲート・ソース間電圧はMO
SFET23の閾値に近づきオフするため、IGBT1
のゲート電圧がVG1以上の領域ではMOSFET21の
みがオン状態となり、その結果、図示の如くIGBT1
のゲート電圧VGEのdV/dtが小さくなり、IGBT
1のコレクタ電流IC (図2(ト)の太実線)及びコレ
クタ−エミッタ電圧VCE(図2(ト)の細実線)の変化
が緩やかになる。
During this mirror capacitance charging period, the time period T 2 of the one-shot circuit 29 is set to be slightly larger than T 1 as shown in the figure, and the amplitude V H is set to a value that does not exceed the threshold V G1 of the IGBT 1. M to charge the gate capacitance during T 1
The OSFETs 21 and 23 contribute to reduce this time. After that, as the gate voltage of the IGBT1 approaches V G1 , the gate-source voltage of the MOSFET 23 becomes MO.
The IGBT1 is turned off as it approaches the threshold value of the SFET23.
In a region where the gate voltage of V G1 is V G1 or more, only the MOSFET 21 is turned on. As a result, as shown in the figure, the IGBT 1
DV / dt of the gate voltage V GE of
The collector current I C (thick solid line in FIG. 2G) and the collector-emitter voltage V CE (thin solid line in FIG. 2G) change gradually.

【0018】次に、駆動信号(図2(イ)参照)が図示
の如くLowからHigh変化してIGBT1にオフ指
令が発せられると、バッファ素子27(図2(ロ)参
照)によりMOSFET22がオン状態となり、ワンシ
ョット回路30とオア素子33(図2(ニ)参照)とに
よりMOSFET24もオン状態となり、その結果、I
GBT1のゲート電圧VGE(図2(ホ)参照)は急速に
立ち下がり、平坦期間(IGBT1のミラー容量放電期
間)を若干残しつつ、IGBT1がターンオフ動作を開
始する。
Next, when the drive signal (see FIG. 2 (a)) changes from Low to High as shown and an off command is issued to the IGBT 1, the buffer element 27 (see FIG. 2 (b)) turns on the MOSFET 22. Then, the one-shot circuit 30 and the OR element 33 (see FIG. 2D) also turn on the MOSFET 24. As a result, I
The gate voltage V GE of the IGBT 1 (see FIG. 2 (E)) rapidly falls, and the IGBT 1 starts the turn-off operation while leaving a slight flat period (the mirror capacitance discharge period of the IGBT 1).

【0019】このミラー容量放電期間は、ワンショット
回路30の時限T3 を図示の如く設定することにより短
縮することができ、ワンショット回路30の時限T3
達した後は、一旦MOSFET22のみがオン状態とな
り、その結果、図示の如くIGBT1のゲート電圧VGE
のdV/dtが小さくなり、IGBT1のコレクタ電流
C (図2(ト)の太実線)及びコレクタ−エミッタ電
圧VCE(図2(ト)の細実線)の変化が緩やかになる。
This mirror capacity discharge period can be shortened by setting the time period T 3 of the one-shot circuit 30 as shown in the figure. After reaching the time period T 3 of the one-shot circuit 30, only the MOSFET 22 is temporarily turned on. As a result, the gate voltage V GE of the IGBT 1 is turned on as shown in the figure.
DV / dt becomes smaller, and the collector current I C of the IGBT 1 (thick solid line in FIG. 2G) and the collector-emitter voltage V CE (thin solid line in FIG. 2G) change gradually.

【0020】なお、図1に示した比較器31は、駆動信
号が変化してゲート電圧VGEがVG2まで下降すると動作
をし(図2(ホ)参照)、その結果、アンド素子32と
オア素子33とを介して、再度MOSFET24がオン
してゲート電圧VGEの下降を速め、IGBT1のターン
オフ時間を短縮してオフ保持するために供されている。
また、IGBT1がターンオンするときには、比較器3
1の出力に関わらず、オン駆動信号の入力により、アン
ド素子32とオア素子33とを介してMOSFET24
がオフする。
The comparator 31 shown in FIG. 1 operates when the drive signal changes and the gate voltage V GE drops to V G2 (see FIG. 2 (E)). The MOSFET 24 is turned on again via the OR element 33 to accelerate the fall of the gate voltage V GE , shorten the turn-off time of the IGBT 1 and hold it off.
When the IGBT 1 turns on, the comparator 3
Irrespective of the output of No. 1, the input of the ON drive signal causes the MOSFET 24 to pass through the AND element 32 and the OR element 33.
Turns off.

【0021】図3は、この発明の第2の実施例を示す電
力変換器の回路構成図であり、図1に示した第1の実施
例回路と同一機能を有するものには同一符号を付してい
る。すなわち図3において、IGBT1の駆動回路40
には第1トランジスタとしてのPチャネルのMOSFE
T21と、第2トランジスタとしてのNチャネルのMO
SFET41と、第3トランジスタとしてのNチャネル
のMOSFET23と、制御回路42とを備えている。
この制御回路42はバッファ素子26,43と反転素子
28とワンショット回路29とから構成されている。な
お、MOSFET41のオン抵抗は比較的小さい値又は
一般的な値のものが選定される。 この駆動回路40で
は、図2の左半面の動作波形と同様にIGBT1のター
ンオン動作は緩やかにし、ターンオフ動作はより速く行
うようにしている。例えば図示しないインバータなどの
電力変換器において、MOSゲート形素子と逆並列され
たダイオードの逆回復時のノイズをより低減するときに
好適である。
FIG. 3 is a circuit configuration diagram of a power converter showing a second embodiment of the present invention. Components having the same functions as those of the first embodiment circuit shown in FIG. 1 are designated by the same reference numerals. is doing. That is, in FIG. 3, the drive circuit 40 of the IGBT 1
Is a P-channel MOSFE as the first transistor
T21 and N-channel MO as the second transistor
An SFET 41, an N-channel MOSFET 23 as a third transistor, and a control circuit 42 are provided.
The control circuit 42 includes buffer elements 26 and 43, an inverting element 28, and a one-shot circuit 29. The ON resistance of the MOSFET 41 is selected to be a relatively small value or a general value. In this drive circuit 40, the turn-on operation of the IGBT 1 is made gentle and the turn-off operation is made faster, similar to the operation waveform of the left half surface of FIG. For example, in a power converter such as an inverter (not shown), it is suitable for further reducing noise at the time of reverse recovery of a diode antiparallel to a MOS gate type element.

【0022】図4は、この発明の第3の実施例を示す電
力変換器の回路構成図であり、図1に示した第1の実施
例回路と同一機能を有するものには同一符号を付してい
る。すなわち図4において、IGBT1の駆動回路50
には第1トランジスタとしてのPチャネルのMOSFE
T51と、第2トランジスタとしてのNチャネルのMO
SFET22と、第3トランジスタとしてのNチャネル
のMOSFET24と、制御回路52とを備えている。
この制御回路52はバッファ素子27,53と、ワンシ
ョット回路30と、比較器31と、アンド素子32と、
オア素子33とから構成されている。なお、MOSFE
T51のオン抵抗は比較的小さい値又は一般的な値のも
のが選定される。
FIG. 4 is a circuit configuration diagram of a power converter showing a third embodiment of the present invention. Components having the same functions as those of the first embodiment circuit shown in FIG. 1 are designated by the same reference numerals. is doing. That is, in FIG. 4, the drive circuit 50 of the IGBT 1
Is a P-channel MOSFE as the first transistor
T51 and N-channel MO as the second transistor
It is provided with an SFET 22, an N-channel MOSFET 24 as a third transistor, and a control circuit 52.
The control circuit 52 includes buffer elements 27 and 53, a one-shot circuit 30, a comparator 31, an AND element 32,
It is composed of an OR element 33. In addition, MOSFE
The on resistance of T51 is selected to be a relatively small value or a general value.

【0023】この駆動回路50では、図2の右半面の動
作波形と同様にIGBT1のターンオフ動作は緩やかに
し、ターンオン動作はより速く行うようにしている。例
えばMOSゲート形素子のターンオフのみをより緩やか
にしたい用途に好適である。
In the drive circuit 50, the turn-off operation of the IGBT 1 is made gentle and the turn-on operation is made faster, as in the operation waveform on the right half surface of FIG. For example, it is suitable for an application in which only turn-off of a MOS gate type element is desired to be more gradual.

【0024】[0024]

【発明の効果】この発明によれば、インバータ,スイッ
チングレギュレータなどの電力変換器の主回路を構成す
るMOSゲート形素子のターンオン時間・ターンオフ時
間の双方、又はターンオン若しくはターンオフのいずれ
か一方の時間を短くしつつ、該MOSゲート形素子のス
イッチング動作に伴うノイズを抑制することができる。
According to the present invention, both the turn-on time and the turn-off time of the MOS gate type element which constitutes the main circuit of the power converter such as the inverter and the switching regulator, or either one of the turn-on time and the turn-off time is set. It is possible to suppress the noise due to the switching operation of the MOS gate type element while shortening it.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例を示す回路構成図FIG. 1 is a circuit configuration diagram showing a first embodiment of the present invention.

【図2】図1の動作を説明する波形図FIG. 2 is a waveform diagram illustrating the operation of FIG.

【図3】この発明の第2の実施例を示す回路構成図FIG. 3 is a circuit configuration diagram showing a second embodiment of the present invention.

【図4】この発明の第3の実施例を示す回路構成図FIG. 4 is a circuit configuration diagram showing a third embodiment of the present invention.

【図5】従来例を示す回路構成図FIG. 5 is a circuit configuration diagram showing a conventional example.

【図6】図5の動作を説明する波形図6 is a waveform diagram illustrating the operation of FIG.

【符号の説明】[Explanation of symbols]

1…IGBT、2…誘導性負荷、3…環流ダイオード、
10,20,40,50…駆動回路、11〜13,21
〜24,41,51…MOSFET、14,25,4
2,52…制御回路。
1 ... IGBT, 2 ... inductive load, 3 ... freewheeling diode,
10, 20, 40, 50 ... Driving circuits 11 to 13, 21
~ 24, 41, 51 ... MOSFET, 14, 25, 4
2, 52 ... Control circuit.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体電力変換器の主回路を構成するMO
Sゲート形素子の駆動回路であって、 該駆動回路には第1トランジスタと第2トランジスタと
第3トランジスタと第4トランジスタと制御回路とを備
え、 前記駆動回路の電源の一端と前記MOSゲート形素子の
ソース端子又はエミッタ端子との間に、第1トランジス
タと第2トランジスタとを直列に接続すると共に、第3
トランジスタと第4トランジスタとを直列に接続し、 第1トランジスタと第2トランジスタの接続点と、第3
トランジスタと第4トランジスの接続点と、前記MOS
ゲート形素子のゲート端子とを接続し、 前記制御回路は入力される駆動信号に基づいて第1トラ
ンジスタと第2トランジスタとを交互にオン・オフさ
せ、第1トランジスタをオンさせた時から所定の期間の
み所定の振幅で第3トランジスタをオンさせ、第2トラ
ンジスタをオンさせた時から所定の期間及び第2トラン
ジスタをオンさせたことに基づいて前記MOSゲート形
素子のゲート電圧が所定の値以下になったときに第4ト
ランジスタをオンさせることを特徴とするMOSゲート
形素子の駆動回路。
1. An MO constituting a main circuit of a semiconductor power converter.
A drive circuit for an S-gate type element, the drive circuit comprising a first transistor, a second transistor, a third transistor, a fourth transistor and a control circuit, wherein one end of a power source of the drive circuit and the MOS gate type The first transistor and the second transistor are connected in series between the source terminal or the emitter terminal of the element, and the third transistor
A transistor and a fourth transistor are connected in series, and a connection point between the first transistor and the second transistor and a third transistor
The connection point between the transistor and the fourth transistor, and the MOS
The gate terminal of the gate-type element is connected to the control circuit, and the control circuit alternately turns on and off the first transistor and the second transistor based on the input drive signal, and a predetermined time has passed since the first transistor was turned on. The third transistor is turned on with a predetermined amplitude only for a period, and the gate voltage of the MOS gate type element is equal to or less than a predetermined value based on the second transistor being turned on for a predetermined period from when the second transistor is turned on. A drive circuit for a MOS gate type element, wherein the fourth transistor is turned on when it is turned on.
【請求項2】半導体電力変換器の主回路を構成するMO
Sゲート形素子の駆動回路であって、 該駆動回路には第1トランジスタと第2トランジスタと
第3トランジスタと制御回路とを備え、 前記駆動回路の電源の一端と前記MOSゲート形素子の
ソース端子又はエミッタ端子との間に、第1トランジス
タと第2トランジスタとを直列に接続し、 第1トランジスタと第2トランジスタの接続点と前記M
OSゲート形素子のゲート端子とを接続し、 第1トランジスタの両端に第3トランジスタを並列接続
し、 前記制御回路は入力される駆動信号に基づいて第1トラ
ンジスタと第2トランジスタとを交互にオン・オフさ
せ、第1トランジスタをオンさせた時から所定の期間の
み所定の振幅で第3トランジスタをオンさせることを特
徴とするMOSゲート形素子の駆動回路。
2. An MO constituting a main circuit of a semiconductor power converter.
A driving circuit for an S-gate type element, wherein the driving circuit includes a first transistor, a second transistor, a third transistor and a control circuit, one end of a power source of the driving circuit and a source terminal of the MOS gate type element. Alternatively, a first transistor and a second transistor are connected in series between an emitter terminal and a connection point between the first transistor and the second transistor and the M
The gate terminal of the OS gate type element is connected, the third transistor is connected in parallel to both ends of the first transistor, and the control circuit alternately turns on the first transistor and the second transistor based on the input drive signal. A drive circuit for a MOS gate type element characterized in that the third transistor is turned on with a predetermined amplitude only for a predetermined period from when the first transistor is turned off and when the first transistor is turned on.
【請求項3】半導体電力変換器の主回路を構成するMO
Sゲート形素子の駆動回路であって、 該駆動回路には第1トランジスタと第2トランジスタと
第3トランジスタと制御回路とを備え、 前記駆動回路の電源の一端と前記MOSゲート形素子の
ソース端子又はエミッタ端子との間に、第1トランジス
タと第2トランジスタとを直列に接続し、 第1トランジスタと第2トランジスタの接続点と前記M
OSゲート形素子のゲート端子とを接続し、 第2トランジスタの両端に第3トランジスタを並列接続
し、 前記制御回路は入力される駆動信号に基づいて第1トラ
ンジスタと第2トランジスタとを交互にオン・オフさ
せ、第2トランジスタをオンさせた時から所定の期間及
び第2トランジスタをオンさせたことに基づいて前記M
OSゲート形素子のゲート電圧が所定の値以下になった
ときに第3トランジスタをオンさせることを特徴とする
MOSゲート形素子の駆動回路。
3. An MO constituting a main circuit of a semiconductor power converter.
A driving circuit for an S-gate type element, wherein the driving circuit includes a first transistor, a second transistor, a third transistor and a control circuit, one end of a power source of the driving circuit and a source terminal of the MOS gate type element. Alternatively, a first transistor and a second transistor are connected in series between an emitter terminal and a connection point between the first transistor and the second transistor and the M
The gate terminal of the OS gate type element is connected, the third transistor is connected in parallel to both ends of the second transistor, and the control circuit alternately turns on the first transistor and the second transistor based on the input drive signal. The M based on the second transistor being turned on for a predetermined period from when the second transistor was turned off.
A drive circuit for a MOS gate type element, wherein a third transistor is turned on when the gate voltage of the OS gate type element becomes equal to or lower than a predetermined value.
JP25441797A 1997-09-19 1997-09-19 MOS gate type element driving circuit Expired - Lifetime JP3430878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25441797A JP3430878B2 (en) 1997-09-19 1997-09-19 MOS gate type element driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25441797A JP3430878B2 (en) 1997-09-19 1997-09-19 MOS gate type element driving circuit

Publications (2)

Publication Number Publication Date
JPH1197994A JPH1197994A (en) 1999-04-09
JP3430878B2 true JP3430878B2 (en) 2003-07-28

Family

ID=17264697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25441797A Expired - Lifetime JP3430878B2 (en) 1997-09-19 1997-09-19 MOS gate type element driving circuit

Country Status (1)

Country Link
JP (1) JP3430878B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102694A (en) * 2013-03-05 2013-05-23 Denso Corp Electronic apparatus
US8687327B2 (en) 2010-09-24 2014-04-01 Denso Corporation Electronic system for converting DC voltage into AC voltage

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3736227B2 (en) * 1999-09-20 2006-01-18 富士電機デバイステクノロジー株式会社 Drive circuit
JP3885563B2 (en) * 2001-11-16 2007-02-21 日産自動車株式会社 Power semiconductor drive circuit
JP2004096318A (en) * 2002-08-30 2004-03-25 Mitsubishi Electric Corp Semiconductor device for electric power
JP4909684B2 (en) * 2006-09-06 2012-04-04 三菱電機株式会社 Semiconductor device
JP5401774B2 (en) * 2007-08-27 2014-01-29 富士電機株式会社 Semiconductor device gate drive circuit
JP5297634B2 (en) * 2007-11-21 2013-09-25 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Motor drive circuit, fan motor, electronic device, and notebook personal computer
JP5163436B2 (en) * 2008-11-12 2013-03-13 トヨタ自動車株式会社 Semiconductor drive device
JP5206757B2 (en) * 2010-10-07 2013-06-12 株式会社デンソー Electronic equipment
KR101297460B1 (en) * 2012-04-24 2013-08-16 엘에스산전 주식회사 Apparatus for driving gate
JP2016027775A (en) * 2014-06-27 2016-02-18 サンケン電気株式会社 Switching power supply device
WO2018047561A1 (en) * 2016-09-09 2018-03-15 富士電機株式会社 Drive circuit for power element
JP2019134622A (en) * 2018-02-01 2019-08-08 ローム株式会社 Driver circuit and switching regulator
JP7210912B2 (en) * 2018-06-27 2023-01-24 株式会社デンソー Switching device driver
JPWO2022244387A1 (en) * 2021-05-21 2022-11-24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8687327B2 (en) 2010-09-24 2014-04-01 Denso Corporation Electronic system for converting DC voltage into AC voltage
JP2013102694A (en) * 2013-03-05 2013-05-23 Denso Corp Electronic apparatus

Also Published As

Publication number Publication date
JPH1197994A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
JP3430878B2 (en) MOS gate type element driving circuit
JP4432215B2 (en) Semiconductor switching element gate drive circuit
JP3067687B2 (en) IGBT drive circuit
EP2164155A1 (en) Electronic element driving circuit
JP2005045590A (en) Semiconductor device
JP2001094406A (en) Drive circuit
JPH07264039A (en) Semiconductor logic circuit and semiconductor integrated circuit device using the same
JP4909684B2 (en) Semiconductor device
JPH0947015A (en) Driver circuit for self-extinguishing semiconductor device
JP2016208089A (en) Gate drive circuit for voltage driven semiconductor device
CN113497610A (en) Gate drive circuit capable of reducing conduction loss of power semiconductor
JPH1051285A (en) Drive circuit for voltage controlled transistor
JP3568848B2 (en) Gate circuit of insulated gate semiconductor device
US6813169B2 (en) Inverter device capable of reducing through current
JP2020036424A (en) Gate driving circuit and voltage driven type wide gap semiconductor driving method
JPH01133414A (en) Cascode bimos driving circuit
JP2018074676A (en) Gate drive circuit
JP2001025259A (en) Pwm inverter
JPH0446486B2 (en)
JP2001274665A (en) Drive method and drive circuit for voltage drive element
JPH10209832A (en) Semiconductor switch circuit
JP2000083370A (en) Gate drive circuit in power converter
US20200235727A1 (en) Switching element drive device
JP2000014127A (en) Gate drive circuit for voltage driven semiconductor device
JPH0583100A (en) Drive circuit for mosfet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term