JPH11210469A - Cylinder injection type spark ignition engine - Google Patents
Cylinder injection type spark ignition engineInfo
- Publication number
- JPH11210469A JPH11210469A JP10010120A JP1012098A JPH11210469A JP H11210469 A JPH11210469 A JP H11210469A JP 10010120 A JP10010120 A JP 10010120A JP 1012098 A JP1012098 A JP 1012098A JP H11210469 A JPH11210469 A JP H11210469A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- fuel
- ignition engine
- wall surface
- spark ignition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/08—Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
- F02B23/10—Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
- F02B23/104—Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/12—Other methods of operation
- F02B2075/125—Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は特に成層燃焼時の点
火プラグのくすぶりと排気エミッションを低減する筒内
噴射式火花点火機関に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-cylinder injection spark ignition engine for reducing smoldering of an ignition plug and exhaust emission during stratified charge combustion.
【0002】[0002]
【従来の技術】火花点火式内燃機関では燃費の向上と排
気ガスの低公害化を目的として、気筒内に直接燃料を噴
射する筒内噴射方式が注目されている。図19に代表的
な筒内噴射機関の構成図を示す。この方式では点火プラ
グ8は通常気筒6の上部中央に配置し、ピストン4の頂
部の吸気管9a,9b側には凹溝1を設ける。凹溝1の
排気管側壁面1aの位置は、点火プラグ8の下方に設置
される。燃料噴射弁5は気筒6の上部の吸気管側に設置
される。吸気管9bにはスワールコントロールバルブ2
が設けてあり、このバルブはエンジンの負荷に応じて駆
動機構(図示せず)により開閉可能となっている。エンジ
ン負荷が低負荷または中負荷の場合、スワールコントロ
ールバルブ2が駆動機構により閉じられ、吸気行程で吸
気管9aからのみ空気が気筒6内に導入され、この結果
気筒6内には気筒軸周りの旋回流が発生する。圧縮行程
の後期で燃料噴射弁5より直径数+μmに微粒化した燃
料が凹溝1内へ向かって噴射される。このときの燃料噴
射量は、吸入した空気質量に対し、概ね1/25〜1/
50である。燃料は旋回流の働きによって気化されつつ
凹溝1内を回転し、点火プラグ8の近傍に運ばれる。こ
の結果、点火プラグ周りに比較的燃料濃度の高い混合気
が形成され、平均空燃比25〜50の希薄混合気であっ
ても、安定に着火し、燃焼させることができる。このよ
うな方式の筒内噴射式火花点火機関は例えば特開平4−9
4416号,特開平5−18245号,特開平5−256137号に記載
されている。2. Description of the Related Art In a spark ignition type internal combustion engine, an in-cylinder injection system for directly injecting fuel into a cylinder has been attracting attention for the purpose of improving fuel efficiency and reducing pollution of exhaust gas. FIG. 19 shows a configuration diagram of a typical direct injection engine. In this system, the spark plug 8 is usually arranged at the center of the upper part of the cylinder 6, and the concave portion 1 is provided at the top of the piston 4 on the side of the intake pipes 9a and 9b. The position of the exhaust pipe side wall surface 1 a of the concave groove 1 is installed below the ignition plug 8. The fuel injection valve 5 is installed on the intake pipe side above the cylinder 6. A swirl control valve 2 is provided on the intake pipe 9b.
This valve can be opened and closed by a drive mechanism (not shown) according to the load of the engine. When the engine load is low load or medium load, the swirl control valve 2 is closed by the drive mechanism, and air is introduced into the cylinder 6 only from the intake pipe 9a during the intake stroke. A swirling flow occurs. In the latter half of the compression stroke, fuel atomized to a number of diameters + μm from the fuel injection valve 5 is injected into the concave groove 1. The fuel injection amount at this time is approximately 1/25 to 1 /
50. The fuel rotates in the groove 1 while being vaporized by the action of the swirling flow, and is carried near the spark plug 8. As a result, an air-fuel mixture having a relatively high fuel concentration is formed around the ignition plug, and even a lean air-fuel mixture having an average air-fuel ratio of 25 to 50 can be stably ignited and burned. An in-cylinder injection spark ignition engine of this type is disclosed in, for example,
No. 4416, JP-A-5-18245 and JP-A-5-256137.
【0003】[0003]
【発明が解決しようとする課題】ところで、このような
筒内噴射式火花点火機関では、低負荷または中負荷運転
時に圧縮行程後期で燃料を噴射するために燃料の気化時
間が短く、点火時期において充分に気化した混合気を得
るためには、非常に細かく微粒化した燃料を筒内に供給
しなければならない。また、燃料の噴射期間もできるだ
け短く取る必要があるため、燃料の噴射速度は従来のポ
ート噴射方式に比べ高速となる。この場合、空気との混
合が充分になされず非常に燃料濃度の高い混合気が点火
プラグ近傍に到達することになり、点火時期の制御性の
悪化や、点火プラグのくすぶり,すすなどが発生する恐
れがある。By the way, in such a direct injection type spark ignition engine, fuel is injected late in the compression stroke at the time of low load or medium load operation, so that the fuel vaporization time is short, and the ignition timing is low. In order to obtain a sufficiently vaporized mixture, very finely atomized fuel must be supplied into the cylinder. Further, since the injection period of the fuel needs to be as short as possible, the injection speed of the fuel is higher than that of the conventional port injection system. In this case, the mixture with the air is not sufficiently mixed, and the mixture having a very high fuel concentration reaches the vicinity of the spark plug, and the controllability of the ignition timing is deteriorated, and the smolder and soot of the spark plug occur. There is fear.
【0004】[0004]
【課題を解決するための手段】上記の課題を克服するた
めに本発明における第一の筒内噴射式火花点火機関で
は、ピストンの凹溝の排気管側壁面を点火プラグの下方
に、吸気管側壁面を燃料噴射弁の下方に配置し、凹溝の
排気管側底面に凸部を設ける。凸部の吸気管側を垂直な
壁面とし、凸部の旋回流上流側及び下流側を凹溝となだ
らかに繋がる斜面で構成する。低負荷,中負荷運転時に
圧縮行程の後期で、凸部の吸気管側壁面を跨るように燃
料噴射弁の噴射方向を定める。In order to overcome the above-mentioned problems, in a first direct injection type spark ignition engine according to the present invention, a side wall surface of an exhaust pipe of a concave groove of a piston is positioned below a spark plug and an intake pipe. The side wall surface is disposed below the fuel injection valve, and a convex portion is provided on the bottom surface of the concave groove on the exhaust pipe side. The intake pipe side of the convex portion is a vertical wall surface, and the upstream and downstream sides of the swirl flow of the convex portion are formed by slopes smoothly connected to the concave grooves. In the latter half of the compression stroke during low-load and medium-load operation, the injection direction of the fuel injector is determined so as to straddle the intake pipe side wall surface of the projection.
【0005】また、本発明における第二の筒内噴射式火
花点火機関では、ピストンの凹溝の排気管側壁面を点火
プラグの下方に、吸気管側壁面を燃料噴射弁の下方に配
置し、凹溝の吸気管側底面に凸部を設ける。凸部の旋回
流上流側及び下流側を凹溝となだらかに繋がる斜面で構
成する。低負荷,中負荷運転時に圧縮行程の後期で、凸
部の排気側と凹溝の境界を跨るように燃料噴射弁の噴射
方向を定める。In the second direct injection type spark ignition engine of the present invention, the exhaust pipe side wall surface of the concave groove of the piston is disposed below the ignition plug, and the intake pipe side wall surface is disposed below the fuel injection valve. A convex portion is provided on the bottom surface of the concave groove on the intake pipe side. The upstream and downstream sides of the swirling flow of the convex portion are formed by slopes that smoothly connect to the concave grooves. In the latter half of the compression stroke during low-load and medium-load operation, the injection direction of the fuel injection valve is determined so as to straddle the boundary between the exhaust side of the projection and the groove.
【0006】また、本発明における第三の筒内噴射式火
花点火機関では、ピストンの凹溝の排気管側壁面を点火
プラグの下方に、吸気管側壁面を燃料噴射弁の下方に配
置し、凹溝の吸気管側底面に凸部を設ける。凸部の旋回
流上流側及び下流側を凹溝となだらかに繋がる斜面で構
成する。凸部の排気管側に凸部表面近傍の空気の吸気管
側から排気管側に向けての空気の流れを遮蔽する構造を
設ける。低負荷,中負荷運転時に圧縮行程の後期で、凸
部の排気側と凹溝の境界を跨るように燃料噴射弁の噴射
方向を定める。In the third direct injection type spark ignition engine of the present invention, the side wall surface of the exhaust pipe in the groove of the piston is disposed below the ignition plug, and the side wall surface of the intake pipe is disposed below the fuel injection valve. A convex portion is provided on the bottom surface of the concave groove on the intake pipe side. The upstream and downstream sides of the swirling flow of the convex portion are formed by slopes that smoothly connect to the concave grooves. A structure is provided on the exhaust pipe side of the projection to block the flow of air near the surface of the projection from the intake pipe side to the exhaust pipe side. In the latter half of the compression stroke during low-load and medium-load operation, the injection direction of the fuel injection valve is determined so as to straddle the boundary between the exhaust side of the projection and the groove.
【0007】また、本発明における第四の筒内噴射式火
花点火機関では、ピストンの凹溝の排気管側壁面を点火
プラグの下方に、吸気管側壁面を燃料噴射弁の下方に配
置し、凹溝の吸気管側底面に凹部を設ける。凹部の旋回
流上流側及び下流側を凹溝となだらかに繋がる斜面で構
成する。低負荷,中負荷運転時に圧縮行程の後期で、凹
部の排気側と凹溝の境界を跨るように燃料噴射弁の噴射
方向を定める。In a fourth direct injection type spark ignition engine according to the present invention, the exhaust pipe side wall surface of the concave groove of the piston is disposed below the ignition plug, and the intake pipe side wall surface is disposed below the fuel injection valve. A concave portion is provided on the bottom surface of the concave groove on the intake pipe side. The upstream side and the downstream side of the swirling flow of the concave portion are constituted by slopes smoothly connected to the concave groove. In the latter half of the compression stroke during low-load and medium-load operation, the injection direction of the fuel injector is determined so as to straddle the boundary between the exhaust side of the recess and the groove.
【0008】また、本発明における第五の筒内噴射式火
花点火機関では、ピストンの凹溝の排気管側壁面を点火
プラグの下方に、吸気管側壁面を燃料噴射弁の下方に配
置し、圧縮行程の後期に噴射した燃料が凹溝の底面に向
かうように噴射弁の噴射方向を定める。凹溝壁面に沿っ
て点火プラグ方向へ上昇する燃料が、気筒の中心軸に平
行でかつ点火プラグと燃料噴射弁を通る平面に垂直な軸
周りに循環する流れを生成する手段を設ける。In the fifth direct injection type spark ignition engine of the present invention, the exhaust pipe side wall surface of the concave groove of the piston is disposed below the ignition plug, and the intake pipe side wall surface is disposed below the fuel injection valve. The injection direction of the injection valve is determined so that the fuel injected late in the compression stroke is directed to the bottom of the groove. Means are provided for generating a flow in which fuel rising in the direction of the spark plug along the groove wall circulates about an axis parallel to the central axis of the cylinder and perpendicular to a plane passing through the spark plug and the fuel injection valve.
【0009】前述の第一の筒内噴射式火花点火機関で
は、低負荷または中負荷運転時に圧縮行程の後期で、ピ
ストンの凹溝の排気管側に設けられた凸部の吸気管側壁
面を跨ぐように燃料噴射弁より燃料が噴射される。凸部
の上面に向けて噴射された燃料は、気筒軸周りの旋回流
によって気化しつつ点火プラグ近傍に運ばれる。一方、
凸部より吸気管側に噴射された燃料は、凹溝の底面に沿
って凸部の吸気管側壁面に衝突し、ここで旋回流の上流
側,下流側に向かい、凹溝内に広く分散する。これによ
って、点火プラグ周りに過度に燃料濃度の高い混合気が
生成されるのを防止できる。In the above-described first in-cylinder injection spark ignition engine, during a low-load or medium-load operation, in the latter stage of the compression stroke, the intake pipe side wall surface of the convex portion provided on the exhaust pipe side of the concave groove of the piston is removed. Fuel is injected from the fuel injection valve to straddle. The fuel injected toward the upper surface of the projection is transported to the vicinity of the spark plug while being vaporized by the swirling flow around the cylinder axis. on the other hand,
The fuel injected toward the intake pipe side from the projection collides with the intake pipe side wall surface of the projection along the bottom surface of the groove, where it flows toward the upstream and downstream sides of the swirling flow and is widely dispersed in the groove. I do. As a result, it is possible to prevent generation of an air-fuel mixture with an excessively high fuel concentration around the ignition plug.
【0010】また、前述の第二の筒内噴射式火花点火機
関では、低負荷または中負荷運転時に圧縮行程の後期
で、ピストンの凹溝の吸気管側に設けられた凸部の排気
管側と凹溝底面の境界を跨ぐように燃料噴射弁より燃料
が噴射される。凹溝の排気管側に向けて噴射された燃料
は、気筒軸周りの旋回流によって気化しつつ点火プラグ
近傍に運ばれる。一方、凸部に噴射された燃料は、旋回
流の上流側,下流側に分かれ凹溝内に広く分散する。こ
れによって、点火プラグ周りに過度に燃料濃度の高い混
合気が生成されるのを防止できる。In the above-described second in-cylinder injection type spark ignition engine, at the latter stage of the compression stroke during low load or medium load operation, the convex portion provided on the intake pipe side of the concave groove of the piston at the exhaust pipe side. The fuel is injected from the fuel injection valve so as to straddle the boundary between the groove and the bottom of the groove. The fuel injected toward the exhaust pipe side of the concave groove is conveyed to the vicinity of the ignition plug while being vaporized by the swirling flow around the cylinder axis. On the other hand, the fuel injected into the convex portion is divided into an upstream side and a downstream side of the swirling flow and widely dispersed in the concave groove. As a result, it is possible to prevent generation of an air-fuel mixture with an excessively high fuel concentration around the ignition plug.
【0011】また、前述の第三の筒内噴射式火花点火機
関では、前述の第二の筒内噴射式火花点火機関と同様の
作用に加え、凸部の表面近傍を吸気管側から排気管側に
向かって流れる燃料蒸気が、凸部の排気管側に設けた流
れ遮蔽構造によって、旋回流の上流側,下流側に分散
し、点火プラグに過度に燃料濃度の高い混合気が生成さ
れるのを防止できる。The third in-cylinder injection spark ignition engine described above has the same operation as the second in-cylinder injection spark ignition engine described above, and furthermore, the vicinity of the surface of the projection is changed from the intake pipe side to the exhaust pipe. The fuel vapor flowing toward the side is dispersed on the upstream side and the downstream side of the swirling flow by the flow shielding structure provided on the exhaust pipe side of the projection, and an air-fuel mixture with an excessively high fuel concentration is generated in the ignition plug. Can be prevented.
【0012】また、前述の第四の筒内噴射式火花点火機
関では、低負荷または中負荷運転時に圧縮行程の後期
で、ピストンの凹溝の吸気管側に設けられた凹部の排気
管側と凹溝底面の境界を跨ぐように燃料噴射弁より燃料
が噴射される。凹溝の排気管側に向けて噴射された燃料
は、気筒軸周りの旋回流によって気化しつつ点火プラグ
近傍に運ばれる。一方、凹部に噴射された燃料は、旋回
流の上流側,下流側に分かれ凹溝内に広く分散する。こ
れによって、点火プラグ周りに過度に燃料濃度の高い混
合気が生成されるのを防止できる。In the above-described fourth in-cylinder injection spark ignition engine, at the latter stage of the compression stroke during low load or medium load operation, the exhaust pipe side of the concave portion provided on the intake pipe side of the concave groove of the piston is connected. Fuel is injected from the fuel injection valve so as to straddle the boundary of the groove bottom. The fuel injected toward the exhaust pipe side of the concave groove is conveyed to the vicinity of the ignition plug while being vaporized by the swirling flow around the cylinder axis. On the other hand, the fuel injected into the concave portion is divided into the upstream side and the downstream side of the swirling flow and widely dispersed in the concave groove. As a result, it is possible to prevent generation of an air-fuel mixture with an excessively high fuel concentration around the ignition plug.
【0013】また、前述の第五の筒内噴射式火花点火機
関では、低負荷または中負荷運転時に圧縮行程の後期
で、ピストンの凹溝に向けて燃料噴射弁より燃料が噴射
される。凹溝内の燃料は気筒軸周りの旋回流によって気
化しつつ凹溝壁面に沿って点火プラグ方向へ上昇し、気
筒の中心軸に平行でかつ点火プラグと燃料噴射弁を通る
平面に垂直な軸周りに循環する。これにより、点火プラ
グの下方で燃料と空気の混合が促進されるとともに、ピ
ストンから点火プラグ方向へ向かう流れが抑制され、点
火プラグ周りに過度に燃料濃度の高い混合気が生成され
るのを防止できる。In the above-described fifth in-cylinder injection spark ignition engine, fuel is injected from the fuel injection valve toward the concave groove of the piston at the latter stage of the compression stroke during low load or medium load operation. The fuel in the groove rises toward the spark plug along the wall of the groove while being vaporized by the swirling flow around the cylinder axis, and is parallel to the central axis of the cylinder and perpendicular to the plane passing through the spark plug and the fuel injection valve. Circulate around. This promotes the mixing of fuel and air below the spark plug, suppresses the flow from the piston toward the spark plug, and prevents the formation of an excessively rich fuel-air mixture around the spark plug. it can.
【0014】[0014]
【発明の実施の形態】以下図面により、本発明の実施例
を説明する。図1は本発明による筒内噴射式火花点火機
関の第一実施例を示す縦断面図であり、図2はその概略
平面図、図3は図2におけるA−A断面を吸気管側から
見た断面図である。本エンジンの概略構成は図19に示
すように、2本の吸気管9a、9bと2本の排気管10
が気筒6の上部にあり、それぞれの吸気管と排気管に吸
気バルブ11と排気バルブ12が設けられた4弁エンジ
ンとなっている。吸気管9bにはスワールコントロール
バルブ2が設けられている。このスワールコントロール
バルブは駆動機構(図示せず)によって、低負荷または
中負荷運転時には閉じ、高負荷運転時には開くようにな
っている。気筒6の中心上部には、点火プラグ8が設け
られ、吸気管9a,9bの間に燃料噴射弁5が設けられ
ている。この燃料噴射弁5は、燃料を数十μmの大きさ
に微粒化して、気筒6内に円錐状に噴射するものであ
る。ピストン4の頂面の吸気管側寄りには、円形の凹溝
1が設けられている。凹溝1の排気管側壁面1aは凹溝
底面に対して鈍角を成す斜面で構成され、凹溝1の他の
側面は凹溝底面に対しほぼ直角となっている。本発明で
は、図1〜図3に示すように、凹溝1の底面の排気管1
0側に凸部13が設けられている。この凸部13の吸気
管側壁面13bは凹溝のほぼ中央部で、凹溝底面に対し
ほぼ直角の角度を成している。一方、凸部13の側面1
3a、13cはなだらかな勾配を持つ斜面によって、凹
溝1の底面と繋がっている。凸部13の排気管側は凹溝
1の排気管側壁面1aに繋がっている。また、凸部13
の上面は平面となっている。燃料噴射弁5の燃料噴射方
向は、図4に示すように、圧縮行程の後期において燃料
噴射弁5から噴射された円錐形状の燃料噴霧14が、凸
部13の吸気管側壁面13bを跨いで、凸部13の上面
と凹溝1の吸気管側底面の双方に供給されるように定め
られている。Embodiments of the present invention will be described below with reference to the drawings. 1 is a longitudinal sectional view showing a first embodiment of a direct injection type spark ignition engine according to the present invention, FIG. 2 is a schematic plan view thereof, and FIG. 3 is a sectional view taken along line AA in FIG. FIG. As shown in FIG. 19, the general configuration of the engine is such that two intake pipes 9a and 9b and two exhaust pipes 10 are provided.
Is provided above the cylinder 6, and is a four-valve engine in which an intake valve 11 and an exhaust valve 12 are provided in each intake pipe and exhaust pipe. The swirl control valve 2 is provided in the intake pipe 9b. The swirl control valve is closed by a drive mechanism (not shown) at the time of low load or medium load operation, and is opened at the time of high load operation. An ignition plug 8 is provided above the center of the cylinder 6, and a fuel injection valve 5 is provided between the intake pipes 9a and 9b. The fuel injection valve 5 atomizes the fuel to a size of several tens of μm and injects it into the cylinder 6 in a conical shape. A circular concave groove 1 is provided near the intake pipe side of the top surface of the piston 4. The exhaust pipe side wall surface 1a of the concave groove 1 is formed by a slope that forms an obtuse angle with respect to the concave groove bottom surface, and the other side surface of the concave groove 1 is substantially perpendicular to the concave groove bottom surface. In the present invention, as shown in FIGS.
The convex portion 13 is provided on the 0 side. The intake pipe side wall surface 13b of the convex portion 13 is substantially at the center of the concave groove and forms an angle substantially perpendicular to the concave groove bottom surface. On the other hand, the side surface 1 of the projection 13
3a and 13c are connected to the bottom surface of the groove 1 by a gentle slope. The exhaust pipe side of the projection 13 is connected to the exhaust pipe side wall surface 1 a of the concave groove 1. Also, the protrusion 13
Is a flat surface. As shown in FIG. 4, the fuel injection direction of the fuel injection valve 5 is such that the conical fuel spray 14 injected from the fuel injection valve 5 in the latter stage of the compression stroke straddles the intake pipe side wall surface 13 b of the projection 13. , And is supplied to both the upper surface of the convex portion 13 and the bottom surface of the concave groove 1 on the intake pipe side.
【0015】本実施例において、低負荷,中負荷運転時
には、スワールコントロールバルブ2が閉じられ、吸気
管9aから気筒6内へ空気が導入される。この結果、気
筒6内には気筒の軸周りの旋回流が発生する。ピストン
の表面近傍では、この旋回流は図5に示すようにピスト
ン頂面の凹溝1内で旋回する流れSとなる。凸部13の
旋回流上流側に当たる側面(壁面)13a及び下流側に
当たる側面(壁面)13cは、凹溝1の底面からなだら
かに傾斜しているため、凸部13による旋回流Sの乱れ
は小さく、圧縮行程の後期においても旋回流Sは消滅す
ることなく凹溝1内に存在し続ける。In this embodiment, during low load and medium load operation, the swirl control valve 2 is closed, and air is introduced into the cylinder 6 from the intake pipe 9a. As a result, a swirling flow around the axis of the cylinder is generated in the cylinder 6. In the vicinity of the surface of the piston, this swirling flow becomes a flow S that swirls in the concave groove 1 on the top surface of the piston as shown in FIG. Since the side surface (wall surface) 13a corresponding to the upstream side of the swirling flow and the side surface (wall surface) 13c corresponding to the downstream side of the convex portion 13 are gently inclined from the bottom surface of the concave groove 1, the disturbance of the swirling flow S due to the convex portion 13 is small. In the latter half of the compression stroke, the swirling flow S continues to exist in the groove 1 without disappearing.
【0016】吸気に引き続いて圧縮行程の後期に、燃料
噴射弁5より、凸部13の吸気管側壁面13bを跨い
で、凸部13の上面と、凹溝1の吸気管側底面に向かっ
て、吸入空気質量に対し1/25〜1/50の量の燃料
が噴射される。図5に示すように凸部13の上面に向け
て噴射した燃料F1は、気化しながら噴射時の慣性力に
よって凹溝1内を排気管側に進みつつ、旋回流Sによっ
て凹溝1の周方向に運ばれ、気筒中心近傍に到達する。
一方、凸部13の吸気管側壁面13bより吸気管側に向
けて噴射した燃料の一部F21は、気化しつつ噴射時の
慣性力によって凹溝1の底面近傍を排気管側に向かって
進み、凸部の吸気管側壁面13bに衝突する。凸部の吸
気管側壁面13bは凹溝1の底面に対し垂直となってい
るため、この壁面に衝突した燃料F21は減速しつつ該
壁面13bを乗り越え、凸部13の上面を通って気筒6
の中心近傍へ到達する。また、凸部13の吸気管側壁面
13bより吸気管側に向けて噴射した燃料の一部F22
は、気化しつつ噴射時の慣性力によって凹溝1の底面近
傍を排気管側に向かって進み、凸部の吸気管側壁面13b
に衝突する。この壁面に衝突した燃料F22は減速しつ
つ該壁面13bを乗り越え、凸部13の旋回流下流側に
当たる側面(壁面)13cに到達し、さらに旋回流Sに
よって該壁面13cを下降し、凹溝1の吸気管側に向か
う。In the latter stage of the compression stroke following the intake, the fuel injection valve 5 straddles the intake pipe side wall surface 13b of the projection 13 toward the upper surface of the projection 13 and the bottom surface of the groove 1 on the intake pipe side. The fuel is injected in an amount of 1/25 to 1/50 of the intake air mass. As shown in FIG. 5, the fuel F1 injected toward the upper surface of the projection 13 evaporates while passing through the groove 1 toward the exhaust pipe due to the inertia force at the time of injection, and is swirled by the swirling flow S. And arrives near the center of the cylinder.
On the other hand, a part F21 of the fuel injected toward the intake pipe side from the intake pipe side wall surface 13b of the convex portion 13 advances toward the exhaust pipe side near the bottom surface of the concave groove 1 due to inertia force at the time of injection while evaporating. Collides with the intake pipe side wall surface 13b of the projection. Since the intake pipe side wall surface 13b of the convex portion is perpendicular to the bottom surface of the concave groove 1, the fuel F21 colliding with this wall surface decelerates over the wall surface 13b while decelerating, and passes through the upper surface of the convex portion 13 to the cylinder 6
To the vicinity of the center of. Also, the side wall surface of the intake pipe of the projection 13
Part of fuel injected toward intake pipe side from 13b F22
Moves toward the exhaust pipe near the bottom surface of the concave groove 1 due to the inertia force at the time of injection while evaporating, and the intake pipe side wall surface 13b of the convex portion
Collide with The fuel F22 colliding with the wall surface decelerates over the wall surface 13b while decelerating, reaches a side surface (wall surface) 13c corresponding to the downstream side of the swirling flow of the projection 13, and further descends on the wall surface 13c by the swirling flow S to form the groove 1 Head toward the intake pipe.
【0017】以上の蒸気挙動を縦断面で示すと図6のよ
うになる。凸部13の上部に向けて噴射された燃料F1
が速やかに点火プラグ8の電極位置近傍に到達すること
によって、点火プラグ近傍に燃料濃度の高い混合気が生
成され、混合気へ確実に着火できる。一方、凹溝1の吸
気管側に向けて噴射された燃料F21は、凸部の吸気管
側壁面に衝突することによって、排気管側方向に向かう
速度が大きく減速し、凸部1の上部に向けて噴射された
燃料F1より遅れて気筒の中心へ向かう。この結果、点
火プラグ8に向かう燃料蒸気は図6のFで示すように長
い帯状の分布となる。また、図5で示したように凹溝1
の吸気管側に向けて噴射された燃料の一部は、気筒中心
に向かわず、旋回流によって、凹溝1の吸気管側へ拡散
していくため、点火プラグ8に向かう蒸気濃度は比較的
低くなる。一方、凸部13がなく凹溝1の底面が平坦で
ある従来法の場合には、図7に示すように凹溝1の底面
に向けて噴射された燃料の殆どが短時間で点火プラグ8
の電極部に到達する。この結果、蒸気は図7のF′で示
すように点火プラグの近傍に局所的に集中した分布とな
る。図8に点火プラグの電極部近傍の混合気の燃空比の
クランク角度に対する変化を示す。従来法では、点火プ
ラグの電極部に集中した蒸気が到達するため、時間の経
過と共に急速に燃空比が高くなり、理論混合比を大きく
超えてしまう。さらに上死点に近づくと、集中した蒸気
が点火プラグの電極部を通り過ぎるため、急速に燃空比
が下がる。一般的に燃焼速度は理論混合比近傍で最も速
くなるため、着火性とその後の火炎伝播性を良くするに
は、点火プラグ近傍の混合気が理論混合比であるときに
点火するのが望ましいが、従来法では点火プラグ近傍の
燃空比が図8のように急激に変化するため、着火時期の
制御が非常に困難となる。また、何らかの原因で着火が
遅れた場合には、点火プラグの電極部に非常に濃度の高
い混合気が生成され点火プラグのくすぶりやすすの発生
などの原因となる。一方、本発明では点火プラグへ向か
う蒸気が帯状の分布となり、かつ、凸部によって凹溝内
への蒸気拡散が促進されるため、点火プラグ周りの混合
気の燃空比は図8に示すように、クランク角度に対し緩
やかに変化する。このため、点火時期の制御が容易にな
り、また点火プラグのくすぶりやすすの発生を防止でき
るなどの効果がある。FIG. 6 shows the above vapor behavior in a longitudinal section. Fuel F1 injected toward the upper part of the projection 13
Quickly reaches the vicinity of the electrode position of the spark plug 8, a mixture having a high fuel concentration is generated near the ignition plug, and the mixture can be reliably ignited. On the other hand, the fuel F21 injected toward the intake pipe side of the concave groove 1 collides with the intake pipe side wall surface of the convex part, so that the velocity toward the exhaust pipe side is greatly reduced, and the fuel F21 is injected into the upper part of the convex part 1. It moves toward the center of the cylinder later than the fuel F1 injected toward the cylinder. As a result, the fuel vapor directed toward the ignition plug 8 has a long band-like distribution as shown by F in FIG. Also, as shown in FIG.
A part of the fuel injected toward the intake pipe side is not directed to the center of the cylinder, but is diffused toward the intake pipe side of the concave groove 1 by the swirling flow. Lower. On the other hand, in the case of the conventional method in which the convex portion 13 is not provided and the bottom surface of the concave groove 1 is flat, almost all of the fuel injected toward the bottom surface of the concave groove 1 has a short time as shown in FIG.
Reaches the electrode section. As a result, the steam has a locally concentrated distribution near the spark plug as shown by F 'in FIG. FIG. 8 shows a change in the fuel-air ratio of the air-fuel mixture near the electrode portion of the spark plug with respect to the crank angle. In the conventional method, since the concentrated steam reaches the electrode portion of the ignition plug, the fuel-air ratio rapidly increases with time and greatly exceeds the stoichiometric mixture ratio. Further, as the fuel gas approaches the top dead center, the concentrated steam passes through the electrode portion of the spark plug, and the fuel-air ratio decreases rapidly. In general, the combustion speed is highest near the stoichiometric mixture ratio, so to improve ignitability and subsequent flame propagation, it is desirable to ignite when the mixture near the spark plug has the stoichiometric mixture ratio. On the other hand, in the conventional method, since the fuel-air ratio in the vicinity of the ignition plug changes rapidly as shown in FIG. 8, it is very difficult to control the ignition timing. Also, if ignition is delayed for any reason, a highly concentrated air-fuel mixture is generated at the electrode portion of the spark plug, which may cause smoldering and soot of the spark plug. On the other hand, in the present invention, since the steam toward the spark plug has a band-like distribution, and the diffusion of the steam into the concave groove is promoted by the projection, the fuel-air ratio of the air-fuel mixture around the spark plug is as shown in FIG. And gradually changes with respect to the crank angle. For this reason, there is an effect that the control of the ignition timing is facilitated and the occurrence of smoldering and soot of the spark plug can be prevented.
【0018】図9は本発明による筒内噴射式火花点火機
関の第二実施例を示す縦断面図であり、図10はその概
略平面図、図11は図9におけるA−A断面を吸気管側
から見た断面図である。本エンジンの概略構成は、第一
実施例と同様であり、第一実施例との違いは凹溝1内に
設けた凸部13の形状と燃料噴射弁5の噴射方向のみで
ある。本実施例では、図9,図10に示すように凸部1
3は凹溝1の吸気管側に設けられている。凸部13の断
面は図11に示すように三角形の形状となっており、側
面13a,13cは凹溝1の底面に対し緩やかな勾配と
なっている。FIG. 9 is a longitudinal sectional view showing a second embodiment of the direct injection type spark ignition engine according to the present invention, FIG. 10 is a schematic plan view thereof, and FIG. 11 is a sectional view taken along line A--A in FIG. It is sectional drawing seen from the side. The schematic configuration of the present engine is the same as that of the first embodiment, and differs from the first embodiment only in the shape of the protrusion 13 provided in the concave groove 1 and the injection direction of the fuel injection valve 5. In this embodiment, as shown in FIGS.
3 is provided on the intake pipe side of the concave groove 1. The cross section of the convex portion 13 has a triangular shape as shown in FIG. 11, and the side surfaces 13a and 13c have a gentle slope with respect to the bottom surface of the concave groove 1.
【0019】本実施例において、低負荷,中負荷運転時
には、第一の実施例と同様にスワールコントロールバル
ブが閉じられ、気筒内には気筒の軸周りの旋回流が発生
する。凸部の側面13aと13cは凹溝1の底面に対し
緩やかに傾斜しているため、凸部13による旋回流Sの
乱れは小さく、圧縮行程の後期においても旋回流Sは消
滅することなく凹溝1内に存在し続ける。In this embodiment, at the time of low load and medium load operation, the swirl control valve is closed as in the first embodiment, and a swirling flow around the cylinder axis is generated in the cylinder. Since the side surfaces 13a and 13c of the convex portion are gently inclined with respect to the bottom surface of the concave groove 1, the turbulence of the swirl flow S due to the convex portion 13 is small, and the swirl flow S does not disappear even in the latter stage of the compression stroke. It remains in the groove 1.
【0020】吸気に引き続いて圧縮行程の後期に、燃料
噴射弁5より、凸部13の排気管側壁面13dを跨い
で、凸部13と凹溝1の排気管側底面に向かって、吸入
空気質量に対し1/25〜1/50の量の燃料が噴射さ
れる。図12に示すように凹溝1の排気管側に向けて噴
射された燃料F1は、気化しながら噴射時の慣性力によ
って凹溝1内を排気管側に進みつつ、旋回流Sによって
凹溝1の周方向に運ばれ、気筒中心近傍に到達する。一
方、凸部13に衝突した燃料は、凸部が三角形の断面を
有するため、旋回流上流側へ向かう燃料F21と旋回流
下流側へ向かう燃料F22に分かれる。旋回流上流側へ
向かった燃料F21は気化しつつ旋回流Sによって凹溝
1の周方向に運ばれ気筒の中心近傍に到達する。一方、
旋回流下流側に向かった燃料F22は、旋回流Sによっ
て、凹溝1の吸気管側に運ばれる。この結果、燃料蒸気
の分布は図13に示すように、凸部13近傍で、旋回流
の上流及び下流側に広がった分布となる。凹溝1の排気
管側に向けて噴射した燃料F1が速やかに点火プラグ近
傍に到達することによって、点火プラグに燃料濃度の高
い混合気を生成し、混合気に確実に着火することができ
る。一方、凸部13に衝突した燃料が旋回流の上流及び
下流側に拡散することによって、点火プラグ近傍に過度
に蒸気濃度の高い混合気が集中するのを防止できる。な
お、本実施例においては、凸部13の断面形状を三角形
としたが、台形や五角形または半円形状などであって
も、本実施例と同様の効果を得ることができる。In the latter stage of the compression stroke following the intake air, the intake air flows from the fuel injection valve 5 across the exhaust pipe side wall 13d of the projection 13 toward the bottom of the projection 13 and the groove 1 on the exhaust pipe side. 1/25 to 1/50 of the mass of fuel is injected. As shown in FIG. 12, the fuel F1 injected toward the exhaust pipe side of the concave groove 1 advances in the concave groove 1 toward the exhaust pipe side by the inertia force at the time of injection while evaporating, while the swirl flow S causes the concave groove. 1 and reaches the vicinity of the center of the cylinder. On the other hand, the fuel that has collided with the convex portion 13 is divided into a fuel F21 directed toward the swirl flow upstream and a fuel F22 directed toward the swirl flow downstream because the convex portion has a triangular cross section. The fuel F21 flowing toward the upstream of the swirl flow is conveyed in the circumferential direction of the concave groove 1 by the swirl flow S while evaporating, and reaches near the center of the cylinder. on the other hand,
The fuel F22 flowing toward the downstream side of the swirl flow is carried by the swirl flow S to the intake pipe side of the concave groove 1. As a result, as shown in FIG. 13, the distribution of the fuel vapor becomes a distribution that spreads to the upstream and downstream sides of the swirling flow in the vicinity of the projection 13. The fuel F1 injected toward the exhaust pipe side of the concave groove 1 quickly reaches the vicinity of the ignition plug, so that a mixture with a high fuel concentration is generated in the ignition plug, and the mixture can be reliably ignited. On the other hand, the fuel that has collided with the convex portion 13 is diffused upstream and downstream of the swirling flow, so that it is possible to prevent the mixture having an excessively high vapor concentration from being concentrated near the ignition plug. In the present embodiment, the cross-sectional shape of the projection 13 is triangular. However, the same effect as in the present embodiment can be obtained even if the cross-sectional shape is trapezoidal, pentagonal, or semicircular.
【0021】図14は本発明による筒内噴射式火花点火
機関の第三実施例を示す概略平面図であり、図15は図
14のA−A断面図を示している。本実施例は、前述し
た第二の実施例に対し、凸部13の排気管側側面に流れ
遮蔽板17を設けたものである。図14に示すように、
流れ遮蔽板17は、凸部13の表面近傍を、吸気管側か
ら排気管側に向かう燃料の方向を、旋回流Sの上流側及
び下流側に偏向させる働きがある。これによって、凸部
13に向けて噴射された燃料を確実に拡散し、点火プラ
グ近傍へ過度に燃料濃度の高い混合気が到達するのを防
止できる。FIG. 14 is a schematic plan view showing a third embodiment of the in-cylinder injection spark ignition engine according to the present invention, and FIG. 15 is a sectional view taken along line AA of FIG. This embodiment is different from the above-described second embodiment in that a flow shielding plate 17 is provided on the exhaust pipe side surface of the projection 13. As shown in FIG.
The flow shielding plate 17 has a function of deflecting the fuel flow from the intake pipe side to the exhaust pipe side in the vicinity of the surface of the projection 13 toward the upstream side and the downstream side of the swirling flow S. As a result, the fuel injected toward the projection 13 can be reliably diffused, and the mixture with an excessively high fuel concentration can be prevented from reaching the vicinity of the ignition plug.
【0022】図16は本発明による筒内噴射式火花点火
機関の第四実施例を示す概略平面図であり、図17は図
16のA−A断面図を示している。本実施例は、前述し
た第二の実施例の凸部13を凹部18に変更したもので
ある。図17に示すように凹部18の断面形状は三角形
となっており、凹部18の側面18a,18bは凹溝1
の底面に対し緩やかな傾斜となっている。また、凹部1
8の排気管側壁面18cは凹溝1の底面に対し垂直となっ
ている。本実施例においては前述の第二の実施例と同様
に、低負荷,中負荷運転時に筒内に旋回流Sを生成した
うえで、圧縮行程の後期で、凹部18の排気管側壁面1
8cを跨ぐように、燃料噴射弁5より燃料を噴射する。
図18に示すように、凹溝1の排気管側に向けて噴射し
た燃料F1が速やかに点火プラグ近傍に到達することに
よって、点火プラグに燃料濃度の高い混合気を生成し、
確実に着火することができる。一方、凹部18に衝突し
た燃料は排気管側壁面18cに衝突し、旋回流の上流及
び下流側に拡散する。これにより点火プラグ近傍に過度
に蒸気濃度の高い混合気が集中するのを防止できる。な
お、本実施例においては、凹部18の断面形状を三角形
としたが、台形や五角形または半円形状などであって
も、本実施例と同様の効果を得ることができる。FIG. 16 is a schematic plan view showing a fourth embodiment of the in-cylinder injection spark ignition engine according to the present invention, and FIG. 17 is a sectional view taken along line AA of FIG. In the present embodiment, the convex portion 13 of the second embodiment described above is changed to a concave portion 18. As shown in FIG. 17, the cross-sectional shape of the concave portion 18 is triangular, and the side surfaces 18a and 18b of the concave portion 18
It has a gentle slope with respect to the bottom surface. Also, recess 1
8 is perpendicular to the bottom surface of the groove 1. In this embodiment, similarly to the second embodiment, the swirl flow S is generated in the cylinder at the time of low load and medium load operation, and the exhaust pipe side wall surface 1 of the recess 18 is formed later in the compression stroke.
Fuel is injected from the fuel injection valve 5 so as to straddle 8c.
As shown in FIG. 18, the fuel F1 injected toward the exhaust pipe side of the concave groove 1 quickly reaches the vicinity of the spark plug, thereby generating a fuel-rich mixture in the spark plug,
It is possible to reliably ignite. On the other hand, the fuel colliding with the concave portion 18 collides with the exhaust pipe side wall surface 18c, and is diffused upstream and downstream of the swirling flow. As a result, it is possible to prevent the mixture having an excessively high vapor concentration from being concentrated near the spark plug. In the present embodiment, the cross-sectional shape of the concave portion 18 is triangular, but the same effect as in the present embodiment can be obtained even if it is trapezoidal, pentagonal, semicircular, or the like.
【0023】図20は本発明による筒内噴射式火花点火
機関の第五実施例を示す縦断面図であり、図21はその
概略平面図である。本実施例では、凹溝1の底面が平面
で構成され、凹溝1の排気管側壁面に段部15が設けら
れている。図22に段部15の拡大図を示す。段部15
の吸気管側壁面15aは凹溝1の底面に対し垂直な面と
なっており、段部15の上面は、凹溝1の底面に平行な
面となっている。本実施例においては前述の第一の実施
例と同様に、低負荷,中負荷運転時に筒内に旋回流Sを
生成したうえで、圧縮行程の後期で、凹溝1の底面のほ
ぼ中央に向けて燃料噴射弁5より燃料を噴射する。図2
1に示すように凹溝1に噴射された燃料F1は気化しな
がら、噴射時の慣性力によって凹溝1内を排気管方向に
移動しつつ、旋回流Sによって、凹溝1の周方向に運ば
れる。やがて、燃料は段部15の側面15bに衝突し、
上向きに流れ方向を変える。図22に示すように、燃料
は段部15のエッジ部16を過ぎても慣性力によりさら
に上部に向かおうとするが、エッジ部16の排気管側の
圧力が低下するため、エッジ部16で剥離渦が生成さ
れ、蒸気は段部15上で循環する。これにより、燃料と
空気との混合と、燃料の気化が促進されるとともに、図
7に示したような点火プラグへ向かって上昇する蒸気の
流れが弱くなる。この結果、過度に燃料蒸気濃度の高い
混合気が、点火プラグ近傍へ到達することを防止でき
る。FIG. 20 is a longitudinal sectional view showing a fifth embodiment of the direct injection spark ignition engine according to the present invention, and FIG. 21 is a schematic plan view thereof. In the present embodiment, the bottom surface of the concave groove 1 is formed of a flat surface, and a step 15 is provided on the exhaust pipe side wall surface of the concave groove 1. FIG. 22 shows an enlarged view of the step portion 15. Step 15
Is a surface perpendicular to the bottom surface of the groove 1, and the upper surface of the step portion 15 is a surface parallel to the bottom surface of the groove 1. In the present embodiment, as in the first embodiment described above, the swirl flow S is generated in the cylinder at the time of low-load and medium-load operation, and then, at the latter stage of the compression stroke, almost at the center of the bottom surface of the groove 1. The fuel is injected from the fuel injection valve 5 toward the fuel injection valve. FIG.
As shown in FIG. 1, the fuel F1 injected into the groove 1 is vaporized, moves in the groove 1 toward the exhaust pipe by inertia force at the time of injection, and is swirled by the swirling flow S in the circumferential direction of the groove 1. Carried. Eventually, the fuel collides with the side surface 15b of the step portion 15,
Change the flow direction upward. As shown in FIG. 22, the fuel tends to move further upward due to inertial force even after passing through the edge portion 16 of the step portion 15. However, since the pressure on the exhaust pipe side of the edge portion 16 decreases, the fuel at the edge portion 16 Separation vortices are generated and the steam circulates on the step 15. Thereby, mixing of fuel and air and vaporization of fuel are promoted, and the flow of steam rising toward the spark plug as shown in FIG. 7 is weakened. As a result, it is possible to prevent the mixture having an excessively high fuel vapor concentration from reaching the vicinity of the spark plug.
【0024】なお、図23に示すように、段部15のエ
ッジ部16を鋭角にすることによって、より確実に段部
15上の循環流を生成することができる。また、図24
に示すように、凹溝1の底面に突起部19を設けること
でも同様の効果を得ることができる。As shown in FIG. 23, by forming the edge 16 of the step 15 at an acute angle, a circulating flow on the step 15 can be generated more reliably. FIG.
The same effect can be obtained by providing the projection 19 on the bottom surface of the concave groove 1 as shown in FIG.
【0025】[0025]
【発明の効果】本発明によれば、低負荷,中負荷運転時
において、点火プラグの電極部に適切な濃度の混合気を
安定に供給することができ、着火性の改善,点火プラグ
のくすぶりやすすの低減,点火時期の制御性の改善など
を図ることができる。According to the present invention, an air-fuel mixture having an appropriate concentration can be stably supplied to the electrode portion of the spark plug during low-load and medium-load operation, so that the ignition performance can be improved and the smolder of the spark plug can be improved. It is possible to reduce the ease and improve the controllability of the ignition timing.
【図1】本発明の第一実施例を示す筒内噴射式火花点火
機関の縦断面図。FIG. 1 is a longitudinal sectional view of a direct injection type spark ignition engine showing a first embodiment of the present invention.
【図2】本発明の第一実施例を示す筒内噴射式火花点火
機関の概略平面図。FIG. 2 is a schematic plan view of a direct injection type spark ignition engine showing a first embodiment of the present invention.
【図3】本発明の第一実施例を示す筒内噴射式火花点火
機関のピストン断面図。FIG. 3 is a cross-sectional view of a piston of a direct injection type spark ignition engine showing a first embodiment of the present invention.
【図4】本発明の第一実施例における燃料噴射の状況を
示す図。FIG. 4 is a diagram showing a state of fuel injection in the first embodiment of the present invention.
【図5】本発明の第一実施例における燃料挙動を示す
図。FIG. 5 is a view showing a fuel behavior in the first embodiment of the present invention.
【図6】本発明の第一実施例における燃料挙動を示す
図。FIG. 6 is a view showing a fuel behavior in the first embodiment of the present invention.
【図7】従来法における燃料挙動を示す図。FIG. 7 is a diagram showing fuel behavior in a conventional method.
【図8】従来法と本発明における点火プラグ周りの燃空
比の変化を示す図。FIG. 8 is a diagram showing a change in a fuel-air ratio around a spark plug according to a conventional method and the present invention.
【図9】本発明の第二実施例を示す筒内噴射式火花点火
機関の縦断面図。FIG. 9 is a longitudinal sectional view of a direct injection type spark ignition engine showing a second embodiment of the present invention.
【図10】本発明の第二実施例を示す筒内噴射式火花点
火機関の概略平面図。FIG. 10 is a schematic plan view of a direct injection type spark ignition engine showing a second embodiment of the present invention.
【図11】本発明の第二実施例を示す筒内噴射式火花点
火機関のピストン断面図。FIG. 11 is a sectional view of a piston of a direct injection type spark ignition engine showing a second embodiment of the present invention.
【図12】本発明の第二実施例における燃料挙動を示す
図。FIG. 12 is a view showing a fuel behavior in a second embodiment of the present invention.
【図13】本発明の第二実施例における燃料挙動を示す
図。FIG. 13 is a view showing a fuel behavior in a second embodiment of the present invention.
【図14】本発明の第三実施例を示す筒内噴射式火花点
火機関の概略平面図。FIG. 14 is a schematic plan view of a direct injection type spark ignition engine showing a third embodiment of the present invention.
【図15】本発明の第三実施例を示す筒内噴射式火花点
火機関のピストン断面図。FIG. 15 is a sectional view of a piston of a direct injection type spark ignition engine showing a third embodiment of the present invention.
【図16】本発明の第四実施例を示す筒内噴射式火花点
火機関の概略平面図。FIG. 16 is a schematic plan view of a direct injection type spark ignition engine showing a fourth embodiment of the present invention.
【図17】本発明の第四実施例を示す筒内噴射式火花点
火機関のピストン断面図。FIG. 17 is a cross-sectional view of a piston of a direct injection type spark ignition engine showing a fourth embodiment of the present invention.
【図18】本発明の第四実施例における燃料挙動を示す
図。FIG. 18 is a view showing a fuel behavior in a fourth embodiment of the present invention.
【図19】本発明の第一実施例から第五実施例における
筒内噴射式火花点火機関の概略構成図。FIG. 19 is a schematic configuration diagram of a direct injection type spark ignition engine according to the first to fifth embodiments of the present invention.
【図20】本発明の第五実施例を示す筒内噴射式火花点
火機関の縦断面図。FIG. 20 is a longitudinal sectional view of a direct injection type spark ignition engine showing a fifth embodiment of the present invention.
【図21】本発明の第五実施例を示す筒内噴射式火花点
火機関の概略平面図。FIG. 21 is a schematic plan view of a direct injection spark ignition engine showing a fifth embodiment of the present invention.
【図22】本発明の第五実施例を示す筒内噴射式火花点
火機関のピストン断面の拡大図。FIG. 22 is an enlarged view of a cross section of a piston of a direct injection type spark ignition engine showing a fifth embodiment of the present invention.
【図23】本発明の第五実施例を示す筒内噴射式火花点
火機関のピストン断面の拡大図。FIG. 23 is an enlarged view of a cross section of a piston of a direct injection type spark ignition engine showing a fifth embodiment of the present invention.
【図24】本発明の第五実施例を示す筒内噴射式火花点
火機関のピストン断面の拡大図。FIG. 24 is an enlarged view of a cross section of a piston of a direct injection type spark ignition engine showing a fifth embodiment of the present invention.
1…凹溝、4…ピストン、5…燃料噴射弁、8…点火プ
ラグ、13…凸部、13a…凸部の旋回流上流側に当た
る側面、13b…凸部の吸気管側壁面、13c…凸部の旋
回流下流側に当たる側面、15…段部、15a…段部の
吸気管側壁面、16…段部のエッジ部、17…流れ遮蔽
板、18…凹部、19…突起部。DESCRIPTION OF SYMBOLS 1 ... Concave groove, 4 ... Piston, 5 ... Fuel injection valve, 8 ... Ignition plug, 13 ... Convex part, 13a ... Side surface which corresponds to the swirl flow upstream side of the convex part, 13b ... Suction wall surface of convex part, 13c ... Convex Side surface corresponding to the downstream side of the swirling flow of the portion, 15: step portion, 15a: intake pipe side wall surface of the step portion, 16: edge portion of the step portion, 17: flow shielding plate, 18: concave portion, 19: projection portion.
フロントページの続き (72)発明者 野木 利治 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 川部 隆平 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内Continued on the front page (72) Inventor Toshiharu Nogi 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Ryuhei Kawabe 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture No. Within Hitachi Research Laboratory, Hitachi, Ltd.
Claims (7)
筒上部周縁の吸気側に燃料噴射弁を有し、ピストン頂面
の一部に凹溝を有し、該凹溝の排気管側壁面の一部が点
火プラグの略下方に位置し、該凹溝の吸気管側壁面の一
部が燃料噴射弁の略下方に位置し、吸気・圧縮行程にお
いて気筒の中心軸周りの旋回流が生成されるように構成
された筒内噴射式火花点火機関において、前記凹溝の排
気管側底面の一部に凸部を設け、該凸部の吸気管側壁面
を垂直壁面で構成し、該凸部の旋回流上流側に当たる側
面及び旋回流下流側にあたる側面を前記凹溝底面に対し
緩やかな勾配の斜面で構成し、該凸部の上面を平面で構
成し、少なくとも低負荷または中負荷運転時の圧縮行程
の後期に前記凸部の吸気管側壁面を跨るように燃料噴射
弁の燃料噴射方向を定めたことを特徴とする筒内噴射式
火花点火機関。An ignition plug is provided substantially at the center of an upper portion of a cylinder, a fuel injection valve is provided on an intake side of a peripheral portion of an upper portion of the cylinder, and a concave groove is formed on a part of a piston top surface. A part of the side wall surface is located substantially below the spark plug, a part of the intake pipe side wall surface of the concave groove is located substantially below the fuel injection valve, and a swirl flow around the central axis of the cylinder during the intake / compression stroke. In the in-cylinder injection type spark ignition engine configured to be generated, a convex portion is provided on a part of the exhaust pipe side bottom surface of the concave groove, and the intake pipe side wall surface of the convex portion is formed by a vertical wall surface, A side surface corresponding to the swirl flow upstream side and a side surface corresponding to the swirl flow downstream side of the convex portion are formed by a slope having a gentle slope with respect to the concave groove bottom surface, and the upper surface of the convex portion is formed by a flat surface, and at least low load or medium load. In the latter half of the compression stroke during operation, the fuel injection direction of the fuel injection valve extends across the intake pipe side wall surface of the projection. Cylinder injection type spark ignition engine, characterized in that defined.
筒上部周縁の吸気側に燃料噴射弁を有し、ピストン頂面
の一部に凹溝を有し、該凹溝の排気管側壁面の一部が点
火プラグの略下方に位置し、該凹溝の吸気管側壁面の一
部が燃料噴射弁の略下方に位置し、吸気・圧縮行程にお
いて気筒の中心軸周りの旋回流が生成されるように構成
された筒内噴射式火花点火機関において、前記凹溝の吸
気管側底面に凸部を設け、該凸部の旋回流上流側に当た
る側面及び旋回流下流側に当たる側面を前記凹溝底面に
対し緩やかな勾配の斜面で構成し、少なくとも低負荷ま
たは中負荷運転時の圧縮行程の後期に前記凸部の排気管
側壁面と凹溝底面との境界を跨るように燃料噴射弁の燃
料噴射方向を定めたことを特徴とする筒内噴射式火花点
火機関。2. An engine according to claim 1, further comprising: a spark plug substantially at the center of an upper portion of the cylinder, a fuel injection valve on an intake side of an upper peripheral portion of the cylinder, a groove on a part of a piston top surface, and an exhaust pipe of the groove. A part of the side wall surface is located substantially below the spark plug, a part of the intake pipe side wall surface of the concave groove is located substantially below the fuel injection valve, and a swirl flow around the central axis of the cylinder during the intake / compression stroke. In the in-cylinder injection spark ignition engine configured such that a convex portion is provided on the intake pipe side bottom surface of the concave groove, and a side surface corresponding to the swirl flow upstream side and a side surface corresponding to the swirl flow downstream side of the convex portion are provided. The fuel injection system is constituted by a gentle slope with respect to the groove bottom, and at least in the latter stage of the compression stroke at the time of low load or medium load operation, crosses the boundary between the exhaust pipe side wall surface of the protrusion and the groove bottom. An in-cylinder injection spark ignition engine, wherein a fuel injection direction of a valve is determined.
において、前記凸部表面近傍の吸気管側から排気管側に
向けての空気の流れを遮蔽する手段を備えたことを特徴
とする筒内噴射式火花点火機関。3. The in-cylinder injection spark ignition engine according to claim 2, further comprising means for blocking the flow of air from the intake pipe side near the surface of the projection to the exhaust pipe side. In-cylinder injection spark ignition engine.
筒上部周縁の吸気側に燃料噴射弁を有し、ピストン頂面
の一部に凹溝を有し、該凹溝の排気管側壁面の一部が点
火プラグの略下方に位置し、該凹溝の吸気管側壁面の一
部が燃料噴射弁の略下方に位置し、吸気・圧縮行程にお
いて気筒の中心軸周りの旋回流が生成されるように構成
された筒内噴射式火花点火機関において、前記凹溝の吸
気管側底面に凹部を設け、該凹部の旋回流上流側に当た
る側面及び旋回流下流側に当たる側面を前記凹溝底面に
対し緩やかな勾配の斜面で構成し、少なくとも低負荷ま
たは中負荷運転時の圧縮行程の後期に前記凹部の排気管
側壁面と凹溝底面との境界を跨るように燃料噴射弁の燃
料噴射方向を定めたことを特徴とする筒内噴射式火花点
火機関。4. A cylinder having an ignition plug substantially at the center of an upper part thereof, a fuel injection valve on an intake side of an upper peripheral part of the cylinder, a concave part on a part of a piston top surface, and an exhaust pipe of the concave part. A part of the side wall surface is located substantially below the spark plug, a part of the intake pipe side wall surface of the concave groove is located substantially below the fuel injection valve, and a swirl flow around the central axis of the cylinder during the intake / compression stroke. In the in-cylinder injection type spark ignition engine configured to generate a concave portion, a concave portion is provided on the intake pipe side bottom surface of the concave groove, and a side surface corresponding to the swirl flow upstream side and a side surface corresponding to the swirl flow downstream side of the concave portion are formed in the concave portion. The fuel injection valve is constituted by a gentle slope with respect to the groove bottom surface, and at least in the latter stage of the compression stroke at the time of low load or medium load operation, straddles the boundary between the exhaust pipe side wall surface of the recess and the groove bottom surface. An in-cylinder injection spark ignition engine, characterized in that an injection direction is determined.
筒上部周縁の吸気側に燃料噴射弁を有し、ピストン頂面
の一部に凹溝を有し、該凹溝の排気管側壁面の一部が点
火プラグの略下方に位置し、該凹溝の吸気管側壁面の一
部が燃料噴射弁の略下方に位置し、吸気・圧縮行程にお
いて気筒の中心軸周りの旋回流が生成されるように構成
された筒内噴射式火花点火機関において、圧縮行程の後
期に燃料噴射弁から噴射された燃料が前記凹溝の底面に
向かうように燃料噴射弁の噴射方向を定め、少なくとも
低負荷または中負荷運転時の圧縮行程の後期に該燃料噴
射弁より噴射された燃料が該凹溝壁面に沿って前記点火
プラグ方向へと上昇し気筒の中心軸に平行でかつ点火プ
ラグと燃料噴射弁の中心軸を通る平面に垂直な軸周りに
循環し、その循環方向が燃焼室上部で吸気管から排気管
方向への流れを生成する手段を備えたことを特徴とする
筒内噴射式火花点火機関。5. A cylinder having an ignition plug substantially at the center of an upper part thereof, a fuel injection valve on an intake side of a peripheral part of the upper part of the cylinder, a concave part on a part of a piston top surface, and an exhaust pipe of the concave part. A part of the side wall surface is located substantially below the spark plug, a part of the intake pipe side wall surface of the concave groove is located substantially below the fuel injection valve, and a swirl flow around the central axis of the cylinder during the intake / compression stroke. In the in-cylinder injection spark ignition engine configured to be generated, the injection direction of the fuel injection valve is determined so that the fuel injected from the fuel injection valve in the latter half of the compression stroke is directed to the bottom surface of the groove. The fuel injected from the fuel injection valve at least in the late stage of the compression stroke at the time of low-load or medium-load operation rises toward the spark plug along the groove wall surface and is parallel to the central axis of the cylinder and connected to the spark plug. Circulates around an axis perpendicular to the plane passing through the central axis of the fuel injector, Countercurrent-cylinder injection spark ignition engine, characterized in that it comprises means for generating a flow of the exhaust pipe direction from the intake pipe in the combustion chamber top.
において、前記凹溝の排気管側壁面と凹溝底面との間に
段部を設けたことを特徴とする筒内噴射式火花点火機
関。6. The direct injection type spark ignition engine according to claim 5, wherein a step is provided between an exhaust pipe side wall surface of the concave groove and a concave groove bottom surface. Spark ignition engine.
において、前記段部の上面と前記凹溝の吸気管側側面と
の接合部を鋭角のエッジで構成したことを特徴とする筒
内噴射式火花点火機関。7. The in-cylinder injection spark ignition engine according to claim 6, wherein a junction between the upper surface of the step and the side surface of the concave groove on the intake pipe side is formed by an acute angle edge. In-cylinder injection spark ignition engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10010120A JPH11210469A (en) | 1998-01-22 | 1998-01-22 | Cylinder injection type spark ignition engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10010120A JPH11210469A (en) | 1998-01-22 | 1998-01-22 | Cylinder injection type spark ignition engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11210469A true JPH11210469A (en) | 1999-08-03 |
Family
ID=11741451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10010120A Pending JPH11210469A (en) | 1998-01-22 | 1998-01-22 | Cylinder injection type spark ignition engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11210469A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006144647A (en) * | 2004-11-18 | 2006-06-08 | Hitachi Ltd | Cylinder injection type engine and its control device |
JP2009257336A (en) * | 2009-08-03 | 2009-11-05 | Hitachi Ltd | Control device for cylinder injection type engine |
JP2010180728A (en) * | 2009-02-04 | 2010-08-19 | Nissan Motor Co Ltd | Piston of cylinder direct injection type internal combustion engine |
-
1998
- 1998-01-22 JP JP10010120A patent/JPH11210469A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006144647A (en) * | 2004-11-18 | 2006-06-08 | Hitachi Ltd | Cylinder injection type engine and its control device |
JP4541846B2 (en) * | 2004-11-18 | 2010-09-08 | 日立オートモティブシステムズ株式会社 | In-cylinder injection engine |
JP2010180728A (en) * | 2009-02-04 | 2010-08-19 | Nissan Motor Co Ltd | Piston of cylinder direct injection type internal combustion engine |
JP2009257336A (en) * | 2009-08-03 | 2009-11-05 | Hitachi Ltd | Control device for cylinder injection type engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6782867B2 (en) | Direct injection gasoline engine | |
JPH01219311A (en) | Injection engine in spark ignition cylinder | |
JPH0835429A (en) | Cylinder fuel injection-type spark ignition engine | |
CN210239842U (en) | Internal combustion engine | |
EP0105933A1 (en) | Combustion chamber of diesel engine | |
JP2002295260A (en) | Jump spark ignition type direct-injection engine | |
JP3743895B2 (en) | In-cylinder injection engine | |
JP3732323B2 (en) | Combustion method for in-cylinder injection engine | |
JP3612874B2 (en) | In-cylinder injection engine | |
JPH11210469A (en) | Cylinder injection type spark ignition engine | |
JPH03286124A (en) | Cylinder fuel injection type engine | |
JP2770376B2 (en) | Engine piston | |
JPS6238828A (en) | Direct injection type diesel engine | |
JP2560337B2 (en) | Direct injection diesel engine | |
JP4108806B2 (en) | Combustion chamber structure of in-cylinder direct injection spark ignition engine | |
JPH0518244A (en) | Injection-in-cylinder type internal combustion engine | |
JP2569919B2 (en) | In-cylinder direct injection spark ignition engine | |
JP2521900B2 (en) | Spark ignition internal combustion engine | |
JPH05231155A (en) | Inside-cylinder injection type internal combustion engine | |
JP3838346B2 (en) | In-cylinder injection spark ignition internal combustion engine | |
JP2004052602A (en) | Cylinder injection type spark ignition internal combustion engine | |
JP2697100B2 (en) | Engine piston | |
JPS603311Y2 (en) | Combustion chamber of direct injection diesel engine | |
JPS6329016A (en) | Subchamber type diesel combustion chamber | |
JPH07122407B2 (en) | Engine combustion chamber structure |