[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1110194A - Wastewater treatment device - Google Patents

Wastewater treatment device

Info

Publication number
JPH1110194A
JPH1110194A JP9165888A JP16588897A JPH1110194A JP H1110194 A JPH1110194 A JP H1110194A JP 9165888 A JP9165888 A JP 9165888A JP 16588897 A JP16588897 A JP 16588897A JP H1110194 A JPH1110194 A JP H1110194A
Authority
JP
Japan
Prior art keywords
tank
map
phosphorus
liquid
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9165888A
Other languages
Japanese (ja)
Other versions
JP3876489B2 (en
Inventor
Kensuke Matsui
謙介 松井
Shozo Nishikawa
正三 西川
Takeshi Shibata
健 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP16588897A priority Critical patent/JP3876489B2/en
Publication of JPH1110194A publication Critical patent/JPH1110194A/en
Application granted granted Critical
Publication of JP3876489B2 publication Critical patent/JP3876489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover a part of wastewater as magnesium ammonium phosphate by providing an anaerobic treatment tank, a reaction tank into which treated liquid of the anaerobic treatment tank is introduced, and a denitrification tank into which treated liquid of the reaction tank is introduced or an aerobic treatment tank. SOLUTION: Wastewater is introduced into an anaerobic tank 1 together with a return sludge from a settling tank 3 of a succeeding stage, where phosphorus in the return sludge is discharged on the side of liquid under anaerobic conditions. The treated anaerobic liquid is then introduced into a magnesium ammonium phosphate(MAP) reaction tank 6, where the phosphorus is caused to react with ammonia and Mg compounds to produce MAP. The MAP reaction liquid, from which phosphorus and ammonia have been removed by the production of the MAP, is then fed into an aerobic tank 2, where BOD is removed under conditions of aeration. And the aerobic treated liquid is introduced into the settling tank 3 so as to be separated to solids and liquid and the separated liquid is discharged to the outside as treated water. On the other hand, separated sludge which takes in phosphorus in the form of orthophosphoric acid by a biological treatment is returned to the tank 1 as return sludge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リンと窒素を含む
廃水の処理装置に係り、特に廃水中のリンと窒素の除去
を行うと共に、これらを結晶として回収することができ
る廃水処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment apparatus containing phosphorus and nitrogen, and more particularly to a wastewater treatment apparatus capable of removing phosphorus and nitrogen from wastewater and recovering them as crystals.

【0002】[0002]

【従来の技術】従来の一般的な生物脱リン処理装置は、
図5に示す如く、嫌気槽1、好気槽2及び沈殿槽3から
構成されている。この処理装置では、リンを含む有機廃
水を嫌気槽1に流入させて活性汚泥中のリンを放出させ
た後、好気槽2に流入させてBOD除去を行う際に活性
汚泥中にリンを過剰摂取させてリンを除去する。
2. Description of the Related Art A conventional general biological dephosphorization treatment apparatus comprises:
As shown in FIG. 5, it is composed of an anaerobic tank 1, an aerobic tank 2, and a sedimentation tank 3. In this treatment apparatus, the organic wastewater containing phosphorus is flown into the anaerobic tank 1 to release phosphorus in the activated sludge, and then is flown into the aerobic tank 2 to remove excess phosphorus in the activated sludge when performing BOD removal. Remove ingested phosphorus.

【0003】また、従来の一般的な生物脱リン脱窒素処
理装置は、図6に示す如く、嫌気槽1、脱窒素槽4、硝
化槽5及び沈殿槽3から構成されている。この処理装置
では、リンと窒素を含む有機廃水を嫌気槽1に流入させ
て活性汚泥中のリンを放出させた後、脱窒素槽4に流入
させて廃水中のBODを利用した脱窒素を行わせ、更に
硝化反応を行わせた液の一部を脱窒素槽4に返送する。
硝化槽5では好気条件で活性汚泥中にリンが過剰摂取さ
れる。
As shown in FIG. 6, a conventional general biological dephosphorization and denitrification treatment apparatus includes an anaerobic tank 1, a denitrification tank 4, a nitrification tank 5, and a sedimentation tank 3. In this treatment apparatus, organic wastewater containing phosphorus and nitrogen flows into the anaerobic tank 1 to release phosphorus in the activated sludge, and then flows into the denitrification tank 4 to perform denitrification using BOD in the wastewater. Then, a part of the solution that has been further subjected to the nitrification reaction is returned to the denitrification tank 4.
In the nitrification tank 5, phosphorus is excessively taken into activated sludge under aerobic conditions.

【0004】リン含有廃水の処理方法としては、リン含
有廃水にマグネシウム(Mg)塩を添加した後生物処理
を行う方法も提案されており、この方法では、廃水中の
リンをリン酸マグネシウムアンモニウム6水塩(MA
P)として除去し、回収したMAPをリン及びアンモニ
アを含む肥料等として有効に再利用することができる。
As a method of treating phosphorus-containing wastewater, a method of adding a magnesium (Mg) salt to phosphorus-containing wastewater and then performing biological treatment has been proposed. In this method, phosphorus in the wastewater is treated with magnesium ammonium phosphate 6. Water salt (MA
The MAP removed as P) and the collected MAP can be effectively reused as a fertilizer containing phosphorus and ammonia.

【0005】[0005]

【発明が解決しようとする課題】図5,6に示す従来の
処理装置は、廃水中のリンを活性汚泥中に過剰摂取する
ことでリンを除去することはできるが、リンの固定法と
しては不安定であり、余剰汚泥を汚泥濃縮槽などの嫌気
条件に置くと、再びリンを放出してしまうという欠点が
あった。また、この方法では、廃水から除去したリンを
MAPとして有効利用することはできない。
The conventional treatment apparatus shown in FIGS. 5 and 6 can remove phosphorus by excessively ingesting phosphorus in wastewater into activated sludge. It is unstable and has a drawback that phosphorus is released again when surplus sludge is placed in anaerobic conditions such as a sludge thickening tank. Further, in this method, phosphorus removed from wastewater cannot be effectively used as MAP.

【0006】一方、廃水中にマグネシウム塩を添加して
リンをMAPとして回収する方法では、通常の廃水中に
含まれるリンには、MAPとして回収可能な正リン酸以
外の形態のものも多いために、MAPの生成効率及び回
収効率が悪いという欠点がある。
On the other hand, in the method of recovering phosphorus as MAP by adding a magnesium salt to wastewater, the phosphorus contained in ordinary wastewater often has a form other than orthophosphoric acid that can be recovered as MAP. In addition, there is a drawback that MAP generation efficiency and recovery efficiency are poor.

【0007】本発明は上記従来の問題点を解決し、廃水
中のリンと窒素を効率的に除去すると共に、その一部を
MAPとして効率的に回収することができる廃水処理装
置を提供することを目的とする。
[0007] The present invention solves the above-mentioned conventional problems and provides a wastewater treatment apparatus capable of efficiently removing phosphorus and nitrogen in wastewater and efficiently recovering a part of the wastewater as MAP. With the goal.

【0008】[0008]

【課題を解決するための手段】請求項1の廃水処理装置
は、嫌気性処理槽と、該嫌気性処理槽の処理液が導入さ
れるMAP反応槽と、該MAP反応槽の処理液が導入さ
れる脱窒素処理槽又は好気性処理槽とを備えてなること
を特徴とする。
According to a first aspect of the present invention, there is provided a wastewater treatment apparatus comprising: an anaerobic treatment tank; a MAP reaction tank into which the treatment liquid in the anaerobic treatment tank is introduced; A denitrification treatment tank or an aerobic treatment tank.

【0009】請求項2の廃水処理装置は、脱窒素処理槽
と、該脱窒素処理槽の処理液が導入されるMAP反応槽
と、該MAP反応槽の処理液が導入される硝化処理槽と
を備えてなることを特徴とする。
A wastewater treatment apparatus according to a second aspect of the present invention includes a denitrification treatment tank, a MAP reaction tank into which the treatment liquid in the denitrification treatment tank is introduced, and a nitrification treatment tank into which the treatment liquid in the MAP reaction tank is introduced. It is characterized by comprising.

【0010】請求項1の廃水処理装置では、嫌気性処理
槽(以下「嫌気槽」と称す。)に、リン及び窒素を含む
廃水と後段の沈殿槽からの返送汚泥を流入させ、活性汚
泥中のリンを液側に放出させる。この活性汚泥から液側
に放出されたリンは、生物処理を経たものであり正リン
酸の割合が高い。従って、MAP反応槽には、廃水由来
のリン及び嫌気槽で放出された正リン酸の割合が多いリ
ンと、廃水由来のアンモニアを含有する嫌気処理液が導
入されるため、MAP反応槽でのMAP生成効率が高
い。
In the wastewater treatment apparatus of the present invention, wastewater containing phosphorus and nitrogen and sludge returned from a sedimentation tank at the subsequent stage are caused to flow into an anaerobic treatment tank (hereinafter referred to as "anaerobic tank"). Is released to the liquid side. The phosphorus released from the activated sludge to the liquid side has undergone biological treatment and has a high ratio of orthophosphoric acid. Therefore, the MAP reaction tank is introduced with the anaerobic treatment liquid containing wastewater-derived phosphorus and the phosphoric acid having a high ratio of orthophosphoric acid released from the anaerobic tank and ammonia from the wastewater. High MAP generation efficiency.

【0011】MAP反応槽の処理液は脱窒素処理槽(以
下「脱窒素槽」と称す。)に導入して硝化循環液中のN
3 やNO2 が脱窒素される。
The treatment liquid in the MAP reaction tank is introduced into a denitrification treatment tank (hereinafter, referred to as a "denitrification tank"), and N in the nitrification circulating liquid is introduced.
O 3 and NO 2 are denitrified.

【0012】或いは、MAP反応槽の処理液は好気性処
理槽(以下「好気槽」と称す。)に導入してBODの除
去を行うと共に、好気条件下でのリンの過剰摂取でリン
の除去を行う。
Alternatively, the treatment liquid in the MAP reaction tank is introduced into an aerobic treatment tank (hereinafter, referred to as “aerobic tank”) to remove BOD and, at the same time, excessively ingesting phosphorus under aerobic conditions. Is removed.

【0013】請求項2の廃水処理装置では、脱窒素槽
に、リン及び窒素を含む廃水と後段の硝化処理槽(以下
「硝化槽」と称す。)からの循環液を流入させて、窒素
を除去する。
In the wastewater treatment apparatus of the present invention, wastewater containing phosphorus and nitrogen and a circulating liquid from a nitrification tank (hereinafter, referred to as "nitrification tank") flow into the denitrification tank to remove nitrogen. Remove.

【0014】この脱窒素槽において、廃水中のリンの大
部分は生物処理を受けて正リン酸の形態となる。また、
廃水中の有機性窒素の大部分も生物処理を受けてアンモ
ニアの形態となる。
In this denitrification tank, most of the phosphorus in the wastewater undergoes biological treatment to become orthophosphoric acid. Also,
Most of the organic nitrogen in wastewater also undergoes biological treatment to form ammonia.

【0015】従って、MAP反応槽には、正リン酸とア
ンモニアを含有する脱窒素処理液が導入されるため、M
AP反応槽でのMAP生成効率が高い。
Therefore, since the denitrification treatment solution containing orthophosphoric acid and ammonia is introduced into the MAP reaction tank,
High MAP generation efficiency in AP reactor.

【0016】MAP反応槽の処理液は硝化槽で硝化処理
される。
The treatment liquid in the MAP reaction tank is subjected to nitrification treatment in a nitrification tank.

【0017】このように、請求項1,2の廃水処理装置
では、リン及び窒素の除去が可能であり、しかも、MA
P反応槽に、生物処理を受けて正リン酸の形態となった
リンが導入されるため、リンを効率的にMAPとして回
収できる。特に、嫌気槽又は脱窒素槽の後段にMAP反
応槽を設けたため、汚泥から放出されたリン又は生物処
理を受けたリンを直ちにMAP化することができること
からも、MAP生成効率はより一層高められる。
As described above, in the wastewater treatment apparatus according to the first and second aspects, phosphorus and nitrogen can be removed.
Since phosphorus in the form of orthophosphoric acid that has undergone biological treatment is introduced into the P reaction tank, phosphorus can be efficiently recovered as MAP. In particular, since the MAP reaction tank is provided downstream of the anaerobic tank or the denitrification tank, the MAP generation efficiency is further improved because phosphorus released from sludge or phosphorus subjected to biological treatment can be immediately converted to MAP. .

【0018】[0018]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】まず、図7を参照して本発明に好適なMA
P反応槽の構成を説明する。
First, referring to FIG. 7, an MA suitable for the present invention will be described.
The configuration of the P reaction tank will be described.

【0020】このMAP反応槽6は、下部に被処理水の
導入管11、上部に処理水の取出管12を有し、頂部が
開放した反応槽である。この反応槽6は小径部6A、拡
径部6B及び大径部6Cで構成され、小径部6AはMA
Pの造粒反応部、大径部6Cは沈殿部、拡径部6Bは移
行部とされている。小径部6Aの下部には散気管13が
設けられ、反応槽6内に空気を散気するように構成され
ている。また、小径部6Aの下部にはMgCl2 等のマ
グネシウム塩溶液(マグネシウム塩を含有するものであ
れば良く、海水であっても良い。)の供給管14及び上
部にはNaOH等のアルカリ剤の供給管19が設けられ
ている。10はMAP粒子である。
The MAP reactor 6 is a reactor having an inlet pipe 11 for water to be treated at a lower part and an outlet pipe 12 for treated water at an upper part, and having an open top. The reaction tank 6 includes a small diameter portion 6A, a large diameter portion 6B, and a large diameter portion 6C.
The granulation reaction part of P, the large diameter part 6C is a precipitation part, and the large diameter part 6B is a transition part. An air diffusion tube 13 is provided below the small diameter portion 6A, and is configured to diffuse air into the reaction tank 6. A lower part of the small diameter portion 6A is provided with a supply pipe 14 for a magnesium salt solution such as MgCl 2 (as long as it contains a magnesium salt and may be seawater) and an upper part of an alkali agent such as NaOH on the upper part. A supply pipe 19 is provided. Reference numeral 10 denotes MAP particles.

【0021】大径部6Cにはドラフト管15が設けられ
ており、散気管13より曝気された空気が沈殿部の液を
乱すことがないように、その排気を案内するよう構成さ
れている。また、大径部6Cには、処理水を抜き出して
反応槽6下部の導入口2に循環するためのポンプPを備
える配管16が設けられている。17は溢流堰、18は
MAP結晶の排出管である。
A draft pipe 15 is provided in the large diameter portion 6C, and is configured to guide the exhaust so that the air aerated from the air diffuser 13 does not disturb the liquid in the settling portion. The large-diameter portion 6C is provided with a pipe 16 provided with a pump P for extracting treated water and circulating the treated water to the inlet 2 below the reaction tank 6. Reference numeral 17 denotes an overflow weir, and reference numeral 18 denotes a discharge pipe for a MAP crystal.

【0022】MAP反応槽6においては、MAPが析出
するpH条件、即ちpH7.7〜9.0、好ましくはp
H8.3〜8.5となるように、供給管15よりNaO
H等のアルカリ剤が注入されている。また、MAPの析
出にマグネシウムが不足する場合には、供給管14より
MgCl2 等のマグネシウム塩溶液が注入される。
In the MAP reactor 6, the pH conditions at which MAP precipitates, ie, pH 7.7 to 9.0, preferably p
NaO through the supply pipe 15 so that H8.3 to 8.5.
An alkali agent such as H is injected. When magnesium is insufficient for MAP precipitation, a magnesium salt solution such as MgCl 2 is injected from the supply pipe 14.

【0023】小径部6A、即ちMAP造粒反応部では、
既に析出しているMAP粒子10を種晶として被処理水
中のリン、アンモニア及びマグネシウムイオンの反応で
MAPが造粒される。即ち、散気管13からの曝気と導
入管11からの被処理水の流入によりMAP粒子10が
流動状態となり、このMAP粒子10の表面に新たなM
APが析出して、大粒のMAP粒子が造粒される。
In the small diameter portion 6A, that is, the MAP granulation reaction portion,
The MAP is granulated by the reaction of phosphorus, ammonia, and magnesium ions in the water to be treated, using the MAP particles 10 already precipitated as seed crystals. That is, the aeration from the air diffuser 13 and the inflow of the water to be treated from the introduction pipe 11 bring the MAP particles 10 into a fluid state, and the surface of the
AP precipitates and large MAP particles are granulated.

【0024】このMAPの析出において、被処理水のリ
ン濃度が過度に高いと、種晶の不存在下でMAPの微小
結晶が自己析出し、大粒のMAP粒子が得られない場合
があるが、図7のMAP反応槽6の如く、処理液を大径
部6Cから配管16及びポンプPにより抜き出して循環
することにより、反応槽6内のMAP造粒反応部のリン
濃度を低下させることができる。これにより反応槽内の
MAPの過飽和度が低下し、MAPは微小結晶として自
己析出することなく、種晶のMAP粒子10の表面での
み析出するようになりMAP粒子の大粒子化を促進する
ことかできる。
In the precipitation of MAP, if the concentration of phosphorus in the water to be treated is excessively high, MAP microcrystals are self-precipitated in the absence of seed crystals, and large MAP particles may not be obtained. As in the MAP reaction tank 6 in FIG. 7, the treatment liquid is extracted from the large diameter portion 6C by the pipe 16 and the pump P and circulated, whereby the phosphorus concentration in the MAP granulation reaction section in the reaction tank 6 can be reduced. . Thereby, the degree of supersaturation of the MAP in the reaction vessel is reduced, and the MAP does not self-precipitate as fine crystals, but only precipitates on the surface of the seed MAP particles 10 to promote the enlargement of the MAP particles. I can do it.

【0025】この処理水の循環は、反応槽6内のMAP
造粒反応部のリン濃度をリン酸塩濃度100mg/L以
下、特に40〜80mg/Lとなるように行うのが望ま
しい。ただし、この処理水の循環は必須ではなく、汚泥
は流出するがMAP粒子は流出しないような条件下でM
AP反応処理液を取り出すと共に、MAP結晶の引き抜
き量を制御すれば良く、これにより、結晶の大きさを制
御することができる。
The circulation of the treated water is performed by the MAP in the reaction tank 6.
It is desirable that the concentration of phosphorus in the granulation reaction section be 100 mg / L or less, particularly 40 to 80 mg / L. However, the circulation of this treated water is not essential, and M is used under conditions where sludge flows out but MAP particles do not.
The AP reaction solution may be taken out and the amount of the MAP crystal pulled out may be controlled, whereby the size of the crystal can be controlled.

【0026】MAPの析出により、リン濃度が低下した
液は反応槽6内を上昇して取出管12より排出される。
この際、MAP粒子は大粒子化しているため、多量の汚
泥固形物を含む原水を処理する場合においても、MAP
粒子が固形物と共に排出されることなく、良好に沈殿分
離される。即ち、MAP粒子は、汚泥固形物よりも十分
に大きい比重、粒度であるため、良好な分離性にて沈殿
分離し、汚泥固形物のみが処理水中に含有されて溢流堰
17を越流して排出される。
The liquid whose phosphorus concentration has decreased due to the precipitation of MAP rises in the reaction tank 6 and is discharged from the discharge pipe 12.
At this time, since the MAP particles are large, even when treating the raw water containing a large amount of sludge solid matter,
The particles are well settled out without being discharged together with the solids. That is, since the MAP particles have a specific gravity and a particle size which are sufficiently larger than the sludge solids, they precipitate and separate with good separability, and only the sludge solids are contained in the treated water and overflow the overflow weir 17. Is discharged.

【0027】なお、散気管13による曝気で生じた気泡
20は、ドラフト管15に案内されて、大径部6Cの沈
殿部の液を乱すことなく、液中から分離排気される。
The bubbles 20 generated by the aeration by the air diffuser 13 are guided to the draft tube 15 and separated and exhausted from the liquid without disturbing the liquid in the settling portion of the large diameter portion 6C.

【0028】一方、小径部6Aの反応造粒部で粗大化し
たMAP粒子は、反応槽6下部の排出管18より間欠的
に取り出される。
On the other hand, the MAP particles coarsened in the reaction granulation section of the small diameter section 6A are intermittently taken out from the discharge pipe 18 below the reaction tank 6.

【0029】次に、図1〜3を参照して請求項1の廃水
処理装置の実施の形態を説明する。なお、図1〜3及び
後述の図4において、MAP反応槽6は構成を簡略化し
て示してあり、一部の配管等の図示は省略されている。
Next, an embodiment of the wastewater treatment apparatus of claim 1 will be described with reference to FIGS. In FIGS. 1 to 3 and FIG. 4 to be described later, the configuration of the MAP reaction tank 6 is shown in a simplified manner, and illustration of a part of piping and the like is omitted.

【0030】図1の廃水処理装置は、嫌気槽1、MAP
反応槽6、好気槽2及び沈殿槽3で構成され、廃水は、
後段の沈殿槽3からの返送汚泥と共に嫌気槽1に導入さ
れる。嫌気槽1では、嫌気条件下、返送汚泥中のリンが
液側へ放出される。この嫌気処理液はMAP反応槽6に
導入される。
The wastewater treatment apparatus shown in FIG.
It is composed of a reaction tank 6, an aerobic tank 2 and a sedimentation tank 3, and the wastewater is
The sludge is returned to the anaerobic tank 1 together with the sludge returned from the sedimentation tank 3. In the anaerobic tank 1, phosphorus in the returned sludge is released to the liquid side under anaerobic conditions. This anaerobic treatment liquid is introduced into the MAP reaction tank 6.

【0031】MAP反応槽6では、嫌気槽1で放出され
たリン(このリンは、後段の好気槽2で生物処理を受け
たものであり、殆どのものがMAPの生成に有利な正リ
ン酸の形態となっている。)及び廃水由来のリンと、廃
水由来のアンモニアと、廃水由来のMg化合物及びMA
P反応槽6に添加されたMg化合物とが前述のpH条件
下に反応してMAPが生成する。
In the MAP reactor 6, the phosphorus released in the anaerobic tank 1 (this phosphorus has been subjected to biological treatment in the subsequent aerobic tank 2, and most of the phosphorus is positive phosphorus which is advantageous for MAP generation). And phosphorus from wastewater, ammonia from wastewater, Mg compound and MA from wastewater
The Mg compound added to the P reaction tank 6 reacts under the above-mentioned pH condition to generate MAP.

【0032】MAP反応槽6におけるMAPの生成によ
り、リン及びアンモニアが除去されたMAP反応処理液
は、次いで好気槽2に導入され、曝気下BODの除去が
行われる。また、この好気槽2では好気条件下にリンの
過剰摂取が行われ、液中のリン濃度は更に低減される。
The MAP reaction liquid from which phosphorus and ammonia have been removed by the generation of MAP in the MAP reaction tank 6 is then introduced into the aerobic tank 2 to remove BOD under aeration. Further, in the aerobic tank 2, excessive intake of phosphorus is performed under aerobic conditions, and the phosphorus concentration in the solution is further reduced.

【0033】好気処理液は次いで沈殿槽3に導入され、
固液分離され、分離液は処理水として系外へ排出され
る。この処理水は、MAP反応槽6でのMAP生成でリ
ン及び窒素が除去され、更に好気槽2での生物処理でB
ODが除去されると共にリンが除去された、良好な水質
の処理水である。
The aerobic treatment liquid is then introduced into the settling tank 3,
Solid-liquid separation is performed, and the separated liquid is discharged out of the system as treated water. This treated water removes phosphorus and nitrogen by the MAP generation in the MAP reaction tank 6 and further removes B by the biological treatment in the aerobic tank 2.
It is a treated water of good water quality from which OD has been removed and phosphorus has been removed.

【0034】一方、生物処理により正リン酸の形態とし
てリンを取り込んだ分離汚泥は、返送汚泥として嫌気槽
1に返送される。
On the other hand, the separated sludge that has taken in phosphorus in the form of orthophosphoric acid by biological treatment is returned to the anaerobic tank 1 as return sludge.

【0035】図2の廃水処理装置は、嫌気槽1、MAP
反応槽6、脱窒素槽4、硝化槽5及び沈殿槽3で構成さ
れ、廃水は後段の沈殿槽3からの返送汚泥と共に嫌気槽
1に導入される。嫌気槽1では、嫌気条件下、返送汚泥
中のリン(このリンは、生物処理により殆どのものがM
AP生成に有利な正リン酸の形態となっている。)が液
側へ放出される。この嫌気処理液はMAP反応槽6に導
入される。
The wastewater treatment apparatus shown in FIG.
The reactor is composed of a reaction tank 6, a denitrification tank 4, a nitrification tank 5, and a settling tank 3, and wastewater is introduced into the anaerobic tank 1 together with sludge returned from the settling tank 3 at a later stage. In the anaerobic tank 1, under anaerobic conditions, phosphorus in the returned sludge (mostly phosphorus
It is in the form of orthophosphoric acid, which is advantageous for AP formation. ) Is released to the liquid side. This anaerobic treatment liquid is introduced into the MAP reaction tank 6.

【0036】MAP反応槽6では、図1の廃水処理装置
と同様にMAPの生成によりリン及びアンモニアが除去
される。
In the MAP reactor 6, phosphorus and ammonia are removed by the generation of MAP in the same manner as in the wastewater treatment apparatus shown in FIG.

【0037】MAP反応処理液は、次いで脱窒素槽4に
導入される。この脱窒素槽4では、廃水中のBODを利
用して硝化循環液中のNO3 やNO2 が脱窒素される。
Next, the MAP reaction solution is introduced into the denitrification tank 4. In the denitrification tank 4, NO 3 and NO 2 in the nitrification circulating liquid are denitrified using BOD in the wastewater.

【0038】脱窒素処理液は硝化槽5に導入され、曝気
により、液中のアンモニアがNO3やNO2 に酸化され
る。また、好気条件下でリンの活性汚泥への取り込みが
行われ、液中のリン濃度が低減される。
The denitrification treatment liquid is introduced into the nitrification tank 5, and the ammonia in the liquid is oxidized to NO 3 and NO 2 by aeration. In addition, phosphorus is taken into activated sludge under aerobic conditions, and the phosphorus concentration in the liquid is reduced.

【0039】この硝化処理液の一部は、NO3 ,NO2
を供給するために脱窒素槽4に返送され、残部は沈殿槽
3に送給され固液分離される。
A part of the nitrification solution is composed of NO 3 and NO 2
Is fed back to the denitrification tank 4 and the remainder is sent to the settling tank 3 for solid-liquid separation.

【0040】沈殿槽3の分離液は処理水として系外へ排
出される。この処理水は、MAP反応槽6でのMAP生
成でリン及び窒素が除去され、更に脱窒素槽4で窒素が
除去され、硝化槽でリンが除去された、良好な水質の処
理水である。
The separated liquid in the settling tank 3 is discharged out of the system as treated water. This treated water is high quality treated water in which phosphorus and nitrogen are removed by MAP generation in the MAP reaction tank 6, nitrogen is removed in the denitrification tank 4, and phosphorus is removed in the nitrification tank.

【0041】一方、分離汚泥は、返送汚泥として嫌気槽
1に返送される。
On the other hand, the separated sludge is returned to the anaerobic tank 1 as return sludge.

【0042】図2に示す廃水処理装置は、高い窒素除去
率が要求されない場合の実施例であって、NO3 やNO
2 を含む硝化処理液をそのまま沈殿槽3で固液分離して
処理水を得るが、高い窒素除去率が要求される場合に
は、図3に示す如く、脱窒素槽を2槽設け、更に仕上げ
の脱窒素を行う。
The waste water treatment apparatus shown in FIG. 2 is an embodiment in which a high nitrogen removal rate is not required, NO 3 or NO
The nitrification solution containing 2 is subjected to solid-liquid separation in the sedimentation tank 3 as it is to obtain treated water. When a high nitrogen removal rate is required, two denitrification tanks are provided as shown in FIG. Finish denitrification.

【0043】図3の廃水処理装置は、嫌気槽1、MAP
反応槽6、第1脱窒素槽4A、硝化槽5、第2脱窒素槽
4B、再曝気槽7及び沈殿槽3で構成され、硝化槽5ま
では、上記図2に示す廃水処理装置と同様に処理が行わ
れる。
The wastewater treatment apparatus shown in FIG.
It is composed of a reaction tank 6, a first denitrification tank 4A, a nitrification tank 5, a second denitrification tank 4B, a re-aeration tank 7, and a sedimentation tank 3. Up to the nitrification tank 5, the same as the wastewater treatment apparatus shown in FIG. The process is performed.

【0044】この硝化槽5の硝化処理液の一部は第1脱
窒素槽4Aに返送され、残部は第2脱窒素槽4Bに導入
される。この第2脱窒素槽4Bではメタノールなどを添
加して更に窒素除去を行うことで、液中の窒素濃度を低
減する。第2脱窒素槽4Bの処理液は再曝気槽7で再び
リンの取り込みが行われた後、上記と同様に沈殿槽3で
固液分離される。
A part of the nitrification treatment liquid in the nitrification tank 5 is returned to the first denitrification tank 4A, and the remainder is introduced to the second denitrification tank 4B. In the second denitrification tank 4B, the concentration of nitrogen in the liquid is reduced by adding methanol or the like to further remove nitrogen. The treatment liquid in the second denitrification tank 4B is again taken up in the re-aeration tank 7 and then solid-liquid separated in the precipitation tank 3 in the same manner as described above.

【0045】次に、図4を参照して請求項2の廃水処理
装置の実施の形態を説明する。
Next, an embodiment of the wastewater treatment apparatus of claim 2 will be described with reference to FIG.

【0046】図4の廃水処理装置は、第1脱窒素槽4
A、MAP反応槽6、硝化槽5、第2脱窒素槽4B、再
曝気槽7及び沈殿槽3で構成される。
The wastewater treatment apparatus shown in FIG.
A, a MAP reaction tank 6, a nitrification tank 5, a second denitrification tank 4B, a re-aeration tank 7, and a precipitation tank 3.

【0047】廃水は、後段の硝化槽5からの硝化循環液
及び沈殿槽3からの返送汚泥と共に、第1脱窒素槽4A
に導入される。第1脱窒素槽4Aでは、嫌気条件下、廃
水中のBODを利用して硝化循環液中のNO3 やNO2
が脱窒素される。また、廃水中のリン酸以外のリンの大
部分は生物処理を受けて正リン酸の形態となると共に、
廃水中の有機性窒素の大部分も生物処理を受けてアンモ
ニアの形態となる。
The wastewater is mixed with the nitrification circulating liquid from the subsequent nitrification tank 5 and the returned sludge from the sedimentation tank 3 together with the first denitrification tank 4A.
Will be introduced. In the first denitrification tank 4A, under anaerobic conditions, NO 3 and NO 2 in the nitrification circulating liquid are utilized by utilizing BOD in wastewater.
Is denitrified. In addition, most of the phosphorus other than phosphoric acid in wastewater undergoes biological treatment to become orthophosphoric acid,
Most of the organic nitrogen in wastewater also undergoes biological treatment to form ammonia.

【0048】第1脱窒素槽4Aの脱窒素処理液はMAP
反応槽6に導入されてMAP生成により、リン及び窒素
の除去が行われるが、第1脱窒素槽4Aの脱窒素処理液
中には、リンはその大部分が正リン酸の形態として存在
し、また、窒素はその大部分がアンモニアの形態として
存在するため、このMAP反応槽6におけるMAP生成
反応効率は非常に高いものとなり、リン及び窒素の除去
効率が高い。しかも、脱窒素反応はアルカリ放出反応で
もあるため、脱窒素処理液のpHは若干上昇し、MAP
生成に好適なpH条件に容易に調整可能となる。
The denitrification treatment liquid in the first denitrification tank 4A is MAP
Phosphorus and nitrogen are removed by the introduction into the reaction tank 6 and the generation of MAP. In the denitrification treatment liquid in the first denitrification tank 4A, most of phosphorus is present in the form of orthophosphoric acid. In addition, since most of nitrogen is present in the form of ammonia, the efficiency of the MAP generation reaction in the MAP reactor 6 is very high, and the efficiency of removing phosphorus and nitrogen is high. In addition, since the denitrification reaction is also an alkali release reaction, the pH of the denitrification treatment solution slightly increases, and the MAP
It can be easily adjusted to a pH condition suitable for production.

【0049】MAP反応槽6のMAP反応処理液は、硝
化槽5、第2脱窒素槽4B、再曝気槽7及び沈殿槽3に
順次送給され、前述の図3の廃水処理装置と同様に、処
理が行われる。
The MAP reaction solution in the MAP reaction tank 6 is sequentially fed to the nitrification tank 5, the second denitrification tank 4B, the re-aeration tank 7 and the precipitation tank 3, and is supplied in the same manner as in the wastewater treatment apparatus shown in FIG. , Processing is performed.

【0050】なお、この廃水処理装置において、高い窒
素除去率が要求されない場合は、第2脱窒素槽4B及び
再曝気槽7を省略して、硝化槽5の硝化処理液を、図2
の廃水処理装置と同様に直接沈殿槽3に送給して固液分
離するようにしても良い。
When a high nitrogen removal rate is not required in this wastewater treatment apparatus, the second denitrification tank 4B and the re-aeration tank 7 are omitted, and the nitrification treatment liquid in the nitrification tank 5 is replaced with the one shown in FIG.
As in the case of the wastewater treatment apparatus described above, the liquid may be directly sent to the sedimentation tank 3 to be separated into solid and liquid.

【0051】なお、図1〜4に示す廃水処理装置は本発
明の廃水処理装置の一実施例であって、本発明はその要
旨を超えない限り、何ら図示のものに限定されるもので
はない。
The wastewater treatment apparatus shown in FIGS. 1 to 4 is one embodiment of the wastewater treatment apparatus of the present invention, and the present invention is not limited to the illustrated ones unless it exceeds the gist thereof. .

【0052】例えば、MAP反応槽は、図7に示すよう
な、MAP結晶の取り出しを行う晶析槽に限らず、微小
なMAP粒子を含む液をそのまま後段の槽に送給するも
のであっても良い。この場合でも、微小なMAP粒子を
含んだ液が最終的に沈殿槽で固液分離されることで、M
APの分離が行われる。
For example, the MAP reaction tank is not limited to a crystallization tank for taking out MAP crystals as shown in FIG. 7, and a liquid containing fine MAP particles is directly supplied to a subsequent tank. Is also good. Even in this case, the liquid containing fine MAP particles is finally solid-liquid separated in the sedimentation tank, and
AP separation is performed.

【0053】[0053]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0054】実施例1 図3に示す廃水処理装置により表1に示す水質の廃水を
下記条件で処理した。
Example 1 Wastewater having the quality shown in Table 1 was treated by the wastewater treatment apparatus shown in FIG. 3 under the following conditions.

【0055】処理条件 MAP反応槽でのMg塩添加量:塩化マグネシウムをP
4 −Pに対してモル比で1.2倍 MAP反応槽のpH:8.2〜8.7 硝化循環液量:200m3 /日 返送汚泥量:100m3 /日 各槽の処理液の水質及び流量を表1に示す。
Processing conditions Mg salt added amount in MAP reactor: Magnesium chloride added to P
1.2 times the molar ratio of O 4 -P pH of the MAP reaction tank: 8.2 to 8.7 Nitrification circulating liquid: 200 m 3 / day Returned sludge: 100 m 3 / day Table 1 shows the water quality and flow rate.

【0056】[0056]

【表1】 [Table 1]

【0057】表1より明らかなように、全体での除去率
はT−N99.4%、T−P97.5%、BOD99.
3%と高い値であった。
As apparent from Table 1, the total removal rate was 99.4% for T-N, 97.5% for T-P, and 99% for BOD99.
The value was as high as 3%.

【0058】特にMAP反応槽でのリン除去率が高く、
MAP結晶(リン酸マグネシウムアンモニウム6水塩)
が93kg/日回収された。
Particularly, the phosphorus removal rate in the MAP reactor is high,
MAP crystal (magnesium ammonium phosphate hexahydrate)
Was recovered at 93 kg / day.

【0059】実施例2 図4に示す廃水処理装置により表2に示す水質の廃水を
下記条件で処理した。
Example 2 Wastewater having the quality shown in Table 2 was treated by the wastewater treatment apparatus shown in FIG. 4 under the following conditions.

【0060】処理条件 MAP反応槽でのMg塩添加量:塩化マグネシウムをP
4 −Pに対してモル比で1.2倍 MAP反応槽のpH:8.2〜8.7 硝化循環液量:200m3 /日 返送汚泥量:100m3 /日 各槽の処理液の水質及び流量を表2に示す。
Processing conditions Mg salt added amount in MAP reactor: Magnesium chloride added to P
1.2 times the molar ratio of O 4 -P pH of the MAP reaction tank: 8.2 to 8.7 Nitrification circulating liquid: 200 m 3 / day Returned sludge: 100 m 3 / day Table 2 shows the water quality and flow rate.

【0061】[0061]

【表2】 [Table 2]

【0062】表2より明らかなように、全体での除去率
はT−N99.4%、T−P87.5%、BOD99.
3%と高い値であった。
As is clear from Table 2, the total removal rate was TN 99.4%, TP 87.5%, and BOD99.
The value was as high as 3%.

【0063】特にMAP反応槽でのリン除去率が高く、
MAP結晶(リン酸マグネシウムアンモニウム6水塩)
が85kg/日回収された。
In particular, the phosphorus removal rate in the MAP reactor is high,
MAP crystal (magnesium ammonium phosphate hexahydrate)
Was recovered at 85 kg / day.

【0064】実施例3 図1に示す廃水処理装置により表3に示す水質の廃水を
下記条件で処理した。
Example 3 Wastewater having the quality shown in Table 3 was treated by the wastewater treatment apparatus shown in FIG. 1 under the following conditions.

【0065】処理条件 MAP反応槽でのMg塩添加量:塩化マグネシウムをP
4 −Pに対してモル比で1.2倍 MAP反応槽のpH:8.2〜8.7 返送汚泥量:100m3 /日 各槽の処理液の水質及び流量を表3に示す。
Processing conditions Mg salt added amount in MAP reactor: Magnesium chloride added to P
1.2 times the molar ratio of O 4 -P pH of the MAP reaction tank: 8.2 to 8.7 Returned sludge amount: 100 m 3 / day Table 3 shows the water quality and flow rate of the treatment liquid in each tank.

【0066】[0066]

【表3】 [Table 3]

【0067】表3より明らかなように、全体での除去率
はT−N33.3%、T−P97.2%、BOD98.
0%と高い値であった。
As is evident from Table 3, the total removal rate was 33.3% for TN, 97.2% for TP and 98% for BOD98.
The value was as high as 0%.

【0068】特にMAP反応槽でのリン除去率が高く、
MAP結晶(リン酸マグネシウムアンモニウム6水塩)
が83kg/日回収された。
In particular, the phosphorus removal rate in the MAP reactor is high,
MAP crystal (magnesium ammonium phosphate hexahydrate)
Was collected at 83 kg / day.

【0069】[0069]

【発明の効果】以上詳述した通り、本発明の廃水処理装
置によれば、廃水中のリンと窒素の一部とをMAPとし
て効率的に回収し、処理水のリン濃度或いは更に窒素濃
度を低減することができる。
As described above in detail, according to the wastewater treatment apparatus of the present invention, phosphorus and part of nitrogen in wastewater are efficiently recovered as MAP, and the concentration of phosphorus in treated water or the concentration of nitrogen is further reduced. Can be reduced.

【0070】本発明では、MAP反応槽の前段に嫌気槽
又は脱窒素槽を設け、嫌気条件下で汚泥から放出された
正リン酸の形態のリン又は嫌気性生物処理により正リン
酸の形態とされたリンをMAP反応槽に導入するため、
廃水を直接MAP反応に供する場合に比べて、MAP生
成効率が高く、従って、リン及び窒素の除去効率が高
く、良好な水質の処理水を得ることができると共に、M
AP回収効率も向上する。
In the present invention, an anaerobic tank or a denitrification tank is provided before the MAP reaction tank, and the form of orthophosphoric acid released from sludge under anaerobic conditions or the form of orthophosphoric acid by anaerobic biological treatment is determined. In order to introduce the phosphorous into the MAP reactor,
Compared to the case where wastewater is directly subjected to a MAP reaction, the MAP generation efficiency is high, the phosphorus and nitrogen removal efficiency is high, and treated water of good quality can be obtained.
AP collection efficiency is also improved.

【0071】特に、MAP反応槽の前段に脱窒素槽を設
けた場合には、廃水中の窒素及びリンをそれぞれアンモ
ニア及び正リン酸の形態でMAP反応槽に送給すること
ができ、MAP生成反応に有利である。
In particular, when a denitrification tank is provided before the MAP reaction tank, nitrogen and phosphorus in the wastewater can be fed to the MAP reaction tank in the form of ammonia and orthophosphoric acid, respectively. It is advantageous for the reaction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の廃水処理装置の実施の形態を示す系
統図である。
FIG. 1 is a system diagram showing an embodiment of a wastewater treatment apparatus according to claim 1;

【図2】請求項1の廃水処理装置の他の実施の形態を示
す系統図である。
FIG. 2 is a system diagram showing another embodiment of the wastewater treatment apparatus according to claim 1;

【図3】請求項1の廃水処理装置の別の実施の形態を示
す系統図である。
FIG. 3 is a system diagram showing another embodiment of the wastewater treatment apparatus according to claim 1;

【図4】請求項2の廃水処理装置の実施の形態を示す系
統図である。
FIG. 4 is a system diagram showing an embodiment of a wastewater treatment apparatus according to claim 2;

【図5】従来の生物脱リン処理装置を示す系統図であ
る。
FIG. 5 is a system diagram showing a conventional biological dephosphorization treatment device.

【図6】従来の生物脱リン脱窒素処理装置を示す系統図
である。
FIG. 6 is a system diagram showing a conventional biological dephosphorization and denitrification treatment apparatus.

【図7】MAP反応槽の構成を示す系統図である。FIG. 7 is a system diagram showing a configuration of a MAP reaction tank.

【符号の説明】[Explanation of symbols]

1 嫌気槽 2 好気槽 3 沈殿槽 4 脱窒素槽 4A 第1脱窒素槽 4B 第2脱窒素槽 5 硝化槽 6 MAP反応槽 7 再曝気槽 DESCRIPTION OF SYMBOLS 1 Anaerobic tank 2 Aerobic tank 3 Sedimentation tank 4 Denitrification tank 4A 1st denitrification tank 4B 2nd denitrification tank 5 Nitrification tank 6 MAP reaction tank 7 Reaeration tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 嫌気性処理槽と、該嫌気性処理槽の処理
液が導入されるMAP反応槽と、該MAP反応槽の処理
液が導入される脱窒素処理槽又は好気性処理槽とを備え
てなることを特徴とする廃水処理装置。
1. An anaerobic treatment tank, a MAP reaction tank into which the treatment liquid in the anaerobic treatment tank is introduced, and a denitrification treatment tank or an aerobic treatment tank into which the treatment liquid in the MAP reaction tank is introduced. A wastewater treatment apparatus, comprising: a wastewater treatment apparatus;
【請求項2】 脱窒素処理槽と、該脱窒素処理槽の処理
液が導入されるMAP反応槽と、該MAP反応槽の処理
液が導入される硝化処理槽とを備えてなることを特徴と
する廃水処理装置。
2. A denitrification treatment tank, a MAP reaction tank into which the treatment liquid in the denitrification treatment tank is introduced, and a nitrification treatment tank into which the treatment liquid in the MAP reaction tank is introduced. Wastewater treatment equipment.
JP16588897A 1997-06-23 1997-06-23 Waste water treatment equipment Expired - Fee Related JP3876489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16588897A JP3876489B2 (en) 1997-06-23 1997-06-23 Waste water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16588897A JP3876489B2 (en) 1997-06-23 1997-06-23 Waste water treatment equipment

Publications (2)

Publication Number Publication Date
JPH1110194A true JPH1110194A (en) 1999-01-19
JP3876489B2 JP3876489B2 (en) 2007-01-31

Family

ID=15820889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16588897A Expired - Fee Related JP3876489B2 (en) 1997-06-23 1997-06-23 Waste water treatment equipment

Country Status (1)

Country Link
JP (1) JP3876489B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296399A (en) * 1999-04-13 2000-10-24 Maezawa Ind Inc Waste water treating apparatus
JP2003047988A (en) * 2001-08-03 2003-02-18 Ebara Corp Method and apparatus for treating organic polluted water
KR100453484B1 (en) * 2002-09-30 2004-10-15 (주)이엔바이오21 Method of wasetwater treatment
JP2005066504A (en) * 2003-08-26 2005-03-17 Ataka Construction & Engineering Co Ltd Method and apparatus for treating sewage
JP2007117948A (en) * 2005-10-31 2007-05-17 Ebara Corp Method and apparatus for treating high-concentration organic waste liquid
JP4647814B2 (en) * 2001-03-27 2011-03-09 住友重機械エンバイロメント株式会社 Organic wastewater treatment equipment
WO2011143610A2 (en) * 2010-05-13 2011-11-17 Multiform Harvest Inc. Process and system for recovering phosphorus from wastewater
US9334166B2 (en) 2011-02-03 2016-05-10 Multiform Harvest Inc. Methods and compositions for chemical drying and producing struvite
CN108314179A (en) * 2018-01-18 2018-07-24 同济大学 Strengthen the method for activated sludge removal sewerage nitrogen and phosphor and toxic organic compound difficult to degrade
US10189711B2 (en) 2010-08-30 2019-01-29 Multiform Harvest Inc. Methods and systems for recovering phosphorus from wastewater including digestate recycle
JP2021507805A (en) * 2017-12-18 2021-02-25 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Sludge disposal method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367959A (en) * 1976-11-30 1978-06-16 Ebara Infilco Co Ltd Method of treating organic waste water
JPH0777640B2 (en) * 1986-09-26 1995-08-23 福岡市 Dephosphorization device
JPH08155485A (en) * 1994-12-05 1996-06-18 Kurita Water Ind Ltd Anaerobic treatment method
JPH0975992A (en) * 1995-09-20 1997-03-25 Unitika Ltd Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JPH0994596A (en) * 1995-09-29 1997-04-08 Ebara Corp Removal and recovery of phosphorus from organic sewage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367959A (en) * 1976-11-30 1978-06-16 Ebara Infilco Co Ltd Method of treating organic waste water
JPH0777640B2 (en) * 1986-09-26 1995-08-23 福岡市 Dephosphorization device
JPH08155485A (en) * 1994-12-05 1996-06-18 Kurita Water Ind Ltd Anaerobic treatment method
JPH0975992A (en) * 1995-09-20 1997-03-25 Unitika Ltd Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JPH0994596A (en) * 1995-09-29 1997-04-08 Ebara Corp Removal and recovery of phosphorus from organic sewage

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296399A (en) * 1999-04-13 2000-10-24 Maezawa Ind Inc Waste water treating apparatus
JP4647814B2 (en) * 2001-03-27 2011-03-09 住友重機械エンバイロメント株式会社 Organic wastewater treatment equipment
JP2003047988A (en) * 2001-08-03 2003-02-18 Ebara Corp Method and apparatus for treating organic polluted water
KR100453484B1 (en) * 2002-09-30 2004-10-15 (주)이엔바이오21 Method of wasetwater treatment
JP2005066504A (en) * 2003-08-26 2005-03-17 Ataka Construction & Engineering Co Ltd Method and apparatus for treating sewage
JP4632397B2 (en) * 2003-08-26 2011-02-16 アタカ大機株式会社 Sewage treatment method and apparatus
JP2007117948A (en) * 2005-10-31 2007-05-17 Ebara Corp Method and apparatus for treating high-concentration organic waste liquid
JP4642635B2 (en) * 2005-10-31 2011-03-02 荏原エンジニアリングサービス株式会社 High concentration organic waste liquid treatment method and apparatus
WO2011143610A2 (en) * 2010-05-13 2011-11-17 Multiform Harvest Inc. Process and system for recovering phosphorus from wastewater
WO2011143610A3 (en) * 2010-05-13 2012-04-05 Multiform Harvest Inc. Process and system for recovering phosphorus from wastewater
US8747672B2 (en) 2010-05-13 2014-06-10 Multiform Harvest Inc. Process and system for recovering phosphorus from wastewater
US10189711B2 (en) 2010-08-30 2019-01-29 Multiform Harvest Inc. Methods and systems for recovering phosphorus from wastewater including digestate recycle
US11091368B2 (en) 2010-08-30 2021-08-17 Ostara Nutrient Recovery Technologies Inc. Methods and systems for recovering phosphorus from wastewater including digestate recycle
US9334166B2 (en) 2011-02-03 2016-05-10 Multiform Harvest Inc. Methods and compositions for chemical drying and producing struvite
US10099926B2 (en) 2011-02-03 2018-10-16 Multiform Harvest Inc. Methods and compositions for chemical drying and producing struvite
JP2021507805A (en) * 2017-12-18 2021-02-25 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Sludge disposal method
US11440828B2 (en) 2017-12-18 2022-09-13 Veolia Water Solutions & Technologies Support Method of treating sludge
CN108314179A (en) * 2018-01-18 2018-07-24 同济大学 Strengthen the method for activated sludge removal sewerage nitrogen and phosphor and toxic organic compound difficult to degrade
CN108314179B (en) * 2018-01-18 2020-10-27 同济大学 Method for removing nitrogen, phosphorus and refractory toxic organic matters in sewage by reinforced activated sludge

Also Published As

Publication number Publication date
JP3876489B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
KR100988916B1 (en) Method of treating organic wastewater and sludge and treatment apparatus therefor
WO2001005715A1 (en) Biological process for removing phosphorus involving a membrane filter
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP3876489B2 (en) Waste water treatment equipment
JP3473328B2 (en) Biological dephosphorization equipment
JP2001276851A (en) Drain treatment equipment
JPH1157773A (en) Biological dephosphorizing device
JP2576679B2 (en) Dephosphorization device
JP2013119081A (en) Treatment method and treatment apparatus for phosphorus-containing wastewater
JP4007584B2 (en) Method and apparatus for recovering phosphorus and nitrogen
JP3844347B2 (en) Method and apparatus for removing and recovering phosphorus from organic wastewater
JP3387244B2 (en) Anaerobic treatment method
JP3794736B2 (en) Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen
JP2002326089A (en) Method and apparatus for removing phosphorus
JP3955478B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
JP4101498B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
JP3355121B2 (en) Organic wastewater treatment method
JP2000296399A (en) Waste water treating apparatus
JP3442204B2 (en) Organic wastewater phosphorus removal and recovery method
JP4547799B2 (en) Biological phosphorus removal equipment
JP4147609B2 (en) Dephosphorization device
JP3344132B2 (en) Dephosphorization device
JP4390959B2 (en) Wastewater treatment equipment
JP4004725B2 (en) Two-stage dephosphorization method and apparatus
JP3479566B2 (en) Phosphorus recovery device using seawater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees