JP3442204B2 - Organic wastewater phosphorus removal and recovery method - Google Patents
Organic wastewater phosphorus removal and recovery methodInfo
- Publication number
- JP3442204B2 JP3442204B2 JP25360995A JP25360995A JP3442204B2 JP 3442204 B2 JP3442204 B2 JP 3442204B2 JP 25360995 A JP25360995 A JP 25360995A JP 25360995 A JP25360995 A JP 25360995A JP 3442204 B2 JP3442204 B2 JP 3442204B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- phosphorus
- tank
- anaerobic
- aerobic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は下水などのリン含有
汚水を高度に浄化する技術に関し、特にリンを従来技術
よりも安定して除去可能で、余剰生物汚泥発生量を著し
く減少できる新規なリン除去技術に関する。
【0002】
【従来の技術】下水などの汚水のリンを除去する方法と
して最も代表的な技術は生物学的脱リン法である。この
技術は有機性汚水を嫌気工程に供給して返送汚泥中の活
性汚泥(脱リン菌が共存している)からリンを吐き出さ
せた後、好気工程に供給し脱リン菌にリン摂取を行なわ
せた後、活性汚泥を沈殿分離し、沈殿汚泥を嫌気工程に
リサイクルにするものである。
【0003】しかし従来の生物脱リン法は次の欠点があ
った。
原水のBOD/P比が減少すると嫌気工程における脱
リン菌からのリン吐き出しが不十分になりその結果、好
気工程における脱リン菌へのリン摂取も悪化する。
リンは生物汚泥に取り込まれる以外の形では除去され
ないので、リンを取り込んだ汚泥を系外に排出しない限
りリンの物質収支が成立せず、従って難脱水性の余剰生
物汚泥発生量が多く、汚泥処理が負担になる。
【0004】
【発明が解決しようとする課題】本発明は従来の生物学
的脱リン法の欠点を解決した新技術を確立し、原水のB
OD/P比が小さい場合でも安定した高度のリン除去が
可能で、しかも余剰汚泥発生量を著しく少なくできる新
システムを提供することを課題とする。
【0005】
【課題を解決するための手段】本発明者は、生物学的リ
ン除去法のプロセス構成を変革して、更に化学的リン除
去、オゾンによる汚泥可溶化を新規な態様で結合するこ
とにより上記課題を達成できることを見いだした。すな
わち、本発明は、リン含有汚水を少くとも嫌気工程好気
工程をこの順に有する嫌気好気法により生物学的に脱リ
ンする方法において、好気工程に後続する活性汚泥の沈
殿工程から嫌気工程に返送される汚泥の一部または好気
工程から引き抜いた汚泥をオゾン酸化して可溶化した
後、リン酸イオンと沈殿生成反応を起こす金属イオンを
添加してリンを回収し、リンが除去された可溶化汚泥を
嫌気工程に供給することを特徴とする方法である。
【0006】このような本発明の構成により、好気槽ま
たは沈殿槽内の汚泥をオゾン酸化し可溶化してリン酸イ
オンと反応し沈降する金属イオンを添加することで安定
した高度のリン除去が可能となり、しかも余剰汚泥発生
量を著しく少なくできる。本発明における、リン含有水
とは、リンを含有する都市排水(下水あるいはし尿)お
よび有機性産業排水等である。
【0007】生物学的に脱リンする方法において、嫌気
工程とは酸素含有ガスで曝気しな工程であり、好気工程
とは酸素含有ガスで曝気し、溶存酸素を供給する工程で
ある。汚泥のオゾン酸化は、オゾンを発生することがで
きる、オゾン酸化槽を設けて行う。
【0008】可溶化汚泥とは、オゾン酸化処理後の汚泥
を指す。また、オゾン酸化により、溶液には可溶性有機
物(BOD)が豊富に含まれ、汚泥は生物分解性が高ま
っているので、これらを嫌気槽に導入することで嫌気槽
のBOD/P比を高くでき脱リン菌からのリンの吐き出
しが良好となるとともに、好気槽での脱リン菌へのリン
摂取も良好となる。
【0009】また、従来、処理に伴う難脱水性の余剰生
物汚泥発生量が多く汚泥処理が問題であったが、本発明
は、汚泥をオゾンで酸化して可溶化し、溶液からリンを
回収し更に可溶化しなかった汚泥(ただし、オゾン酸化
で生物分解性が高まっている汚泥)を嫌気槽に導入する
ことで、可溶化汚泥がCO2 とH2 Oに分解する結果、
余剰汚泥の増加が見られない。
【0010】このように本発明は、「生物学的脱リン法
において余剰汚泥生物量をほぼゼロにすることはリンの
物質収支的に不可能である」との固定観念を初めて打破
したものである。更にリンを豊富に取り込んだ活性汚泥
をオゾン酸化するとリン、窒素、有機物を多量に含む可
溶化液(懸濁液状)が生成することに着目し、可溶化有
機物を脱リン菌の嫌気槽におけるリンのはきだしの促進
に利用するという思想は従来その例を見ない。
【0011】
【発明の実施の形態】図1に本発明の構成例を示す。嫌
気工程、好気工程は各々嫌気槽、好気槽で行なわれる。
図1の嫌気槽1に原水2と沈殿槽3からの返送汚泥4を
流入させ、汚泥中の脱リン菌からリンを吐き出させる。
次に好気槽5において活性汚泥を曝気し、吐き出したリ
ン以上の量のリンを脱リン菌に吸収させる。沈殿槽3で
沈殿した汚泥6の大部分の返送汚泥4は嫌気槽1にリサ
イクルされる。
【0012】沈殿槽3で沈殿した汚泥6の残りの汚泥7
はオゾン酸化槽8に導かれ、リンを豊富に含む汚泥がオ
ゾンにより酸化分解され可溶化し、可溶化した汚泥7か
ら可溶性有機物、コロイド状有機物、アンモニア性窒
素、リン酸イオンが溶出される。なおオゾン酸化槽8に
供給する汚泥としては好気槽5から汚泥の一部を引き抜
き、これをオゾン酸化するようにしても良い。オゾン酸
化によって可溶化しなかった残渣汚泥を固液分離し、そ
の分離液9にマグネシウム、カルシウム、アルミニウ
ム、鉄などのリンと化学的に沈殿生成反応を起こす金属
イオン10を添加し、リンをリン酸マグネシウムアンモ
ン(MAPと略す)、リン酸カルシウム、リン酸アルミ
ニウム、リン酸鉄として分離回収11する。なかでもマ
グネシウムイオンがオゾン酸化可溶化液中のアンモニ
ア、リンの両者をMAPとして回収できるので好適であ
る。MAPは遅効性の肥料として著名な有価物である点
も理想的である。
【0013】リン酸イオンと金属イオンとの沈殿生成物
を回収したあとのリン回収槽14からの流出液12には
BOD成分が豊富に含まれているので、これを嫌気槽1
に添加すると原水のBOD/P比を高めることができ、
脱リン菌からのリン吐き出しが活発に起きる。なおオゾ
ン酸化によって可溶化しなかった残渣汚泥も生物分解性
が高まっているので嫌気槽1に供給し、生物処理工程内
でCO2 とH2 Oに分解する。
【0014】原水のBOD除去にともなって増殖した活
性汚泥は、オゾン酸化槽8、嫌気槽1および好気槽5
(沈殿槽5を経由する場合がある)をこの順序で循環す
ることによってほぼ完全に炭酸ガス、水に分解され系外
に排出すべき余剰汚泥はほぼゼロになる。オゾン酸化槽
8に供給する汚泥量は、嫌気槽1または好気槽5内にM
LSS測定器を設置し、活性汚泥MLSSが一定範囲
(例えば3000〜4000mg/lの範囲)に納まるよ
うに制御されれば良い。
【0015】他の好ましい実施の形態としては、図2に
示す本発明を組み込んだ工程のように、嫌気槽1に後続
して脱窒素槽および硝化槽を設け、生物脱リンと生物脱
窒素を同時に行なう方法である。循環スラリにより、硝
化槽で生じたNO3 - やNO2 - を脱窒素槽でN2 ガス
に還元する。
【0016】図2において、オゾン可溶化汚泥を嫌気槽
1に供給すると生物脱リン反応を促進できるだけでな
く、脱窒素槽におけるBOD/N比が高まり、脱窒素速
度が向上し脱窒素率も高まるという重要な効果がある。
生物脱リンと生物脱窒素を同時に行えるので、より良好
に原水を処理することが可能となる。
【0017】
【実施例】図1の工程にしたがって下水(平均水質を表
1に示す)を対象に本発明の実証試験を行なった。表2
に試験条件を示す。
【0018】
【表1】
表1
水温 22度
pH 7.1
SS 135 mg/l
BOD 116 mg/l
リン 5.4mg/l
【0019】
【表2】
表2
下水処理量 24 l/d
嫌気槽容積 1 l
好気槽容積 5 l
浮遊活性汚泥MLSS濃度 3000〜4000 mg/l
沈殿槽水面積負荷 25 mm/min
沈殿層からの返送汚泥量 20 l/d
(オゾン酸化槽を経由しないもの)
オゾン酸化槽容積 500 cc
オゾン酸化汚泥量 1.5〜1.7 g-ss/d
オゾン添加量 0.2〜0.3 gオゾン/d
マグネシウムイオン添加量 0.12〜0.15 g/d
(水酸化マグネシウム使用)
【0020】実験の結果、処理開始後2カ月後に処理状
況が安定状態になってからの沈殿槽からの処理水水質の
平均は表3のように高度にリン、BODが除去されてい
た。また余剰汚泥は1年間の試験の間、引き抜かなかっ
たが好気槽のMLSSは4000mg/l以下を維持した
ことから余剰汚泥の発生は無視少であることが判明し
た。
【0021】
【表3】
表3
SS 5 mg/l
BOD 4 mg/l
リン 0.8 mg/l
【0022】
【発明の効果】
1.生物学的脱リン法と化学的なリン除去法、オゾンに
よる汚泥可溶化法を新規に思想で結合した結果、余剰汚
泥の発生量をほぼゼロにでき、かつリン除去が安定して
行なわれる。
2.脱リン菌に摂取されたリンをMAPなどの有価資源
として回収できる。
【0023】3.脱リン菌の嫌気槽におけるリン吐き出
しに、オゾン可溶化によって生成した有機物を利用した
ので安定したリン吐き出し作用が行われる。
4.オゾン可溶化汚泥を嫌気槽1に供給すると生物脱リ
ン反応を促進できるだけでなく、脱窒素槽におけるBO
D/N比が高まり、脱窒素速度が向上し脱窒素率も高ま
る。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for highly purifying phosphorus-containing wastewater such as sewage, and more particularly to a technique for removing phosphorus more stably than conventional techniques, The present invention relates to a novel phosphorus removal technology that can significantly reduce sludge generation. [0002] The most typical technique for removing phosphorus from sewage or other wastewater is a biological phosphorus removal method. This technology supplies organic sewage to the anaerobic process and discharges phosphorus from activated sludge (in which dephosphorylated bacteria coexist) in the returned sludge, and then supplies it to the aerobic process to ingest phosphorus from the dephosphorylated bacteria. After that, the activated sludge is settled and separated, and the settled sludge is recycled to the anaerobic process. However, the conventional biological phosphorus removal method has the following disadvantages. When the BOD / P ratio of the raw water decreases, the phosphorus discharge from the dephosphorylated bacteria in the anaerobic step becomes insufficient, and as a result, the phosphorus intake to the dephosphorylated bacteria in the aerobic step also worsens. Since phosphorus is not removed except in the form taken up by biological sludge, the material balance of phosphorus is not established unless the sludge containing phosphorus is discharged out of the system. Processing becomes a burden. [0004] The present invention has established a new technique which has solved the drawbacks of the conventional biological dephosphorization method,
It is an object of the present invention to provide a new system capable of stably removing phosphorus at a high level even when the OD / P ratio is small and further reducing the amount of generated excess sludge. SUMMARY OF THE INVENTION The present inventors have changed the process configuration of the biological phosphorus removal method to further combine chemical phosphorus removal and sludge solubilization with ozone in a novel manner. It has been found that the above-mentioned problem can be achieved by the above. That is, the present invention relates to a method for biologically dephosphorizing phosphorus-containing wastewater by an anaerobic aerobic method having at least an anaerobic step and an aerobic step in this order. After ozone oxidation and solubilization of a part of the sludge returned to the sludge or sludge extracted from the aerobic process, phosphate ions and metal ions that cause a precipitation reaction are added to recover phosphorus, and phosphorus is removed. And supplying the solubilized sludge to the anaerobic step. According to the structure of the present invention, the sludge in the aerobic tank or the sedimentation tank is ozone-oxidized and solubilized, and the metal ions which react with and precipitate with the phosphate ions are added to stably remove the phosphorus at a high level. And the amount of excess sludge generated can be significantly reduced. The phosphorus-containing water in the present invention is phosphorus-containing municipal wastewater (sewage or human waste) and organic industrial wastewater. In the biological dephosphorization method, the anaerobic step is a step in which aeration is not performed with an oxygen-containing gas, and the aerobic step is a step in which aeration is performed with an oxygen-containing gas and dissolved oxygen is supplied. Ozone oxidation of sludge is performed by providing an ozone oxidation tank capable of generating ozone. [0008] Solubilized sludge refers to sludge after ozone oxidation treatment. Also, due to ozone oxidation, the solution contains abundant soluble organic matter (BOD), and the sludge has increased biodegradability, so by introducing these into the anaerobic tank, the BOD / P ratio of the anaerobic tank can be increased. The expulsion of phosphorus from the dephosphorylated bacterium is improved, and the intake of phosphorus to the dephosphorylated bacterium in the aerobic tank is also improved. [0009] Conventionally, the amount of surplus biological sludge which is difficult to dehydrate due to the treatment is large and sludge treatment is problematic. However, the present invention oxidizes sludge with ozone to solubilize it, and recovers phosphorus from the solution. By introducing sludge that has not been solubilized (sludge that has increased biodegradability due to ozone oxidation) into the anaerobic tank, the solubilized sludge is decomposed into CO 2 and H 2 O.
There is no increase in excess sludge. Thus, the present invention for the first time breaks the stereotype that "it is impossible to reduce the amount of surplus sludge biomass to almost zero in the biological dephosphorization method in terms of the material balance of phosphorus". is there. Focusing on the fact that activated sludge containing a large amount of phosphorus is oxidized with ozone, a solubilized solution (suspension-like) containing a large amount of phosphorus, nitrogen and organic substances is generated. The idea of using it for the promotion of a new one has never been seen before. FIG. 1 shows a configuration example of the present invention. The anaerobic step and the aerobic step are performed in an anaerobic tank and an aerobic tank, respectively.
Raw water 2 and return sludge 4 from the sedimentation tank 3 are allowed to flow into the anaerobic tank 1 in FIG. 1 to discharge phosphorus from the dephosphorylated bacteria in the sludge.
Next, the activated sludge is aerated in the aerobic tank 5 to absorb phosphorus in an amount equal to or greater than the exhaled phosphorus to the dephosphorus bacteria. Most of the returned sludge 4 of the sludge 6 settled in the settling tank 3 is recycled to the anaerobic tank 1. The remaining sludge 7 of the sludge 6 settled in the settling tank 3
Is led to an ozone oxidation tank 8, where sludge rich in phosphorus is oxidized and decomposed by ozone to be solubilized, and soluble organic matter, colloidal organic matter, ammonia nitrogen and phosphate ions are eluted from the solubilized sludge 7. As the sludge to be supplied to the ozone oxidizing tank 8, a part of the sludge may be extracted from the aerobic tank 5 and oxidized with ozone. Residual sludge not solubilized by ozone oxidation is solid-liquid separated, and to the separated liquid 9 is added a metal ion 10 which chemically reacts with phosphorus such as magnesium, calcium, aluminum, iron, etc. to remove phosphorus. It is separated and collected as magnesium ammonium phosphate (abbreviated as MAP), calcium phosphate, aluminum phosphate, and iron phosphate. Among them, magnesium ions are preferable because both ammonia and phosphorus in the ozone oxidation solubilizing solution can be recovered as MAP. MAP is also ideally a valuable resource as a slow-acting fertilizer. The effluent 12 from the phosphorus recovery tank 14 after the precipitation of phosphate ions and metal ions is recovered contains abundant BOD components.
To increase the BOD / P ratio of raw water,
Phosphorus exhalation from dephosphorus bacteria occurs actively. Residual sludge that has not been solubilized by ozone oxidation is also supplied to the anaerobic tank 1 because of its increased biodegradability, and is decomposed into CO 2 and H 2 O in the biological treatment step. [0014] The activated sludge that has grown due to the BOD removal of the raw water is supplied to the ozone oxidation tank 8, the anaerobic tank 1, and the aerobic tank 5
By circulating (which may pass through the sedimentation tank 5) in this order, surplus sludge almost completely decomposed into carbon dioxide and water and to be discharged out of the system becomes almost zero. The amount of sludge supplied to the ozone oxidation tank 8 is M in the anaerobic tank 1 or the aerobic tank 5.
It is sufficient that an LSS measuring device is installed and the activated sludge MLSS is controlled so as to be within a certain range (for example, 3000 to 4000 mg / l). As another preferred embodiment, a denitrification tank and a nitrification tank are provided following the anaerobic tank 1 as in the step incorporating the present invention shown in FIG. It is a method that is performed simultaneously. By the circulation slurry, NO 3 − and NO 2 − generated in the nitrification tank are reduced to N 2 gas in the denitrification tank. In FIG. 2, when the ozone-solubilized sludge is supplied to the anaerobic tank 1, not only the biological dephosphorization reaction can be promoted, but also the BOD / N ratio in the denitrification tank increases, the denitrification rate increases, and the denitrification rate increases. There is an important effect.
Since biological dephosphorization and biological denitrification can be performed at the same time, raw water can be more favorably treated. EXAMPLE A proof test of the present invention was conducted on sewage (average water quality is shown in Table 1) according to the process shown in FIG. Table 2
Shows the test conditions. Table 1 Water temperature 22 degree pH 7.1 SS 135 mg / l BOD 116 mg / l Phosphorus 5.4 mg / l Table 2 Sewage treatment amount 24 l / d Anaerobic tank Volume 1 l Aerobic tank volume 5 l Floating activated sludge MLSS concentration 3000-4000 mg / l Sedimentation tank water area load 25 mm / min Sludge amount returned from the sedimentation layer 20 l / d (Those not passing through the ozone oxidation tank) Ozone Oxidation tank volume 500 cc Ozone oxidized sludge amount 1.5 to 1.7 g-ss / d Ozone added amount 0.2 to 0.3 g ozone / d Magnesium ion added amount 0.12 to 0.15 g / d ( As a result of the experiment, the average water quality of the treated water from the sedimentation tank after the treatment condition became stable two months after the start of the treatment was as shown in Table 3, and phosphorus and BOD were highly removed. It had been. Although the surplus sludge was not extracted during the one-year test, the occurrence of surplus sludge was found to be negligible since the MLSS of the aerobic tank was maintained at 4000 mg / l or less. [Table 3] SS 5 mg / l BOD 4 mg / l Phosphorus 0.8 mg / l As a result of newly combining the biological dephosphorization method, the chemical phosphorus removal method, and the sludge solubilization method with ozone, the amount of excess sludge generated can be reduced to almost zero, and the phosphorus removal can be performed stably. 2. The phosphorus ingested by the dephosphorus bacteria can be collected as valuable resources such as MAP. 3. Since the organic matter generated by ozone solubilization is used for discharging phosphorus in the anaerobic tank for dephosphorus bacteria, a stable phosphorus discharging action is performed. 4. When the ozone-solubilized sludge is supplied to the anaerobic tank 1, not only can the biological dephosphorization reaction be promoted, but also the BO in the denitrification tank can be improved.
The D / N ratio increases, the denitrification rate increases, and the denitrification rate also increases.
【図面の簡単な説明】
【図1】本発明の一実施の形態である有機性汚水のリン
除去回収方法のフローチャートである。
【図2】本発明の他の一実施の形態である有機性汚水の
リン除去回収方法のフローチャートである。
【符号の説明】
1 嫌気槽
2 原水
3 沈殿槽
4 返送汚泥
5 好気槽
6 汚泥
7 沈殿した汚泥6の残りの汚泥
8 オゾン酸化槽
9 分離液
10 金属イオン
11 金属の添加で沈降したリンの分離回収
12 リン回収槽14からの流出液
13 好気槽からの汚泥の一部
14 リン回収槽BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart of a method for removing and recovering phosphorus from organic wastewater according to an embodiment of the present invention. FIG. 2 is a flowchart of a method for removing and recovering organic sewage phosphorus according to another embodiment of the present invention. [Description of Signs] 1 Anaerobic tank 2 Raw water 3 Sedimentation tank 4 Returned sludge 5 Aerobic tank 6 Sludge 7 Remaining sludge of precipitated sludge 8 Ozone oxidation tank 9 Separation liquid 10 Metal ions 11 Addition of metal to phosphorus Separation and recovery 12 Effluent from phosphorus recovery tank 13 Part of sludge from aerobic tank 14 Phosphorous recovery tank
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 3/28 - 3/34 C02F 3/12 C02F 11/00 - 11/20 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C02F 3/28-3/34 C02F 3/12 C02F 11/00-11/20
Claims (1)
程をこの順に有する嫌気好気法により生物学的に脱リン
する方法において、好気工程に後続する活性汚泥の沈殿
工程から嫌気工程に返送される汚泥の一部または好気工
程から引き抜いた汚泥をオゾン酸化して可溶化した後、
リン酸イオンと沈殿生成反応を起こす金属イオンを添加
してリンを回収し、リンが除去された可溶化汚泥を嫌気
工程に供給することを特徴とする方法。(57) [Claim 1] In a method for biologically dephosphorizing phosphorus-containing wastewater by an anaerobic-aerobic method having at least an anaerobic step and an aerobic step in this order, the method follows the aerobic step. After a part of the sludge returned from the activated sludge settling process to the anaerobic process or the sludge extracted from the aerobic process is solubilized by ozone oxidation,
A method comprising adding a phosphate ion and a metal ion causing a precipitation reaction to recover phosphorus, and supplying the solubilized sludge from which the phosphorus has been removed to an anaerobic step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25360995A JP3442204B2 (en) | 1995-09-29 | 1995-09-29 | Organic wastewater phosphorus removal and recovery method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25360995A JP3442204B2 (en) | 1995-09-29 | 1995-09-29 | Organic wastewater phosphorus removal and recovery method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0994596A JPH0994596A (en) | 1997-04-08 |
JP3442204B2 true JP3442204B2 (en) | 2003-09-02 |
Family
ID=17253754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25360995A Expired - Lifetime JP3442204B2 (en) | 1995-09-29 | 1995-09-29 | Organic wastewater phosphorus removal and recovery method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3442204B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3876489B2 (en) * | 1997-06-23 | 2007-01-31 | 栗田工業株式会社 | Waste water treatment equipment |
JP2003047988A (en) * | 2001-08-03 | 2003-02-18 | Ebara Corp | Method and apparatus for treating organic polluted water |
JP2003071487A (en) * | 2001-08-30 | 2003-03-11 | Ebara Corp | Method and apparatus for treating organic wastewater |
JP4266329B2 (en) * | 2003-06-20 | 2009-05-20 | 三菱電機株式会社 | Organic waste liquid processing method and processing apparatus |
JP4570608B2 (en) * | 2006-12-18 | 2010-10-27 | 荏原エンジニアリングサービス株式会社 | Organic wastewater treatment method and apparatus |
-
1995
- 1995-09-29 JP JP25360995A patent/JP3442204B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0994596A (en) | 1997-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6706185B2 (en) | Biological method of phosphorus removal and biological phosphorus-removing apparatus | |
JP3172965B2 (en) | Sewage treatment method | |
JP3473328B2 (en) | Biological dephosphorization equipment | |
JPH09108690A (en) | Treatment of phosphorus containing sewage | |
JP3442204B2 (en) | Organic wastewater phosphorus removal and recovery method | |
JPH1157773A (en) | Biological dephosphorizing device | |
JPS60206494A (en) | Simultaneous removal of nitrogen and phosphorus in waste water by sulfur replenishing aerobic-anaerobic activated sludge method | |
JP3355121B2 (en) | Organic wastewater treatment method | |
JPH02237698A (en) | Biological removing method of nitrogen and phosphorus and its apparatus | |
JP3449862B2 (en) | Advanced purification method for organic wastewater | |
JP3377346B2 (en) | Organic wastewater treatment method and apparatus | |
JPH08309366A (en) | Removal of nitrogen and phosphorus from waste water | |
JP3511430B2 (en) | Organic wastewater treatment method | |
JP2002192185A (en) | Biological dephosphorization apparatus | |
JP3449855B2 (en) | Biological phosphorus removal method and apparatus for organic wastewater | |
JP4547799B2 (en) | Biological phosphorus removal equipment | |
JP3392295B2 (en) | Method and apparatus for treating organic sewage | |
JP3526140B2 (en) | Biological phosphorus removal method and apparatus for organic wastewater | |
EP1555245A2 (en) | A biologial method of phosphorous removal and biological phosphorous-removing apparatus | |
JPS5980398A (en) | Biological waste water disposal | |
JP4371441B2 (en) | Treatment method of sludge treatment system return water | |
JP2002059200A (en) | Method of treating sewage and sludge | |
JP2003117594A (en) | Treating method and treating equipment for organic sewage | |
JP2002320992A (en) | Method for treating organic waste water and equipment therefor | |
JP3327979B2 (en) | Septic tank sludge treatment method and equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |