[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10322904A - Power supply control circuit - Google Patents

Power supply control circuit

Info

Publication number
JPH10322904A
JPH10322904A JP9130676A JP13067697A JPH10322904A JP H10322904 A JPH10322904 A JP H10322904A JP 9130676 A JP9130676 A JP 9130676A JP 13067697 A JP13067697 A JP 13067697A JP H10322904 A JPH10322904 A JP H10322904A
Authority
JP
Japan
Prior art keywords
power supply
voltage
cmos
connection terminal
rises
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9130676A
Other languages
Japanese (ja)
Inventor
Takuya Adachi
卓也 足立
Tsuneo Baba
恒男 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9130676A priority Critical patent/JPH10322904A/en
Publication of JPH10322904A publication Critical patent/JPH10322904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Logic Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of latching-up so as to be capable of applying power supply voltage at the same timing as ICs. SOLUTION: A P-channel MOS transistor 4 is connected to a 5-V voltage supply connection terminal 1, and the P-channel MOS transistor 4 is kept OFF until the voltage of a 3.3-V voltage supply connection terminal 2 has risen, so that no 5-V voltage is applied to the power supply terminals of CMOS IC7 and CMOS IC8. When the voltage of the 3.3-V voltage supply connection terminal 2 rises, 3.3-V voltage is applied to the power supply terminals of CMOS IC9 and CMOS IC10. At the same time, 3.3-V is applied to the base of an N- channel bipolar transistor 6, so that the N-channel bipolar transistor 6 is turned on, and 5-V voltage is applied to the power supply terminals of the CMOS IC7 and CMOS IC8. Therefore, at the same time, a power supply voltage is applied to the power supply terminals of CMOS IC7, CMOS IC8, CMOS IC9, and CMOS IC10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は複数の電源電圧をも
つ電子機器の電源投入順序を制御する電源制御回路に関
する。
[0001] 1. Field of the Invention [0002] The present invention relates to a power supply control circuit for controlling a power-on sequence of electronic equipment having a plurality of power supply voltages.

【0002】[0002]

【従来の技術】特開平7−284227にある通り、電
源Aと電源Bの2電源を有する電源回路において電源B
が必ず電源Aよりも後から立ち上がるように電源の投入
順をもつ電源装置となっている。
2. Description of the Related Art As disclosed in JP-A-7-284227, in a power supply circuit having two power supplies, a power supply A and a power supply B, a power supply B is used.
Is a power supply device that has a power-on sequence so that it always starts up after the power supply A.

【0003】[0003]

【発明が解決しようとする課題】最近の装置は低電力化
のためCMOS IC,LSIが多量に使用されてい
る。CMOSIC,LSIは入力電圧を先に加えてから
電源電圧を加えるとIC,LSI内部に寄生サイリスタ
ーが構成され大電流が流れIC,LSI自身を壊すラッ
チアップという現象があり必ず電源電圧を印加してから
入力電圧を印加する必要がある。またIC,LSIの電
源電圧も5V品だけでなく低電力化のため3.3V品も
使用している。このように2系統の電源を持ち、かつC
MOS IC,LSIを使用した装置ではCMOS I
C,LSIのラッチアップを防止するため従来の技術に
示すように電源の投入順序を制御していた。
In recent devices, a large amount of CMOS ICs and LSIs are used to reduce power consumption. In CMOS ICs and LSIs, when a power supply voltage is applied after an input voltage is applied first, a parasitic thyristor is formed inside the IC and the LSI, and a large current flows, causing a phenomenon called latch-up that destroys the IC and the LSI itself. It is necessary to apply an input voltage from. The power supply voltage of ICs and LSIs is not only 5V, but also 3.3V to reduce power consumption. In this way, two power supplies are provided, and C
In devices using MOS ICs and LSIs, CMOS I
In order to prevent latch-up of C and LSI, the power-on sequence is controlled as shown in the prior art.

【0004】通常5V系のIC,LSIは出力電圧が5
Vとなり3.3V素子の入力電圧の規格を満足しないた
めラッチアップをおこさないLVTTL等の電圧レベル
変換素子を介して3.3VのIC,LSIを駆動してい
る。従って5V系のIC,LSIに電源電圧が加わり出
力信号が出力されてもレベル変換素子の部分で信号がカ
ットされるため5V→3.3Vの順で電源を投入するこ
とでラッチアップを防止できる。しかし最近の5VのI
C,LSIは出力回路に電圧降下回路を持ち3.3Vの
IC,LSIを直接駆動できるものがでてきている。こ
のようなIC、LSIを使用する装置ではレベル変換素
子をもたないため5Vと3.3Vの電源の投入順に時間
差があると次のようにCMOS ICに印加される入力
電圧と電源電圧との電圧印加の順序が逆転しラッチアッ
プが発生することがある。
Normally, the output voltage of a 5V system IC or LSI is 5V.
Since the voltage is V and does not satisfy the input voltage standard of the 3.3 V element, a 3.3 V IC or LSI is driven through a voltage level conversion element such as LVTTL which does not cause latch-up. Therefore, even if a power supply voltage is applied to a 5V-system IC or LSI and an output signal is output, the signal is cut off at the level conversion element portion. Therefore, latch-up can be prevented by turning on the power supply in the order of 5V → 3.3V. . But recent 5V I
Some C and LSIs have a voltage drop circuit in the output circuit and can directly drive 3.3 V ICs and LSIs. Since an apparatus using such an IC or LSI does not have a level conversion element, if there is a time difference in the order of turning on the power of 5 V and 3.3 V, the input voltage applied to the CMOS IC and the power supply voltage will be as follows. The order of voltage application may be reversed and latch-up may occur.

【0005】5VのCMOS ICに電圧印加。A voltage is applied to a 5V CMOS IC.

【0006】→ 5VのCMOS ICから出力信号
が出て3.3VのCMOS ICに入力される。(3.3
Vの電源電圧はまだ印加されていない。) → この状態で3.3Vの電源電圧が印加される。
[0006] → An output signal is output from the 5V CMOS IC and input to the 3.3V CMOS IC. (3.3
The power supply voltage of V has not been applied yet. → In this state, a power supply voltage of 3.3 V is applied.

【0007】→ 3.3VのCMOS ICがラッチ
アップ発生。
[0007] → 3.3V CMOS IC latch-up occurs.

【0008】上記の対策としては5Vと3.3Vの電源
電圧が同時に印加可能な電源を使えば良いがこのような
電源を製造することは下記理由により困難である。
As a countermeasure, a power supply capable of simultaneously applying a power supply voltage of 5 V and 3.3 V may be used, but it is difficult to manufacture such a power supply for the following reasons.

【0009】従来事例 特開平7−2842にあるよう
に電源Aと電源Bは1次コイルから生成されるが、生成
回路は独立した回路となっている。従って電源Aと電源
Bの電源電圧を同時に立ち上げるためには電源Aと電源
Bの電圧を互いに監視して電源Aと電源Bの両方の電圧
が立ち上がった時に負荷に電力を供給するような複雑な
回路を付けなければならず部品数も多く高価になってし
まう。
Conventional example As described in JP-A-7-2842, the power supply A and the power supply B are generated from the primary coil, but the generation circuits are independent circuits. Therefore, in order to simultaneously raise the power supply voltages of the power supply A and the power supply B, it is necessary to monitor the voltages of the power supply A and the power supply B and supply power to the load when both the power supply A and the power supply B rise. Circuit must be provided, and the number of components is large and the cost is high.

【0010】[0010]

【課題を解決するための手段】電子機器に対して電源電
圧の印加が同時になる回路を設けて3.3V、5VのI
Cに同じタイミングで電源電圧が印加されるようにして
ラッチアップを防止する。
SUMMARY OF THE INVENTION A circuit for simultaneously applying a power supply voltage to an electronic device is provided so that 3.3V and 5V I
The power supply voltage is applied to C at the same timing to prevent latch-up.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施例を図1に
より説明する。5V電圧源接続端子1は抵抗3とPチャ
ネルMOSトランジスタ4のソースに接続されている。
PチャネルMOSトランジスタ4のゲートは抵抗3とN
チャネルバイポーラトランジスタ6のコレクタに接続さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG. The 5V voltage source connection terminal 1 is connected to the resistor 3 and the source of the P-channel MOS transistor 4.
The gate of the P-channel MOS transistor 4 is connected to the resistor 3 and the N
It is connected to the collector of the channel bipolar transistor 6.

【0012】PチャネルMOSトランジスタ4のドレイ
ンはCMOS IC7とCMOSIC8の電源端子に接
続されている。Nチャネルバイポーラトランジスタ6の
ベースは抵抗5に接続されている。Nチャネルバイポー
ラトランジスタ6のエミッタはグランドに接続されてい
る。
The drain of the P-channel MOS transistor 4 is connected to the power supply terminals of the CMOS IC 7 and the CMOS IC 8. The base of N-channel bipolar transistor 6 is connected to resistor 5. The emitter of the N-channel bipolar transistor 6 is connected to the ground.

【0013】3.3V電圧源接続端子2は抵抗5とCM
OS IC9とCMOS IC10の電源端子に接続さ
れている。CMOS IC7の出力端子はCMOS I
C10の入力端子に接続されている。CMOS IC9
の出力端子はCMOS IC8の入力端子に接続されて
いる。次に本発明の動作について説明する。
The 3.3V voltage source connection terminal 2 is connected to the resistor 5 and the CM.
The power supply terminals of the OS IC 9 and the CMOS IC 10 are connected. The output terminal of the CMOS IC 7 is a CMOS I
It is connected to the input terminal of C10. CMOS IC9
Are connected to the input terminals of the CMOS IC8. Next, the operation of the present invention will be described.

【0014】装置の電源を投入すると5V電圧源接続端
子1の電圧が立ち上がり、次に3.3V電圧源接続端子
2の電圧が立ち上がる。ここで5V電圧源接続端子1に
はPチャネルMOSトランジスタ4が接続されており
3.3V電圧源接続端子2の電圧が立ち上がるまでPチ
ャネルMOSトランジスタ4はOFFしているためCM
OS IC7とCMOS IC8の電源端子には電圧5
Vが印加されない。
When the power of the apparatus is turned on, the voltage of the 5V voltage source connection terminal 1 rises, and then the voltage of the 3.3V voltage source connection terminal 2 rises. Here, the P-channel MOS transistor 4 is connected to the 5V voltage source connection terminal 1 and the P-channel MOS transistor 4 is turned off until the voltage of the 3.3V voltage source connection terminal 2 rises.
The voltage 5 is applied to the power supply terminals of the OS IC 7 and the CMOS IC 8.
V is not applied.

【0015】次に3.3V電圧源接続端子2の電圧が立
ち上がるとCMOS IC9の電源端子とCMOSIC
10の電源端子に電圧3.3Vが印加される。同時にN
チャネルバイポーラトランジスタ6のベースにも3.3
Vが印加されるためNチャネルバイポーラトランジスタ
6がONしてPチャネルMOSトランジスタ4をONさ
せる。PチャネルMOSトランジスタ4がONするとC
MOS IC7の電源端子とCMOS IC8の電源端
子に電圧5Vが印加される。
Next, when the voltage of the 3.3V voltage source connection terminal 2 rises, the power supply terminal of the CMOS IC 9 and the CMOS IC 9
A voltage of 3.3 V is applied to the power supply terminal of the power supply 10. At the same time N
The base of the channel bipolar transistor 6 is also 3.3
Since V is applied, the N-channel bipolar transistor 6 is turned on and the P-channel MOS transistor 4 is turned on. When the P-channel MOS transistor 4 is turned on, C
A voltage of 5 V is applied to the power supply terminal of the MOS IC 7 and the power supply terminal of the CMOS IC 8.

【0016】従って5Vの電源が印加されるCMOS
IC7、CMOS IC8と3.3Vの電源が印加され
るCMOS IC9、CMOS IC10の電源端子に
は同時に電源電圧が印加される。このため5Vの電源が
印加されるCMOS IC7の出力信号が3.3Vの電
源が印加されるCMOS IC10の入力を駆動し、ま
た3.3Vの電源が印加されるCMOS IC8の出力
信号が5Vの電源が印加されるCMOS IC10の入
力を駆動する使い方となっいても入力電圧と電源電圧と
の投入順序が逆転しラッチアップが発生することはな
い。
Therefore, a CMOS to which a power supply of 5 V is applied
A power supply voltage is simultaneously applied to the power supply terminals of the IC 7, the CMOS IC 8, and the CMOS IC 9 and the CMOS IC 10 to which the 3.3 V power is applied. Therefore, the output signal of the CMOS IC 7 to which the power of 5 V is applied drives the input of the CMOS IC 10 to which the power of 3.3 V is applied, and the output signal of the CMOS IC 8 to which the power of 3.3 V is applied is 5 V. Even when the input of the CMOS IC 10 to which power is applied is driven, the order in which the input voltage and the power supply voltage are applied is reversed and latch-up does not occur.

【0017】図2は本発明の他の実施例を示したもので
ある。
FIG. 2 shows another embodiment of the present invention.

【0018】以下、本発明の実施例を図2により説明す
る。図1と同じ符号の部分は図1と同じ構成機能のため
説明を省略する。5V電圧源接続端子1はダイオード1
1のカソードとCMOS IC7とCMOS IC8の
電源端子に接続されている。ダイオード11のアノード
はCMOS IC9とCMOS IC10の電源端子に
接続されている。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 are denoted by the same reference numerals as those in FIG. 1 and will not be described. 5V voltage source connection terminal 1 is diode 1
1 and the power supply terminals of CMOS IC7 and CMOS IC8. The anode of the diode 11 is connected to the power supply terminals of the CMOS IC 9 and the CMOS IC 10.

【0019】次に本発明の動作について説明する。Next, the operation of the present invention will be described.

【0020】装置の電源を投入すると3.3V電圧源接
続端子2の電圧が立ち上がり、次に5V電圧源接続端子
1の電圧が立ち上がる。3.3Vの電源が立ち上がり5
Vの電源が立ち上がっていない時はCMOS IC9と
CMOS IC10に3.3Vが印加されるのと同時に
3.3V電圧源接続端子2からダイオード11を通して
CMOS IC7とCMOS IC8の電源端子に3.
3Vが印加される。次に5V電圧源接続端子2の電圧が
立ち上がるとCMOS IC7の電源端子とCMOS
IC8の電源端子に電圧5Vが印加される。
When the power of the apparatus is turned on, the voltage of the 3.3V voltage source connection terminal 2 rises, and then the voltage of the 5V voltage source connection terminal 1 rises. 3.3V power supply rises 5
When the power supply of V is not turned on, 3.3 V is applied to the CMOS IC 9 and the CMOS IC 10 and at the same time, 3.3 V is applied to the power supply terminals of the CMOS IC 7 and the CMOS IC 8 through the diode 11 from the 3.3 V voltage source connection terminal 2.
3V is applied. Next, when the voltage of the 5V voltage source connection terminal 2 rises, the power supply terminal of the CMOS IC 7 and the CMOS
A voltage of 5 V is applied to a power supply terminal of the IC 8.

【0021】本実施例によれば簡単な回路の追加で装置
内のCMOS ICに同時に電源電圧を印加できるとい
う効果がある。
According to this embodiment, there is an effect that the power supply voltage can be simultaneously applied to the CMOS IC in the device by adding a simple circuit.

【0022】図3は本発明の他の実施例を示したもので
ある。
FIG. 3 shows another embodiment of the present invention.

【0023】以下、本発明の実施例を図3により説明す
る。図1、図2と同じ符号の部分は図1、図2と同じ構
成機能のため説明を省略する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 and 2 have the same configuration functions as those in FIGS. 1 and 2 and will not be described.

【0024】次に本発明の動作について説明する。Next, the operation of the present invention will be described.

【0025】5Vと3.3Vの電源電圧をもつ装置にお
いて5Vの電源が先に立ち上がる場合について説明す
る。5V電圧源接続端子1の電圧が立ち上がり、次に
3.3V電圧源接続端子2の電圧が立ち上がる。ここで
5V電圧源接続端子1にはPチャネルMOSトランジス
タ4がが接続されており3.3V電圧源接続端子2の電
圧が立ち上がるまでPチャネルMOSトランジスタ4は
OFFしているためCMOS IC7とCMOS IC
8の電源端子には電圧5Vが印加されない。3.3V電
圧源接続端子2の電圧電圧が立ち上がるとCMOS I
C9の電源端子とCMOSIC10の電源端子に電圧
3.3Vが印加される。同時にNチャネルバイポーラト
ランジスタ6のベースにも3.3Vが印加されるためN
チャネルバイポーラトランジスタ6がONしてPチャネ
ルMOSトランジスタ4をONさせる。PチャネルMO
Sトランジスタ4がONするとCMOS IC7の電源
端子とMOS型IC8の電源端子に電圧5Vが印加され
る。
A description will be given of a case where the power supply of 5 V is turned on first in the device having the power supply voltages of 5 V and 3.3 V. The voltage at the 5V voltage source connection terminal 1 rises, and then the voltage at the 3.3V voltage source connection terminal 2 rises. Here, the P-channel MOS transistor 4 is connected to the 5V voltage source connection terminal 1 and the P-channel MOS transistor 4 is turned off until the voltage of the 3.3V voltage source connection terminal 2 rises, so the CMOS IC 7 and the CMOS IC
No voltage of 5 V is applied to the power supply terminal 8. When the voltage of the 3.3V voltage source connection terminal 2 rises, the CMOS I
A voltage of 3.3 V is applied to the power supply terminal of C9 and the power supply terminal of CMOS IC 10. At the same time, 3.3 V is also applied to the base of N-channel bipolar transistor 6, so that N
The channel bipolar transistor 6 is turned on, and the P-channel MOS transistor 4 is turned on. P channel MO
When the S transistor 4 is turned on, a voltage of 5 V is applied to the power supply terminal of the CMOS IC 7 and the power supply terminal of the MOS IC 8.

【0026】従って5Vでの電源が印加されるCMOS
IC7、CMOSIC8と3.3Vでの電源が印加さ
れるCMOS IC9、CMOS IC10の電源端子
には同時に電圧が印加される。
Therefore, a CMOS to which a power supply of 5 V is applied
A voltage is simultaneously applied to the power supply terminals of the IC 7, the CMOS IC 8, and the CMOS IC 9 and the CMOS IC 10 to which the power of 3.3V is applied.

【0027】次に5Vと3.3Vの電源電圧をもつ装置
において3.3Vの電源が先に立ち上がる場合を説明す
る。装置の電源を投入すると3.3V電圧源接続端子2
の電圧が立ち上がり、次に5V電圧源接続端子1の電圧
が立ち上がる。3.3Vの電源が立ち上がり5Vの電源
が立ち上がっていない時はCMOS IC9とCMOS
IC10に3.3Vが印加されるのと同時に3.3V電
圧源接続端子2からダイオード11を通してCMOS
IC7とCMOS IC8の電源端子に3.3Vが印加
される。次に5V電圧源接続端子2の電圧が立ち上がる
とCMOS IC7の電源端子とCMOS IC8の電
源端子に電圧5Vが印加される。
Next, a description will be given of a case where the power supply of 3.3 V is turned on first in the apparatus having the power supply voltages of 5 V and 3.3 V. When the power of the device is turned on, 3.3V voltage source connection terminal 2
Then, the voltage of the 5V voltage source connection terminal 1 rises. When the 3.3V power supply rises and the 5V power supply does not rise, CMOS IC9 and CMOS
At the same time that 3.3 V is applied to the IC 10, the 3.3 V voltage source connection terminal 2 connects the CMOS through the diode 11.
3.3V is applied to the power supply terminals of IC7 and CMOS IC8. Next, when the voltage of the 5 V voltage source connection terminal 2 rises, a voltage of 5 V is applied to the power supply terminal of the CMOS IC 7 and the power supply terminal of the CMOS IC 8.

【0028】本実施例によれば、電源Aと電源Bの2電
源を有する電源回路において電源の投入順序に関係なく
装置内のCMOS ICに同時に電源電圧を印加するこ
とができる。また、本実施例を使用したユニットは本体
装置の電源の投入順序がどのような順序であっても使用
できるためユニットの標準化もできるという効果があ
る。
According to the present embodiment, in a power supply circuit having two power supplies, a power supply A and a power supply B, a power supply voltage can be simultaneously applied to the CMOS IC in the device regardless of the power-on sequence. Further, the unit using this embodiment can be used regardless of the order in which the power of the main unit is turned on, so that the unit can be standardized.

【0029】[0029]

【発明の効果】本発明によれば複数の電源をもつ装置に
おいて簡単な回路を追加するだけでラッチアップの発生
を防止することができるため装置の信頼度を向上できる
という効果がある。
According to the present invention, in a device having a plurality of power supplies, the occurrence of latch-up can be prevented only by adding a simple circuit, so that the reliability of the device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の電源制御回路を示す回
路図である。
FIG. 1 is a circuit diagram showing a power supply control circuit according to a first embodiment of the present invention.

【図2】本発明の実施の形態2の電源制御回路を示す回
路図である。
FIG. 2 is a circuit diagram showing a power supply control circuit according to a second embodiment of the present invention.

【図3】本発明の実施の形態3の電源制御回路を示す回
路図である。
FIG. 3 is a circuit diagram showing a power supply control circuit according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…5V電圧源接続端子、2…3.3V電圧源接続端
子、3…抵抗、4…PチャネルMOSトランジスタ、
5…抵抗、6…Nチャネルバイポーラトランジ
スタ、 7…CMOS IC、8…CMOS I
C、 9…CMOS IC、10…CMOS IC、
11…ダイオード。
1. 5 V voltage source connection terminal, 2 3.3 V voltage source connection terminal, 3 resistor, 4 P channel MOS transistor,
5: resistor, 6: N-channel bipolar transistor, 7: CMOS IC, 8: CMOS I
C, 9 ... CMOS IC, 10 ... CMOS IC,
11 ... Diode.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の電源ラインをもつ装置において先に
立ち上がる電源ラインにスイッチング素子を有し、最後
に立ち上がる電源ラインの電源の立ち上がりを検出する
電源検出回路を有し、最後に立ち上がる電源電圧を検出
してスイッチング素子をオンさせることを特徴とする電
源制御回路。
In a device having a plurality of power supply lines, a switching element is provided on a power supply line that rises first, and a power supply detection circuit that detects a rise of power supply of a power supply line that rises lastly is provided. A power supply control circuit characterized by detecting and turning on a switching element.
【請求項2】複数の電源ラインをもつ装置において先に
立ち上がりかつ電源電圧の低い電源ラインにダイオード
のアノードを接続し、後に立ち上がりかつ電源電圧の高
い電源ラインをダイオードのカソードに接続することを
特徴とする電源制御回路。
2. An apparatus having a plurality of power supply lines, wherein an anode of a diode is connected to a power supply line which rises first and has a low power supply voltage, and a power supply line which rises later and has a high power supply voltage is connected to a cathode of the diode. Power control circuit.
【請求項3】複数の電源ラインをもつ装置において電圧
の高い電源ラインにスイッチング素子を有し、電圧の低
い電源ラインの電源の立ち上がりを検出する電源検出回
路を有し、最後に立ち上がる電源電圧を検出してスイッ
チング素子をオンさせることと電源電圧の低い電源ライ
ンにダイオードのアノードを接続し、電源電圧の高い電
源ラインをダイオードのカソードに接続することを特徴
とする電源制御回路。
3. An apparatus having a plurality of power supply lines, comprising a switching element on a power supply line with a high voltage, a power supply detection circuit for detecting a rise of a power supply on a power supply line with a low voltage, and detecting a power supply voltage rising last. A power supply control circuit comprising: detecting and turning on a switching element; connecting an anode of a diode to a power supply line having a low power supply voltage; and connecting a power supply line having a high power supply voltage to a cathode of the diode.
JP9130676A 1997-05-21 1997-05-21 Power supply control circuit Pending JPH10322904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9130676A JPH10322904A (en) 1997-05-21 1997-05-21 Power supply control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9130676A JPH10322904A (en) 1997-05-21 1997-05-21 Power supply control circuit

Publications (1)

Publication Number Publication Date
JPH10322904A true JPH10322904A (en) 1998-12-04

Family

ID=15039957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9130676A Pending JPH10322904A (en) 1997-05-21 1997-05-21 Power supply control circuit

Country Status (1)

Country Link
JP (1) JPH10322904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105721A (en) * 2007-10-24 2009-05-14 New Japan Radio Co Ltd Level shift circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105721A (en) * 2007-10-24 2009-05-14 New Japan Radio Co Ltd Level shift circuit

Similar Documents

Publication Publication Date Title
KR960003374B1 (en) Semiconductor integrated circuit device
US6040729A (en) Digital output buffer for multiple voltage system
JP3229809B2 (en) Semiconductor device
US6373479B1 (en) Power supply apparatus of an LCD and voltage sequence control method
KR100643041B1 (en) Backwards drivable mos output driver
JPS60500433A (en) Substrate bias control circuit and method
US20020190752A1 (en) High speed semiconductor circuit having low power consumption
US6335637B1 (en) Two-supply protection circuit
US6847512B2 (en) Electrostatic breakdown prevention circuit for semiconductor device
JPH07118947B2 (en) Semiconductor device
US5515232A (en) Static protection circuit for a semiconductor integrated circuit device
US5705941A (en) Output driver for use in semiconductor integrated circuit
US10862476B2 (en) Semiconductor device and electronic device using the same
JP3262070B2 (en) Output buffer
US6342803B1 (en) Pad driver
JPH10322904A (en) Power supply control circuit
US7057867B1 (en) Electrostatic discharge (ESD) protection clamp circuitry
JPH09252245A (en) Circuit driver and protection circuit
KR20020084446A (en) Semiconductor integrated circuit device with voltage interface circuit
JP4149151B2 (en) I / O buffer circuit
JP2006073553A (en) Fuse trimming circuit
JP2002231886A (en) Esd protection circuit and semiconductor integrated circuit device
US7046493B2 (en) Input/output buffer protection circuit
JPH07235608A (en) Semiconductor integrated circuit device
EP0774786A2 (en) CMOS semiconductor device