[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10270225A - Rare-earth bond magnet and manufacture therefor - Google Patents

Rare-earth bond magnet and manufacture therefor

Info

Publication number
JPH10270225A
JPH10270225A JP9076124A JP7612497A JPH10270225A JP H10270225 A JPH10270225 A JP H10270225A JP 9076124 A JP9076124 A JP 9076124A JP 7612497 A JP7612497 A JP 7612497A JP H10270225 A JPH10270225 A JP H10270225A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
rare
phase
bonded magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9076124A
Other languages
Japanese (ja)
Inventor
Minoru Endo
実 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP9076124A priority Critical patent/JPH10270225A/en
Publication of JPH10270225A publication Critical patent/JPH10270225A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare-earth-Fe-Co bond magnet, having a magnetic property which is higher than that of the conventional magnet. SOLUTION: A rare-earth-Fe-Co bond magnet is manufactured by bonding the powder of a magnet alloy, having the composition of RaFebCocMd (where R and M respectively represents at least one kind of rare-earth element, including Y and at least one kind of element selected from among Al, Si, Ti, V, Cr, Ni, Zn, Cu, Ga, Zr, Nb, Mo, Hf, Ta, and W and a, b, c, and d represent wt.% respectively set at 12<=a<=40, the remaining wt.%, c<=50, and d<=10) and containing a total of 1-60 vol.% of α-Fe and α'-Fe-Co phases with a high molecular copolymer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類ー鉄ーコバ
ルト系磁石合金を用いたボンド磁石およびその製造方法
に関する。
The present invention relates to a bonded magnet using a rare earth-iron-cobalt magnet alloy and a method for producing the same.

【0002】[0002]

【従来の技術】これまでに希土類ボンド磁石として実用
化されているものにSm2Co17の異方性ボンド磁石、
超急冷法によるR−Fe−B系等方性ボンド磁石、HD
DR法によるR−Fe−B系異方性ボンド磁石等があ
る。これらは異方性でエネルギー積が20MGOe以
下、等方性で12MGOe以下の磁気特性であるが、ボ
ンド磁石の特長である複雑形状や小物品等への製造容易
性を反映して生産量が増加しつつあり、例えばスピンド
ルモータ等の回転機に多用されている。
2. Description of the Related Art Sm 2 Co 17 anisotropic bonded magnets have been put to practical use as bonded rare earth magnets.
R-Fe-B based isotropic bonded magnet by ultra-quenching method, HD
There is an R-Fe-B based anisotropic bonded magnet by the DR method. These are magnetic properties that are anisotropic and have an energy product of 20 MGOe or less and isotropic and 12 MGOe or less, but the production volume increases due to the characteristics of bonded magnets, such as complicated shapes and easy manufacturing into small articles. For example, it is frequently used in rotating machines such as spindle motors.

【0003】[0003]

【発明が解決しようとする課題】希土類ボンド磁石は希
土類焼結磁石と比較して磁気特性が低いためさらなる改
良が望まれているが、この点に関し最近注目を集めてい
るものに交換結合型の磁石材料がある。この磁石材料の
特徴は飽和磁化の高いソフトな相と異方性磁界の大きい
ハードな相を組合せ、高飽和磁化でかつ高保磁力の磁石
材料を実現しようとする試みである。しかしながら、現
状ではFe3B−Nd2Fe14B系、α-Fe−Nd2Fe
14B系,α-Fe−SmFe7Nx系といった合金系が検
討されているが、従来の希土類ボンド磁石の磁気特性を
凌駕するに至っていない。したがって、本発明の課題は
従来よりも高い磁気特性を有した希土類ー鉄ーコバルト
系のボンド磁石を提供することである。
The rare-earth bonded magnet has a lower magnetic property than the rare-earth sintered magnet, so that a further improvement is desired. There are magnet materials. The feature of this magnet material is an attempt to realize a magnet material having a high saturation magnetization and a high coercive force by combining a soft phase having a high saturation magnetization and a hard phase having a large anisotropic magnetic field. However, at present, Fe 3 B—Nd 2 Fe 14 B system, α-Fe—Nd 2 Fe
14 B-based alloy system such α-Fe-SmFe 7 Nx systems have been studied, but did not come to surpass the magnetic properties of the conventional rare earth bonded magnets. Accordingly, an object of the present invention is to provide a rare earth-iron-cobalt based bonded magnet having higher magnetic properties than the conventional one.

【0004】[0004]

【課題を解決するための手段】本発明者は鋭意検討の結
果交換結合型磁石材料の磁気特性を改善する方策とし
て、ソフト磁性相として窒化物以外で最も飽和磁化の高
いFe-Co系化合物と、ハード磁性相として異方性磁
界の高いSm−Co系化合物との組合せを用いることに
想到した。このFe-Co系とSm−Co系の化合物を
組合せた磁石材料を作製する手段として下記の製造方法
を見出した。まず、Fe-Co系化合物を作成するには
例えば粒子径が1μm以下の針状Fe23、FeOOH
または、Fe34を原料とし、その表面にCoOをエピ
タキシャル成長させ、続いてこのものを水素気流中30
0〜800℃で加熱することによりFeとCoを還元
し、α-Fe粒子の表面にCoの皮膜を形成させた。続
いてこのものに対してSmメタルに水素を吸蔵させた後
10μm以下に粉砕したものを所定の割合で混合し真空
中で加熱してSmとCoを反応させてSm−Co系化合
物を生成させるとともにCoを内部のFeとも反応させ
て飽和磁化の高いFe-Co系化合物を形成させる。こ
の粉末を磁場中成形し、さらに真空中600〜1000
℃で加熱することによりFe-Co粒子の表面を完全に
Sm−Co系化合物で覆った状態とする。続いてこのも
のを1mm以下に解砕することにより本発明の異方性ボ
ンド磁石用磁粉が得られる。
As a measure for improving the magnetic characteristics of the exchange-coupled magnet material, the present inventor has studied as a soft magnetic phase a Fe-Co-based compound having the highest saturation magnetization other than nitride as a soft magnetic phase. The present inventors have conceived of using a combination with an Sm-Co compound having a high anisotropic magnetic field as a hard magnetic phase. The following production method was found as a means for producing a magnet material in which the Fe-Co-based and Sm-Co-based compounds were combined. First, in order to prepare an Fe—Co compound, for example, acicular Fe 2 O 3 or FeOOH having a particle diameter of 1 μm or less is used.
Alternatively, using Fe 3 O 4 as a raw material, CoO is epitaxially grown on the surface, and then this is grown in a stream of hydrogen.
By heating at 0 to 800 ° C., Fe and Co were reduced, and a Co film was formed on the surfaces of the α-Fe particles. Subsequently, the Sm metal is occluded with hydrogen and then pulverized to 10 μm or less, mixed at a predetermined ratio, and heated in a vacuum to cause Sm and Co to react to form an Sm-Co compound. At the same time, Co also reacts with Fe inside to form an Fe—Co compound having high saturation magnetization. This powder is molded in a magnetic field, and then 600-1000 in vacuum.
By heating at a temperature of ° C., the surface of the Fe—Co particles is completely covered with the Sm—Co-based compound. Subsequently, this powder is crushed to 1 mm or less to obtain the magnetic powder for an anisotropic bonded magnet of the present invention.

【0005】すなわち、本発明は、組成式がRaFeb
cd(ここで、RはYを含む希土類元素の内の少なく
とも1種。)で表され、12≦a≦40wt%、b:残
部、c≦50wt%、d≦10wt%、MはAl,S
i,Ti,V,Cr,Ni,Zn,Cu,Ga,Zr,
Nb,Mo,Hf,Ta,Wの内の少なくとも1種であ
るとともに組織中にα-Fe相及びα’-Fe-Co相が
合計で1〜60vol%存在している磁石合金の粉末を
高分子重合体で結着したことを特徴とする希土類ボンド
磁石である。
Namely, the present invention provides a composition formula R a Fe b C
o c M d (where, R represents at least one of rare earth elements including Y.) is represented by, 12 ≦ a ≦ 40wt%, b: balance, c ≦ 50wt%, d ≦ 10wt%, M is Al, S
i, Ti, V, Cr, Ni, Zn, Cu, Ga, Zr,
A magnetic alloy powder containing at least one of Nb, Mo, Hf, Ta, and W and having a total of 1 to 60 vol% of α-Fe phase and α'-Fe-Co phase in the structure is used. A rare earth bonded magnet characterized by being bound by a molecular polymer.

【0006】本発明において希土類元素Rは12wt%
以上、40wt%以下の範囲で含有される。希土類元素
RとしてはYを含めた希土類元素の少なくとも1種が使
用可能であるが、保磁力を高めるためにはSm,Ce,
Pr,Ndの内の少なくとも1種を用いることが好まし
く、Smが特に好ましい。
In the present invention, the rare earth element R is 12 wt%
As described above, the content is in the range of 40 wt% or less. As the rare earth element R, at least one of rare earth elements including Y can be used, but in order to increase the coercive force, Sm, Ce,
It is preferable to use at least one of Pr and Nd, and Sm is particularly preferable.

【0007】CoはR−Co系化合物の生成に必要で、
耐食性や熱安定性向上にも寄与する元素であり、50w
t%以下の範囲が実用可能である。高い残留磁束密度を
得るために40wt%以下とすることが好ましい。
[0007] Co is necessary for the production of R-Co compounds,
It is an element that contributes to the improvement of corrosion resistance and thermal stability.
A range of t% or less is practical. In order to obtain a high residual magnetic flux density, the content is preferably set to 40 wt% or less.

【0008】M元素は保磁力向上及びR−Co系化合物
の生成、前記磁石合金の結晶粒子の成長抑制に有効な元
素であり、Al,Si,Ti,V,Cr,Ni,Zn,
Cu,Ga,Zr,Nb,Mo,Hf,Ta,Wの内の
少なくとも1種である。特に、Crは保磁力向上に有効
である。上記磁石合金組織中にα-Fe相及びα’-Fe
-Co相が合計で1〜60vol%存在している場合に
従来より高い磁気特性を確保することが容易である。
The element M is an element effective for improving the coercive force, generating an R—Co-based compound, and suppressing the growth of crystal grains of the magnet alloy, and includes Al, Si, Ti, V, Cr, Ni, Zn,
It is at least one of Cu, Ga, Zr, Nb, Mo, Hf, Ta, and W. In particular, Cr is effective for improving the coercive force. Α-Fe phase and α'-Fe in the magnet alloy structure
It is easy to secure higher magnetic characteristics than in the past when the -Co phase is present at 1 to 60 vol% in total.

【0009】次に本発明の製造方法について説明する。
Fe原料はFe23、FeOOH、またはFe34の表
面をCrO,MnO,CoO,NiO,ZnO,CuO
等で覆ったものを用いる。この中でCoはR−Co系化
合物を形成させるため、上記範囲の添加量が必要であ
る。FeOOH、Fe34,Fe23の粒子形態は針状
であり、長軸径は1μm以下、好ましくは0.5μm以
下であるものを用いる。このようなFe原料を水素気流
中300〜800℃で加熱することにより、中心部分に
α-Feがあり、その周りをCr,Mn,Co,Ni,
Zn,Cu等が覆った粉末が得られる。CoはR−Co
相を形成するために必須であり、Cr,Mn,Ni,Z
n,Cu等はR−Co相の保磁力向上に効果がある。他
方、希土類原料としてCe,Smといった金属を主原料
としてY,Pr,Nd,Gd,Tb,Dy,Ho,Er
等の内の少なくとも1種も含有可能である。これらを含
有した希土類金属または希土類合金を水素気流中100
〜800℃に加熱して水素を吸蔵させた後、このものを
ボールミルまたはジェットミル等で粉砕し、粒径10μ
m以下の微粉とする。次に上記で製作したFe原料と希
土類原料粉末とを所定の割合で均一化混合する。この時
保磁力を向上させる元素としてAl,Si,Ti,V,
Cr,Ni,Zn,Cu,Ga,Zr,Nb,Mo,H
f,Ta,Wの内の少なくとも1種の粉末を添加する。
続いてこのものを真空中600〜900℃で加熱し、R
−Co相を生成させるとともにCoの一部をα-Fe相
に拡散させる。この状態ではR−Co相がα-Fe-Co
相を完全に覆った形態にはなっていないので、さらに解
砕した後例えば印加磁界10kOe以上で横磁場成形を
行う。この異方性付与工程において粉末または成形体で
存在する前記磁石合金粒子の酸素量の増加を抑えられる
耐酸化付与能力に富む鉱物油、合成油等に浸すいわゆる
湿式成形を行うことにより酸素含有量の少ないものが得
られる。得られた成形体をさらに真空中600〜100
0℃で加熱することにより、針状のα-Fe-Co相の長
軸方向を磁化方向とし、その周りをR−Co相が囲んだ
特長ある磁石組織が得られる。このものを続いて粉砕し
て0.5mm以下の粒子径とし、本発明のボンド磁石用
の原料に供する。
Next, the manufacturing method of the present invention will be described.
The Fe raw material is made of Fe 2 O 3 , FeOOH, or Fe 3 O 4 with CrO, MnO, CoO, NiO, ZnO, CuO
Use the one covered with etc. Of these, Co forms an R-Co-based compound, so the addition amount in the above range is necessary. The particles of FeOOH, Fe 3 O 4 , and Fe 2 O 3 are acicular and have a major axis diameter of 1 μm or less, preferably 0.5 μm or less. By heating such a Fe raw material in a hydrogen stream at 300 to 800 ° C., α-Fe is present at the center, and Cr, Mn, Co, Ni,
A powder covered with Zn, Cu, etc. is obtained. Co is R-Co
Cr, Mn, Ni, Z are essential to form a phase.
n, Cu, etc. are effective in improving the coercive force of the R-Co phase. On the other hand, metals such as Ce and Sm are used as rare earth materials, and Y, Pr, Nd, Gd, Tb, Dy, Ho, and Er are used as main materials.
And the like. A rare earth metal or a rare earth alloy containing them is placed in a hydrogen stream at 100
After heating to 800800 ° C. to occlude hydrogen, the product is pulverized with a ball mill or a jet mill, etc.
m or less. Next, the Fe raw material and the rare earth raw material powder manufactured as described above are uniformly mixed at a predetermined ratio. At this time, Al, Si, Ti, V,
Cr, Ni, Zn, Cu, Ga, Zr, Nb, Mo, H
Add at least one powder of f, Ta and W.
Subsequently, this product is heated in a vacuum at 600 to 900 ° C.
-Generate a Co phase and diffuse a part of the Co into the α-Fe phase. In this state, the R-Co phase is α-Fe-Co
Since the phase is not completely covered, after further disintegration, the transverse magnetic field is formed, for example, with an applied magnetic field of 10 kOe or more. In the anisotropy imparting step, the so-called wet molding is performed by immersing the magnet alloy particles present in the powder or the molded body in a mineral oil having a high oxidation resistance imparting ability capable of suppressing an increase in the oxygen content, a synthetic oil, or the like. Is obtained. The obtained molded body is further placed in a vacuum at 600 to 100.
By heating at 0 ° C., a distinctive magnetic structure in which the major axis direction of the acicular α-Fe—Co phase is the magnetization direction, and the R—Co phase surrounds the periphery is obtained. This material is subsequently pulverized to a particle size of 0.5 mm or less and used as a raw material for a bonded magnet of the present invention.

【0010】本発明のボンド磁石を圧縮成形法を用いて
製造する場合には上記ボンド磁石用原料に対して熱硬化
性樹脂として例えばエポキシ樹脂を2〜5wt%で添加
し均一化混合後、磁場中または無磁場で成形し、続いて
100〜200℃の温度で硬化処理を行い、ボンド磁石
とする。また、射出成形による場合は熱可塑性樹脂を用
いて、射出成型機において磁場中または無磁場で成形し
てボンド磁石が得られる。
When the bonded magnet of the present invention is manufactured by a compression molding method, for example, an epoxy resin is added as a thermosetting resin at 2 to 5% by weight as a thermosetting resin to the above bonded magnet raw material, and after homogenizing and mixing, a magnetic field is applied. Molding is performed in a medium or no magnetic field, and then a curing treatment is performed at a temperature of 100 to 200 ° C. to obtain a bonded magnet. In the case of injection molding, a bonded magnet can be obtained by molding in a magnetic field or without a magnetic field using an injection molding machine using a thermoplastic resin.

【0011】[0011]

【発明の実施の形態】以下、実施例により本発明を詳細
に説明する。 (実施例1)FeOOHの粒子表面にCoOを形成させ
た針状粒子を作製した。Co/(Fe+Co)の重量比
は0.3であった。針状粒子の長軸径は0.1μmであ
った。これを水素気流中700℃×3時間の条件で還元
反応を行い、Fe原料とした。希土類原料はCe金属
(20wt%)とSm金属(80wt%)の混合物に水
素を吸蔵させた。水素吸蔵は500℃×4時間の条件で
行った。水素吸蔵させたものをバンタムミルで解砕し、
ジェットミルで微粉砕した。これらのFe原料と希土類
原料、さらに添加物粉末を表1に示す割合で混合した試
料1〜5を準備した。次に、各試料を真空中800℃×
2時間の条件で加熱し、冷却後0.1mm以下に解砕し
た。この解砕は窒素雰囲気で行い、解砕したものを鉱物
油(出光興産製、商品名MC、OIL、P−02)に浸
しスラリー化し、続いてこのスラリーを所定の金型に磁
場を加えながら充填する湿式の横磁場成形(印加磁界1
2kOe、成形圧は2t/cm2)を行った。次に、得
られた成形体を200℃×8時間真空中で加熱すること
により鉱物油を除去し、さらに真空中で870×2時間
加熱した。冷却後、得られたものを0.2mm以下に解
砕し、ボンド磁石用原料粉末とした。ボンド磁石の作製
は、この原料粉末に固形エポキシ樹脂2wt%とアセト
ン2wt%を添加しヘンシェルミキサーで十分混合した
ものを用いて印加磁界18kOe、成形圧6t/cm2
で横磁場成形した。続いて得られた成形体を120℃×
1時間,180℃×1時間の条件で硬化させて表1に示
すように従来に比べて高い磁気特性を有した本発明のボ
ンド磁石を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to examples. (Example 1) Needle-like particles in which CoO was formed on the surface of FeOOH particles were produced. The weight ratio of Co / (Fe + Co) was 0.3. The major axis diameter of the acicular particles was 0.1 μm. This was subjected to a reduction reaction in a hydrogen stream at 700 ° C. for 3 hours to obtain an Fe raw material. As a rare earth material, hydrogen was absorbed in a mixture of Ce metal (20 wt%) and Sm metal (80 wt%). Hydrogen storage was performed at 500 ° C. for 4 hours. Dissolve the hydrogen-absorbed material with a bantam mill,
It was pulverized with a jet mill. Samples 1 to 5 were prepared by mixing these Fe raw materials, rare earth raw materials, and additive powders at the ratios shown in Table 1. Next, each sample was placed in a vacuum at 800 ° C ×
The mixture was heated under the condition of 2 hours, crushed to 0.1 mm or less after cooling. This crushing is performed in a nitrogen atmosphere, and the crushed material is immersed in mineral oil (manufactured by Idemitsu Kosan Co., Ltd., trade name MC, OIL, P-02) to form a slurry, and then the slurry is applied to a predetermined mold while applying a magnetic field. Filling wet transverse magnetic field (applied magnetic field 1
The pressure was 2 kOe and the molding pressure was 2 t / cm 2 ). Next, the obtained molded body was heated in vacuum at 200 ° C. for 8 hours to remove mineral oil, and further heated in vacuum for 870 × 2 hours. After cooling, the obtained product was crushed to 0.2 mm or less to obtain a raw material powder for a bonded magnet. A bond magnet was prepared by adding a solid epoxy resin (2 wt%) and acetone (2 wt%) to the raw material powder and thoroughly mixing with a Henschel mixer using an applied magnetic field of 18 kOe and a molding pressure of 6 t / cm 2.
To form a transverse magnetic field. Subsequently, the obtained molded body is heated at 120 ° C. ×
The composition was cured for 1 hour at 180 ° C. × 1 hour to obtain a bonded magnet of the present invention having higher magnetic properties than the conventional one as shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】(実施例2)表2に示すようにFe23
子の表面にCoOの他にCrO,MnO,NiO,Zn
O,CuOの皮膜を各々形成させた試料6〜10のもの
を準備した。各試料は針状Fe23粒子の長軸径が0.
1μmであるとともに、Co/(Fe+Co)の重量比
は0.35である。それぞれのFe原料は水素気流中で
760℃×3時間加熱したものを用いている。次に、各
試料において希土類原料としてSmメタルを水素気流中
で500℃×4時間加熱することで水素を吸蔵させた
後、ボールミルで約5μmの粒度に粉砕したものを準備
した。次に、上記Fe原料と希土類原料とを表2に示す
割合で混合し、トルエン中に浸漬しスラリー化した。こ
れらのスラリーを印加磁界12kOe、成形圧1t/c
2の条件で湿式磁場中成形し、得た成形体を200℃
×5時間真空中で加熱することによりトルエンを除去
し、さらに780℃×2時間真空中で加熱し、前記磁石
合金を得た。続いてこのものを0.05mm以下に解砕
した後、さらに実施例1と同条件で横磁場成形し、続い
てこの成形体を850℃×2時間真空中で加熱した。次
に、0.2mm以下にバンタムミルで解砕して本発明の
ボンド磁石用原料とした。以降は実施例1と同様にして
表2に示す従来より高い磁気特性を有した異方性ボンド
磁石を得た。
(Example 2) As shown in Table 2, on the surface of Fe 2 O 3 particles, CrO, MnO, NiO, Zn in addition to CoO
Samples 6 to 10 on which films of O and CuO were respectively formed were prepared. In each sample, the major axis diameter of the needle-like Fe 2 O 3 particles was 0.3.
1 μm and the weight ratio of Co / (Fe + Co) is 0.35. Each Fe raw material is heated at 760 ° C. for 3 hours in a hydrogen stream. Next, in each sample, Sm metal as a rare earth material was heated in a hydrogen stream at 500 ° C. for 4 hours to absorb hydrogen, and then ground to a particle size of about 5 μm using a ball mill. Next, the Fe raw material and the rare earth raw material were mixed at a ratio shown in Table 2, and immersed in toluene to form a slurry. These slurries were applied with an applied magnetic field of 12 kOe and a molding pressure of 1 t / c.
molded in a wet magnetic field under the conditions of m 2, 200 ° C. The resulting molded body
The toluene was removed by heating in vacuum for 5 hours, and further heated in vacuum at 780 ° C for 2 hours to obtain the magnet alloy. Subsequently, this product was crushed to 0.05 mm or less, and further subjected to transverse magnetic field molding under the same conditions as in Example 1, and subsequently, the compact was heated in a vacuum at 850 ° C. for 2 hours. Next, it was pulverized with a bantam mill to 0.2 mm or less to obtain a raw material for a bonded magnet of the present invention. Thereafter, in the same manner as in Example 1, an anisotropic bonded magnet having higher magnetic properties than the conventional one shown in Table 2 was obtained.

【0014】[0014]

【表2】 [Table 2]

【0015】(実施例3)Fe23粒子の表面にCoO
の皮膜を形成させた。得られた針状Fe23粒子の長軸
径は0.15μmで、Co/(Fe+Co)の重量比は
0.2であった。これを水素気流中760℃×3時間加
熱した。希土類原料はSmメタルを水素気流中500℃
×4時間の条件で加熱し、水素を吸蔵させた。冷却後、
ボールミルで約5μmの粒度に粉砕した。このようにし
て、表3に示すように前記のFe原料と希土類原料と添
加物とを混合した試料11〜17を準備した。次に、各
試料を合成油(出光興産製、商品名DN、ローオイル、
AL−35)中に浸漬しスラリーとした。各スラリー原
料を印加磁界12kOe、成形圧1t/cm2で横磁場
成形し得た成形体を200℃×5時間真空中で加熱する
ことにより合成油を除去し、さらに800℃×2時間真
空中で加熱した。冷却後、得られたものを0.05mm
以下に解砕し、さらに実施例1と同様にして横磁場成形
し、続いて870℃×2時間真空中で加熱後冷却して得
られたものを0.15mm以下にバンタムミルで粉砕し
てボンド磁石用磁石原料とした。この得られたボンド磁
石用磁石粉末中の(α-Fe相+α’-Fe-Co相)、
SmCo5相、SmCo7相、Sm2Co17相の生成量を
測定した結果を表3に示している。表3において、Fe
Co量=(α-Fe相+α’-Fe-Co相)の生成量、
1/5量=SmCo5相の生成量、1/7量=SmCo7
相の生成量、2/17量=Sm2Co17相の生成量であ
る。
(Example 3) The surface of Fe 2 O 3 particles was coated with CoO
Was formed. The major axis diameter of the obtained needle-like Fe 2 O 3 particles was 0.15 μm, and the weight ratio of Co / (Fe + Co) was 0.2. This was heated in a hydrogen stream at 760 ° C. for 3 hours. Rare earth material is Sm metal in hydrogen stream at 500 ℃
Heating was performed under conditions of × 4 hours to occlude hydrogen. After cooling,
It was pulverized with a ball mill to a particle size of about 5 μm. Thus, as shown in Table 3, samples 11 to 17 in which the above-mentioned Fe raw material, rare earth raw material and additives were mixed were prepared. Next, each sample was prepared using a synthetic oil (manufactured by Idemitsu Kosan, trade name DN, raw oil,
AL-35) to form a slurry. Each of the slurry raw materials was subjected to transverse magnetic field molding under an applied magnetic field of 12 kOe and a molding pressure of 1 t / cm 2 , and heated in vacuum at 200 ° C. for 5 hours to remove synthetic oil, and further in vacuum at 800 ° C. for 2 hours. And heated. After cooling, the obtained one is 0.05 mm
It is crushed below, further molded in the transverse magnetic field in the same manner as in Example 1, and then heated in a vacuum at 870 ° C. × 2 hours and cooled, and then crushed into a 0.15 mm or less using a bantam mill to bond. It was used as a magnet material for magnets. (Α-Fe phase + α'-Fe-Co phase) in the obtained magnet powder for a bonded magnet,
Table 3 shows the measurement results of the amounts of SmCo 5 phase, SmCo 7 phase, and Sm 2 Co 17 phase generated. In Table 3, Fe
Co amount = (α-Fe phase + α′-Fe-Co phase) generation amount,
1/5 amount = SmCo 5 phase generation amount, 1/7 amount = SmCo 7
Phase generation amount, 2/17 amount = Sm 2 Co 17 phase generation amount.

【0016】[0016]

【表3】 [Table 3]

【0017】表3の各試料の磁石粉末粒子の中心には
(α-Fe相+α’-Fe-Co相)が形成されており、
その周りをSmCo5相、SmCo7相、Sm2Co17
等が取り囲んでいることがわかった。また、試料11〜
17のボンド磁石用原料を用いて実施例1と同様にして
製作した異方性ボンド磁石は従来より高い磁気特性を有
していた。
(Α-Fe phase + α'-Fe-Co phase) is formed at the center of the magnet powder particles of each sample in Table 3.
It was found that the SmCo 5 phase, the SmCo 7 phase, the Sm 2 Co 17 phase, and the like surrounded the periphery. In addition, samples 11 to
The anisotropic bonded magnet manufactured in the same manner as in Example 1 using the 17 bonded magnet raw materials had higher magnetic properties than the conventional one.

【0018】[0018]

【発明の効果】本発明のボンド磁石を構成する磁石材料
は針状のFe-Co粒子の表面にR−Co化合物が形成
され、これらFe-Co粒子が長軸方向を揃えた状態で
磁化方向に配列した組織となっているので、高飽和磁化
を有し、かつ高保磁力である有用なボンド磁石を得るこ
とができる。
As described above, in the magnet material constituting the bonded magnet of the present invention, an R-Co compound is formed on the surface of needle-like Fe-Co particles, and the magnetization direction of the Fe-Co particles is aligned in the long axis direction. Thus, a useful bonded magnet having high saturation magnetization and high coercive force can be obtained.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 組成式がRaFebCocd(ここで、R
はYを含む希土類元素の内の少なくとも1種。)で表さ
れ、12≦a≦40wt%、b:残部、c≦50wt
%、d≦10wt%、MはAl,Si,Ti,V,C
r,Ni,Zn,Cu,Ga,Zr,Nb,Mo,H
f,Ta,Wの内の少なくとも1種であるとともに組織
中にα-Fe相及びα’-Fe-Co相が合計で1〜60
vol%存在している磁石合金の粉末を高分子重合体で
結着したことを特徴とする希土類ボンド磁石。
1. A composition formula in R a Fe b Co c M d ( wherein, R
Is at least one of rare earth elements including Y. ), 12 ≦ a ≦ 40 wt%, b: balance, c ≦ 50 wt
%, D ≦ 10 wt%, M is Al, Si, Ti, V, C
r, Ni, Zn, Cu, Ga, Zr, Nb, Mo, H
f, Ta, W, and at least one of α-Fe phase and α'-Fe-Co phase in the structure.
A rare-earth bonded magnet, wherein a magnetic alloy powder having a vol% content is bound with a polymer.
【請求項2】 請求項1において、前記組織中に生成し
たα-Fe相及び/またはα’-Fe-Co相は針状であ
り、その長軸方向と磁化方向とが略一致していることを
特徴とする希土類ボンド磁石。
2. The phase according to claim 1, wherein the α-Fe phase and / or α′-Fe—Co phase formed in the structure is acicular, and the major axis direction thereof substantially coincides with the magnetization direction. A rare-earth bonded magnet characterized by the following.
【請求項3】 請求項1または2において、前記磁石合
金粉末粒子の内部中心側にFeーCo系化合物が形成さ
れており、その周りにRーCo系化合物が形成されてい
ることを特徴とする希土類ボンド磁石。
3. The magnet alloy powder particle according to claim 1, wherein an Fe—Co compound is formed on the inner center side of the magnetic alloy powder particles, and an R—Co compound is formed around the Fe—Co compound. Rare earth bonded magnets.
【請求項4】 組成式がRaFebCocd(ここで、R
はYを含む希土類元素の内の少なくとも1種。)で表さ
れ、12≦a≦40wt%、b:残部、c≦50wt
%、d≦10wt%、MはAl,Si,Ti,V,C
r,Ni,Zn,Cu,Ga,Zr,Nb,Mo,H
f,Ta,Wの内の少なくとも1種である磁石合金粉末
を高分子重合体で結着する希土類ボンド磁石の製造方法
において、 前記磁石合金のFe原料としてFeの一部をCr,M
n,Co,Ni,Zn,Cuの内の少なくとも1種で置
換したFe23 FeOOHまたはFe34を水素気流
中300〜800℃で還元することにより微細なα−F
e粒子を生成し、このα−Fe粒子に前記Rからなる希
土類金属または希土類合金の粉末を反応させることによ
り前記磁石合金粉末粒子の中心側にFeーCo系化合物
を生成させ、その周りにRーco系化合物が取り囲んだ
組織形態を有していることを特徴とする希土類ボンド磁
石の製造方法。
4. A composition formula R a Fe b Co c M d ( where, R
Is at least one of rare earth elements including Y. ), 12 ≦ a ≦ 40 wt%, b: balance, c ≦ 50 wt
%, D ≦ 10 wt%, M is Al, Si, Ti, V, C
r, Ni, Zn, Cu, Ga, Zr, Nb, Mo, H
A method for manufacturing a rare earth bonded magnet in which a magnet alloy powder of at least one of f, Ta, and W is bound with a high molecular weight polymer, wherein a part of Fe is Cr, M
By reducing Fe 2 O 3 , FeOOH or Fe 3 O 4 substituted with at least one of n, Co, Ni, Zn and Cu at 300 to 800 ° C. in a hydrogen stream, fine α-F
e-particles, and the rare earth metal or rare earth alloy powder comprising R is reacted with the α-Fe particles to form a Fe—Co-based compound at the center of the magnet alloy powder particles. -A method for producing a rare earth bonded magnet, wherein the co-based compound has a structure morphology surrounded by the compound.
【請求項5】 請求項4において、Feの一部をCr,
Mn,Co,Ni,Zn,Cuの内の少なくとも1種で
置換したFe23、FeOOHまたはFe34の表面を
CrO,MnO,CoO,NiO,ZnO,CuOの内
の少なくとも1種が覆っていることを特徴とする希土類
ボンド磁石の製造方法。
5. The method according to claim 4, wherein part of Fe is Cr,
The surface of Fe 2 O 3 , FeOOH or Fe 3 O 4 substituted with at least one of Mn, Co, Ni, Zn, and Cu is treated with at least one of CrO, MnO, CoO, NiO, ZnO, and CuO. A method for producing a rare earth bonded magnet, wherein the magnet is covered.
【請求項6】 請求項4または5において、前記磁石合
金の希土類原料として希土類酸化物及び/またはフッ化
物にAl,Zn,Cu,Gaの内の少なくとも1種の酸
化物を微量添加して溶融塩電解後、さらに水素を吸蔵さ
せて形成した希土類水素化物を用いることを特徴とする
希土類ボンド磁石の製造方法。
6. The method according to claim 4, wherein at least one of Al, Zn, Cu, and Ga oxides is added to a rare earth oxide and / or fluoride as a rare earth raw material of the magnet alloy. A method for producing a rare-earth bonded magnet, comprising using a rare-earth hydride formed by absorbing hydrogen after salt electrolysis.
【請求項7】 請求項4または5において、Fe原料の
Fe23、FeOOHまたはFe34は長軸の粒径が1
μm以下の針状であることを特徴とする希土類ボンド磁
石の製造方法。
7. The method according to claim 4, wherein the Fe raw material Fe 2 O 3 , FeOOH or Fe 3 O 4 has a major axis particle size of 1%.
A method for producing a rare-earth bonded magnet, wherein the magnet is needle-shaped having a diameter of not more than μm.
【請求項8】 組成式がRaFebCocd(ここで、R
はYを含む希土類元素の内の少なくとも1種。)で表さ
れ、12≦a≦40wt%、b:残部、c≦50wt
%、d≦10wt%、MはAl,Si,Ti,V,C
r,Ni,Zn,Cu,Ga,Zr,Nb,Mo,H
f,Ta,Wの内の少なくとも1種である磁石合金粉末
を高分子重合体で結着する希土類ボンド磁石の製造方法
において、 前記磁石合金のFe原料としてFeの一部をCr,M
n,Co,Ni,Zn,Cuの内の少なくとも1種で置
換したFe23 FeOOHまたはFe34を水素気流
中300〜800℃で還元することにより得られるα-
Fe粒子と、前記磁石合金の希土類原料として希土類酸
化物及び/またはフッ化物にAl,Zn,Cu,Gaの
内の少なくとも1種の酸化物を微量添加して溶融塩電解
後、さらに水素を吸蔵させて形成した希土類水素化物と
を反応させて前記磁石合金を得た後、この合金の粉末を
有機溶媒、鉱物油、または合成油中に保持した状態で異
方性を付与し焼結したものを粉砕して用いることを特徴
とする希土類ボンド磁石の製造方法。
8. The composition formula R a Fe b Co c M d ( where, R
Is at least one of rare earth elements including Y. ), 12 ≦ a ≦ 40 wt%, b: balance, c ≦ 50 wt
%, D ≦ 10 wt%, M is Al, Si, Ti, V, C
r, Ni, Zn, Cu, Ga, Zr, Nb, Mo, H
A method for manufacturing a rare earth bonded magnet in which a magnet alloy powder of at least one of f, Ta, and W is bound with a high molecular weight polymer, wherein a part of Fe is Cr, M
α- obtained by reducing Fe 2 O 3 , FeOOH or Fe 3 O 4 substituted with at least one of n, Co, Ni, Zn and Cu in a hydrogen stream at 300 to 800 ° C.
A small amount of at least one of Al, Zn, Cu, and Ga is added to a rare earth oxide and / or a fluoride as a rare earth raw material of the magnet alloy, and after electrolysis of molten salt, hydrogen is further absorbed. After reacting with the rare earth hydride thus formed to obtain the magnet alloy, the alloy powder is sintered in an organic solvent, mineral oil, or synthetic oil while imparting anisotropy in a retained state. And a method for producing a rare-earth bonded magnet.
JP9076124A 1997-03-27 1997-03-27 Rare-earth bond magnet and manufacture therefor Pending JPH10270225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9076124A JPH10270225A (en) 1997-03-27 1997-03-27 Rare-earth bond magnet and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9076124A JPH10270225A (en) 1997-03-27 1997-03-27 Rare-earth bond magnet and manufacture therefor

Publications (1)

Publication Number Publication Date
JPH10270225A true JPH10270225A (en) 1998-10-09

Family

ID=13596186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9076124A Pending JPH10270225A (en) 1997-03-27 1997-03-27 Rare-earth bond magnet and manufacture therefor

Country Status (1)

Country Link
JP (1) JPH10270225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270796A (en) * 2007-03-29 2008-11-06 Tdk Corp Magnetic material and magnet using the same
CN107507688A (en) * 2017-06-28 2017-12-22 漯河华瑞永磁材料股份有限公司 A kind of mischmetal iron boron system bonds magnetic and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270796A (en) * 2007-03-29 2008-11-06 Tdk Corp Magnetic material and magnet using the same
CN107507688A (en) * 2017-06-28 2017-12-22 漯河华瑞永磁材料股份有限公司 A kind of mischmetal iron boron system bonds magnetic and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3741597B2 (en) Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them
JP3171558B2 (en) Magnetic materials and bonded magnets
JPH09190909A (en) Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
JP2004146713A (en) Manufacturing methods of r-t-n-based magnetic powder and r-t-n-based bond magnet
JP2002015907A (en) Switching spring magnet powder and its manufacturing method
JPH11204319A (en) Rare-earth bonded magnet and its manufacture
JPH10270225A (en) Rare-earth bond magnet and manufacture therefor
JP3370013B2 (en) Rare earth magnet material and rare earth bonded magnet using the same
JP2020053440A (en) Method of manufacturing rare earth magnet
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP3615177B2 (en) Magnet material and method of manufacturing bonded magnet using the same
JP2000294416A (en) Rare earth bonded magnet
JP2000040611A (en) Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same
JP3623564B2 (en) Anisotropic bonded magnet
JPH05175023A (en) Magnet particle, magnet powder and bonded magnet
JP3652751B2 (en) Anisotropic bonded magnet
JP3795694B2 (en) Magnetic materials and bonded magnets
JPH0513207A (en) Manufacture of r-t-b-based permanent magnet
JPH10270223A (en) R-fe-c rare-earth magnet, r-fe-c rare-earth bond magnet, and manufacture therefor
JPH0669010A (en) Manufacture method of r-t-m-n based bonded magnet
JP3148514B2 (en) Method for producing R-Fe-M-N bonded magnet
JP2002217010A (en) Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet
JP3623583B2 (en) Anisotropic bonded magnet
Maehara et al. Development of Sm 2 Fe 17 N 3 magnetic powder doped with La, W, and Ti
JPH06342706A (en) Magnetic material