JPH0513207A - Manufacture of r-t-b-based permanent magnet - Google Patents
Manufacture of r-t-b-based permanent magnetInfo
- Publication number
- JPH0513207A JPH0513207A JP3165379A JP16537991A JPH0513207A JP H0513207 A JPH0513207 A JP H0513207A JP 3165379 A JP3165379 A JP 3165379A JP 16537991 A JP16537991 A JP 16537991A JP H0513207 A JPH0513207 A JP H0513207A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- coercive force
- based permanent
- alloy
- rtb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、希土類・遷移金属・硼
素系合金からなる磁気異方性磁石材料で、特に磁気エネ
ルギー積の大きい磁気異方性Nd−Fe−B系磁石に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic anisotropic magnet material composed of a rare earth / transition metal / boron alloy, and more particularly to a magnetic anisotropic Nd-Fe-B magnet having a large magnetic energy product. .
【0002】[0002]
【従来の技術】希土類、遷移金属、硼素から実質的にな
る永久磁石(以下R−T−B系永久磁石と呼ぶ)は安価
で且つ高エネルギー積を有するものとして注目を集めて
いる。正方晶系の結晶構造を持ったR2T14B(RはY
を含む希土類元素)で表される金属間化合物が優れた磁
気特性を発現するからである。この金属間化合物は、正
方晶の結晶構造を持つ。例えばNd2Fe14Bの格子定
数は、Ao=0.878nm、Co=1.218nmmである。しか
し、このR−T−B系永久磁石は、上記、長所を有する
反面、キュリー温度が低いことに起因する熱安定性の悪
さを短所として有している。一般的に、熱安定性を改善
するためにはキュリー温度又は保磁力を向上させること
が手段として用いられている。R−T−B系磁石に関し
てキュリー温度の向上には添加物の使用が有効である。
例えば、Feの一部をCoで置換することにより、キュ
リー温度が向上し、磁石の可逆温度係数が改善される
(特開昭59-64733号公報)。また、CoとGaの複合添
加によりキュリー温度、保磁力ともに向上する(特開昭
64-7503号公報)。後者の方法によるとGaは、主に結
晶粒界に入り、磁化反転を抑制するピンニングサイトと
して働き、Coは主相であるR2Fe14B1相に固溶しキ
ュリー温度を向上させる。2. Description of the Related Art Permanent magnets consisting essentially of rare earths, transition metals, and boron (hereinafter referred to as RTB-based permanent magnets) have been attracting attention because they are inexpensive and have a high energy product. R 2 T 14 B with a tetragonal crystal structure (R is Y
This is because the intermetallic compound represented by (rare earth element including) exhibits excellent magnetic properties. This intermetallic compound has a tetragonal crystal structure. For example, the lattice constant of Nd 2 Fe 14 B is Ao = 0.878 nm and Co = 1.218 nm. However, while this RTB-based permanent magnet has the above-mentioned advantages, it has a disadvantage of poor thermal stability due to the low Curie temperature. Generally, in order to improve the thermal stability, improving the Curie temperature or coercive force is used. The use of additives is effective for improving the Curie temperature of the RTB magnet.
For example, by substituting a part of Fe with Co, the Curie temperature is improved and the reversible temperature coefficient of the magnet is improved (Japanese Patent Laid-Open No. 59-64733). In addition, the combined addition of Co and Ga improves both the Curie temperature and the coercive force.
64-7503). According to the latter method, Ga mainly enters the crystal grain boundary and acts as a pinning site for suppressing magnetization reversal, and Co forms a solid solution in the R 2 Fe 14 B 1 phase which is the main phase to improve the Curie temperature.
【0003】[0003]
【発明が解決しようとする課題】従来技術で記述した熱
安定性の改善方法には、次のような問題点がある。すな
わち、Dyの添加は保磁力、熱安定性を向上させるが、
Dyが高価で資源的に少ないといった欠点を有する。ま
た、Coの添加はキュリー温度を向上させるが、結晶磁
気異方性を低下させるために保磁力が低下する。また、
Gaの添加は、Gaが主相にも固溶することによりキュ
リー温度を低下させるという欠点がある。本発明の目的
は、キュリー温度、保磁力を向上させたR−Fe−B系
永久磁石材料を開発することである。The method of improving thermal stability described in the prior art has the following problems. That is, addition of Dy improves coercive force and thermal stability,
Dy is expensive and has a shortage of resources. Further, although the addition of Co improves the Curie temperature, it lowers the crystal magnetic anisotropy, and therefore the coercive force decreases. Also,
Addition of Ga has a drawback that the Curie temperature is lowered due to the fact that Ga also forms a solid solution in the main phase. An object of the present invention is to develop an R-Fe-B based permanent magnet material having improved Curie temperature and coercive force.
【0004】[0004]
【課題を解決するための手段】本発明はまず、遷移金属
Tを主成分とし、イットリウムを含む希土類元素Rおよ
び硼素Bを含有するR−T−B系合金あるいはその溶湯
急冷薄片又は薄帯を粉砕して得る等の手段で得られた磁
性粉末と低融点金属を混合した後、温間加工によって製
造されることを特徴とするR−T−B系永久磁石に関す
るものである。Ga−In−Sn3元合金、Ga−In
2元合金、Ga−Sn2元合金が、室温で安定な液状で
あることが発見された。また、これらの合金は、流動
性、ぬれ性も良好である。さらに、R−T−B系永久磁
石においては、上記合金の構成元素は、Gaをはじめと
もに保磁力を向上させるものである。そこで、これらの
Ga,In,Sn系液状合金を、R−T−B系磁性粉末
に添加することにより、R2T14B主相に添加元素を固
溶させないで、先述した問題点を解決した。The present invention firstly provides an RTB-based alloy containing a transition metal T as a main component and a rare earth element R containing yttrium and boron B, or a melt-quenched thin piece or ribbon thereof. The present invention relates to an RTB-based permanent magnet characterized by being manufactured by mixing a magnetic powder obtained by means such as pulverization and a low melting point metal, and then warm working. Ga-In-Sn ternary alloy, Ga-In
It was discovered that the binary alloy, Ga-Sn binary alloy, is a stable liquid at room temperature. Further, these alloys also have good fluidity and wettability. Further, in the R-T-B system permanent magnet, the constituent elements of the above-mentioned alloy improve not only Ga but also coercive force. Therefore, these Ga, In, and Sn-based liquid alloy, by adding to the R-T-B-based magnetic powder, not a solid solution an additional element to the R 2 T 14 B main phase, solving the problems described above were did.
【0005】[0005]
(実施例1)Nd14Fe80B6なる組成の合金をアーク
溶解にて作製した。本合金をAr雰囲気中で周速が30
m/秒で回転する単ロール上に射出して約30μmの厚
さを持った不定形のフレーク状薄片を作製した。X線回
折の結果、非晶質と結晶質の混合物であることがわかっ
た。次いで、フレーク状薄片を500μm以下に粉砕す
ることにより得られた磁性粉末と60wt%Ga−20
wt%In−20wt%Snの液状合金をミキサーに入
れかくはんした。得られた粉末を成形圧6トン/cm2
で磁場を印加せずに金型成形をして密度が5.7g/c
cで直径28mm、高さ47mmの成形体を作製した。
得られた成形体を740℃、2トン/cm2でホットプ
レスし、密度が7.4g/ccと高密度の直径30m
m、高さ30mmの成形体を得た。次いで高密度化され
た成形体を更に740℃で圧縮価(据込み前の高さ30
mmを据込み後の高さ7.5mmで除した値)が4とな
るように据込み加工によって温間加工して磁気異方性を
付与した。得られた磁気異方性温間加工磁石の磁気特性
を測定した後、同磁石の圧縮軸方向を含む断面を、圧縮
方向に線状にEPMAを用いて元素分析した。図1に見
られる様に本発明による液状合金を添加することにより
Ga添加を行うと、従来技術と比較してGa量増加に対
する残留磁束密度の減少がゆるやかになることがわか
る。さらには、保磁力はGaの添加により急激に向上す
る。図2によると、本発明によるGa添加法では従来技
術と比較してNdリッチな部分(フレーク境界のNdリ
ッチ相)でGaのピークが鋭くなっていることがわか
る。以上の結果から本発明によるGa添加法によるNd
リッチなフレーク境界にGaが従来技術より、さらに選
択的にはいることにより保磁力の向上および、残留磁束
密度の維持を可能にしたものと考えられる。
(実施例2)実施例1において、薄片組成をNd14Fe
72.5Co7.5B6として同様の添加法でGaを1at%添
加し、温間加工磁石を作製した。また、その比較例2と
して従来法のアーク溶製時に同量の添加を施したものに
ついて、温間加工磁石を作製した。さらに、比較例3と
してNd14Fe72.5Co7.5B6なる組成の薄片を同様に
Ga無添加で温間加工磁石を作製した。その結果を表1
に示す。(Example 1) An alloy having a composition of Nd 14 Fe 80 B 6 was prepared by arc melting. The peripheral speed of this alloy is 30 in Ar atmosphere.
It was injected onto a single roll rotating at m / sec to produce an irregular flake flakes having a thickness of about 30 μm. As a result of X-ray diffraction, it was found to be a mixture of amorphous and crystalline. Then, the magnetic powder obtained by pulverizing the flaky flakes to 500 μm or less and 60 wt% Ga-20
A liquid alloy of wt% In-20 wt% Sn was put in a mixer and stirred. The obtained powder is molded under a pressure of 6 tons / cm 2.
And the density is 5.7g / c
In c, a molded body having a diameter of 28 mm and a height of 47 mm was produced.
The obtained molded body was hot-pressed at 740 ° C. and 2 ton / cm 2 , and had a high density of 7.4 g / cc and a diameter of 30 m.
A molded product having a height of m and a height of 30 mm was obtained. Next, the densified compact was further compressed at 740 ° C.
The value was obtained by dividing mm by the height 7.5 mm after the upsetting) to be 4 so as to give a magnetic anisotropy by warm working by upsetting. After measuring the magnetic properties of the obtained magnetically anisotropic warm-worked magnet, a cross section including the compression axis direction of the magnet was subjected to elemental analysis linearly in the compression direction using EPMA. As shown in FIG. 1, when Ga is added by adding the liquid alloy according to the present invention, it can be seen that the residual magnetic flux density decreases more gradually as the Ga content increases, as compared with the prior art. Furthermore, the coercive force is rapidly improved by adding Ga. According to FIG. 2, it can be seen that the Ga addition method according to the present invention has a sharper Ga peak in the Nd-rich portion (Nd-rich phase at the flake boundary) as compared with the prior art. From the above results, Nd by the Ga addition method according to the present invention
It is considered that Ga is allowed to enter the rich flake boundary more selectively than in the conventional technique, thereby improving the coercive force and maintaining the residual magnetic flux density. (Example 2) In Example 1, the flaky composition was changed to Nd 14 Fe.
Ga was added at 1 at% by the same addition method as 72.5 Co 7.5 B 6 to prepare a warm-worked magnet. Further, as Comparative Example 2, a warm-worked magnet was produced by adding the same amount to the conventional method of arc melting. Further, as Comparative Example 3, a thin piece having a composition of Nd14Fe72.5Co7.5B6 was similarly prepared without adding Ga to prepare a warm-worked magnet. The results are shown in Table 1.
Shown in.
【0006】[0006]
【表1】
表1の結果からキュリー温度を下げることなくGa添加
は成功し保磁力は向上していることがわかる。この結果
も、図2で示した様にGaがフレーク境界(結晶粒界)
に選択的に入ったことによるものと考えられる。以上の
説明は、超急冷法と温間加工法とを組み合わせたもので
行ったが、本発明はそれに限定されるものではなく、メ
カニカルアロイイング法、粉末冶金法等、公知の手段が
適用できる。[Table 1] From the results in Table 1, it can be seen that Ga addition was successful and the coercive force was improved without lowering the Curie temperature. Also in this result, as shown in FIG. 2, Ga is a flake boundary (grain boundary).
It is believed that this is due to selective entry into. Although the above description has been made by combining the ultra-quenching method and the warm working method, the present invention is not limited thereto, and known means such as a mechanical alloying method and a powder metallurgy method can be applied. .
【0007】[0007]
【発明の効果】本発明によれば、保磁力を向上させる添
加物をキュリー温度を低下させることなく添加すること
ができる。また、保磁力を向上させる添加物を結晶粒界
に選択的に入れることができ、残留磁束密度を低下させ
ることなく保磁力を向上させることができる。According to the present invention, an additive that improves the coercive force can be added without lowering the Curie temperature. Further, an additive that improves the coercive force can be selectively added to the crystal grain boundary, and the coercive force can be improved without lowering the residual magnetic flux density.
【図1】本発明に係る永久磁石の一実施例における磁気
特性とGa含有量の関係を比較例と共に示す図である。FIG. 1 is a diagram showing a relationship between magnetic properties and Ga content in one embodiment of a permanent magnet according to the present invention together with a comparative example.
【図2】本発明に係る永久磁石の一実施例における断面
の元素分布を比較例と共に示す図である。FIG. 2 is a diagram showing an element distribution of a cross section in one example of the permanent magnet according to the present invention together with a comparative example.
Claims (5)
含む希土類元素R及び硼素Bを含有するR−T−B系合
金の磁性粉末と、GaとIn,Snの一種以上の合金と
の液状混合体を出発原料とすることを特徴とするR−T
−B系永久磁石の製造方法。1. A liquid mixture of a magnetic powder of an RTB-based alloy containing a transition metal T as a main component and a rare earth element R containing yttrium and boron B, and an alloy of Ga and one or more of In and Sn. R-T characterized by using body as a starting material
-A method for manufacturing a B-based permanent magnet.
Ga−In−Sn合金の一種以上であることを特徴とす
る請求項1に記載のR−T−B系永久磁石の製造方法。2. The liquid mixture is Ga—In, Ga—Sn,
The method for producing an RTB-based permanent magnet according to claim 1, wherein the method is one or more kinds of Ga-In-Sn alloys.
することを特徴とする請求項1または2に記載のR−T
−B系永久磁石の製造方法。3. The RT according to claim 1, wherein the starting material is a permanent magnet by powder metallurgy.
-A method for manufacturing a B-based permanent magnet.
り永久磁石とすることを特徴とする請求項1または2に
記載のR−T−B系永久磁石の製造方法。4. The method for producing an RTB-based permanent magnet according to claim 1, wherein the starting material is made into a permanent magnet by a liquid quenching method and a warm working method.
り永久磁石とすることを特徴とする請求項1または2に
記載のR−T−B系永久磁石の製造方法。5. The method for producing an RTB-based permanent magnet according to claim 1, wherein the starting material is made into a permanent magnet by mechanical alloying.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3165379A JPH0513207A (en) | 1991-07-05 | 1991-07-05 | Manufacture of r-t-b-based permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3165379A JPH0513207A (en) | 1991-07-05 | 1991-07-05 | Manufacture of r-t-b-based permanent magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0513207A true JPH0513207A (en) | 1993-01-22 |
Family
ID=15811260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3165379A Pending JPH0513207A (en) | 1991-07-05 | 1991-07-05 | Manufacture of r-t-b-based permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0513207A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010063142A1 (en) * | 2008-12-01 | 2010-06-10 | Zhejiang University | Sintered nd-fe-b permanent magnet with high coercivity for high temperature applications |
CN103996477A (en) * | 2014-05-30 | 2014-08-20 | 聊城大学 | Corrosion-resistant sintered NdFeB magnet modified through copper-tin crystal boundary and preparing process thereof |
JP2018056525A (en) * | 2016-09-30 | 2018-04-05 | ミネベアミツミ株式会社 | Method for manufacturing rare earth iron-based permanent magnet |
CN113571278A (en) * | 2021-07-22 | 2021-10-29 | 包头天和磁材科技股份有限公司 | Magnetic powder, method for forming magnetic powder, rare earth sintered permanent magnet, and method for producing rare earth sintered permanent magnet |
US12119150B2 (en) | 2019-09-26 | 2024-10-15 | Lg Chem, Ltd. | Method for producing sintered magnet and sintered magnet |
-
1991
- 1991-07-05 JP JP3165379A patent/JPH0513207A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010063142A1 (en) * | 2008-12-01 | 2010-06-10 | Zhejiang University | Sintered nd-fe-b permanent magnet with high coercivity for high temperature applications |
US9082538B2 (en) | 2008-12-01 | 2015-07-14 | Zhejiang University | Sintered Nd—Fe—B permanent magnet with high coercivity for high temperature applications |
CN103996477A (en) * | 2014-05-30 | 2014-08-20 | 聊城大学 | Corrosion-resistant sintered NdFeB magnet modified through copper-tin crystal boundary and preparing process thereof |
CN103996477B (en) * | 2014-05-30 | 2017-09-26 | 聊城大学 | The preparation method of the crystal boundary modified Sintered NdFeB magnet against corrosion of copper and tin |
JP2018056525A (en) * | 2016-09-30 | 2018-04-05 | ミネベアミツミ株式会社 | Method for manufacturing rare earth iron-based permanent magnet |
US12119150B2 (en) | 2019-09-26 | 2024-10-15 | Lg Chem, Ltd. | Method for producing sintered magnet and sintered magnet |
CN113571278A (en) * | 2021-07-22 | 2021-10-29 | 包头天和磁材科技股份有限公司 | Magnetic powder, method for forming magnetic powder, rare earth sintered permanent magnet, and method for producing rare earth sintered permanent magnet |
CN113571278B (en) * | 2021-07-22 | 2024-05-24 | 包头天和磁材科技股份有限公司 | Magnetic powder, method for forming magnetic powder, rare earth sintered permanent magnet and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3741597B2 (en) | Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them | |
JP2782024B2 (en) | Method for producing raw material powder for R-Fe-B-based permanent magnet | |
JPH0232761B2 (en) | ||
JP2513994B2 (en) | permanent magnet | |
JPH1053844A (en) | (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy | |
JPH0696928A (en) | Rare-earth sintered magnet and its manufacture | |
JPH0316761B2 (en) | ||
JPH0518242B2 (en) | ||
JP3118740B2 (en) | Rare earth magnet materials and rare earth bonded magnets | |
JPS63313807A (en) | Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof | |
JPH0513207A (en) | Manufacture of r-t-b-based permanent magnet | |
JP3519443B2 (en) | Permanent magnet alloy powder and method for producing the same | |
JPH0535210B2 (en) | ||
JP3623564B2 (en) | Anisotropic bonded magnet | |
JPH0653882B2 (en) | Alloy powder for bonded magnet and manufacturing method thereof | |
JP2986611B2 (en) | Fe-BR bonded magnet | |
JP3652752B2 (en) | Anisotropic bonded magnet | |
JP3652751B2 (en) | Anisotropic bonded magnet | |
JP2823076B2 (en) | Warm magnet | |
JPH0633444B2 (en) | Permanent magnet alloy | |
JPH10135020A (en) | Radial anisotropic bond magnet | |
JP2925840B2 (en) | Fe-BR bonded magnet | |
JPH0517853A (en) | Pare earth-iron-boron base nitrogen interstitial rermanent magnet material | |
JPH06346200A (en) | Permanent magnet alloy | |
JP3703903B2 (en) | Anisotropic bonded magnet |