[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10251729A - Smelting reduction method for chromium ore - Google Patents

Smelting reduction method for chromium ore

Info

Publication number
JPH10251729A
JPH10251729A JP6308897A JP6308897A JPH10251729A JP H10251729 A JPH10251729 A JP H10251729A JP 6308897 A JP6308897 A JP 6308897A JP 6308897 A JP6308897 A JP 6308897A JP H10251729 A JPH10251729 A JP H10251729A
Authority
JP
Japan
Prior art keywords
carbon
chromium
chromium ore
yield
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6308897A
Other languages
Japanese (ja)
Other versions
JP3718945B2 (en
Inventor
Kimiharu Aida
公治 会田
Hideji Takeuchi
秀次 竹内
Nagayasu Bessho
永康 別所
Tomomichi Terabatake
知道 寺畠
Yasuo Kishimoto
康夫 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP06308897A priority Critical patent/JP3718945B2/en
Publication of JPH10251729A publication Critical patent/JPH10251729A/en
Application granted granted Critical
Publication of JP3718945B2 publication Critical patent/JP3718945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a smelting reduction method for chromium ore by which chromium reduction yield and carbonaceous material yield are improved by using a converter type smelting reduction furnace having combination-blown function. SOLUTION: At the time of producing molten chromium-containing metal by adding the chromium ore together with the carbon-containing material into the converter type smelting reduction furnace having combination-blown function and supplying oxygen, a material having <=0.5H/C value (the ratio of number of atoms of hydrogen to that of carbon in terms of carbon-containing material), and >=85% fixed carbon content, is used and further, the bottom-blown oxygen flow rate is regulated to 0.3-0.8Nm<3> /min.t.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、クロム鉱石に炭素
含有物質を添加してクロム鉱石を溶融還元するクロム鉱
石の溶融還元方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for smelting and reducing chromium ore by adding a carbon-containing substance to chromium ore and smelting and reducing chromium ore.

【0002】[0002]

【従来の技術】従来、ステンレス鋼の溶製はクロム鉱石
等を電気炉にて炭素還元して製造したフェロクロムを用
いて行われているが、高価な電力を使用するためフェロ
クロムのコストが高く、その結果、ステンレス鋼の製造
コストを高いものにしていた。この問題を解決するため
に、クロム鉱石を予備還元した半還元クロムペレットを
上底吹き転炉を用いて、電力を使わずに炭素還元してク
ロム含有溶湯を溶製する方法が従来から知られている。
またそれをさらに進めてクロム鉱石を直接還元してクロ
ム含有溶湯を得る方法も提案されている。(特開昭58-9
959 号公報、特開昭55-91913号公報参照) また、特開平7-41872 号公報には、熱崩壊性のある炭材
を用いて、炭材にメタル粒が付着することを防止するこ
とによりメタルロスを低減するとともに、還元反応速度
を増大させる方法が開示されている。
2. Description of the Related Art Conventionally, smelting of stainless steel has been carried out using ferrochrome produced by carbon reduction of chromium ore or the like in an electric furnace. As a result, the production cost of stainless steel has been increased. In order to solve this problem, there has been known a method of melting a chromium-containing molten metal by reducing carbon in a pre-reduced semi-reduced chromium pellet using a top-bottom blowing converter without using electric power. ing.
In addition, a method has been proposed in which the chromium ore is directly reduced to obtain a chromium-containing molten metal. (JP-A-58-9
Japanese Unexamined Patent Application Publication No. 7-41872 discloses a method of using a carbon material having thermal degradability to prevent metal particles from adhering to the carbon material. Discloses a method for reducing metal loss and increasing the rate of reduction reaction.

【0003】[0003]

【発明が解決しようとする課題】半還元クロムペレット
の溶融還元法は、クロムペレット製造のための設備が必
要となり、直接クロム鉱石を溶融還元する方法に比べて
コストが高くなるという問題があった。一方、クロム鉱
石の溶融還元法は、半還元クロムペレットを用いた従来
法に比べて、同一クロム量当たりの酸化物(Cr2O3, Fe
O)の投入速度が大きくなるため、単位時間当たりのク
ロム還元量を従来法と同一にするためには還元反応速度
を大きくしなければならないという問題がある。これに
対しては、主たる還元反応界面である炭素含有物質表面
積を増やすことが効果的であるが、従来と同一の炭素含
有物質を用いた場合には炭素含有物質添加量の増加が必
要となる。この炭素含有物質添加量の増加は、添加量の
増加自体がコストアップの要因となるばかりでなく、処
理後のスラグ中に炭素含有物質が残留することとなり、
スラグの再利用に悪影響を及ぼす点からも有害で、クロ
ム鉱石の溶融還元法のメリットを大きく減殺するもので
ある。
The smelting reduction method of semi-reduced chromium pellets requires equipment for producing chromium pellets, and has a problem that the cost is higher than the method of smelting reduction of chromium ore directly. . On the other hand, in the smelting reduction method of chromium ore, the oxide (Cr 2 O 3 , Fe
Since the charging rate of O) increases, there is a problem that the reduction reaction rate must be increased in order to make the amount of chromium reduction per unit time the same as in the conventional method. For this purpose, it is effective to increase the surface area of the carbon-containing substance, which is the main reduction reaction interface, but when the same carbon-containing substance as in the past is used, it is necessary to increase the amount of the carbon-containing substance added. . This increase in the amount of the carbon-containing material added causes not only the increase in the amount of addition itself to increase the cost, but also the carbon-containing material remaining in the treated slag.
It is also harmful because it has an adverse effect on slag recycling, and greatly reduces the benefits of the smelting reduction method of chromium ore.

【0004】本発明は、この炭素含有物質の添加量の増
大を伴わずに炭素含有物質表面積を増大させ、高い還元
反応速度を得るクロム鉱石の溶融還元方法を提供するこ
とを目的とする。上記の目的は粒径の微細な炭材の使用
により解決可能ではあるが、この種の微細な炭材の使用
に当たってはその添加歩留りが低く、ダスト発生量が増
大するという問題があった。これに対して特開平7-4187
2 号公報では、炭材表面温度が800 ℃以下の状態で、ス
ラグあるいはメタルに到達するように投入方法を調整す
ることにより、炭材の熱崩壊前にスラグ中あるいはメタ
ル中に巻き込ませる方法が示されている。
[0004] An object of the present invention is to provide a method for smelting and reducing chromium ore which increases the surface area of a carbon-containing material without increasing the amount of the carbon-containing material added, and provides a high reduction reaction rate. Although the above object can be solved by using a carbonaceous material having a fine particle size, the use of such a fine carbonaceous material has a problem that the addition yield is low and the amount of dust generated increases. On the other hand, JP-A-7-4187
No. 2 discloses a method in which the carbon material is caught in the slag or metal before the thermal collapse of the carbon material by adjusting the charging method so that the carbon material reaches the slag or metal at a temperature of 800 ° C or less. It is shown.

【0005】しかし、本発明者らが炭材投入高さを変化
させて実験を行ったところ、表面温度800 ℃以下を保て
る条件の下でも炭材の歩留りには変化がなく、単に排ガ
ス流量の増加に合わせて炭材歩留りが低下する傾向が見
られた。さらに、実験中の炉口付近には炉内圧力の脈動
に伴って炭材粉の吹き出しが認められ、また、実験後の
炉内の観察およびスラグのサンプリング結果からはスラ
グ上部に多量の炭材の存在が認められた。これらの結果
から、炉内に投入された炭材の一部はスラグおよびメタ
ル中に巻き込まれるものの、その大部分はスラグ上に浮
いているかあるいは炉内の空間に懸濁しているものと推
定された。このため、投入途中に熱崩壊をさせないよう
な処置を行った場合にも炭材の飛散が減少しないものと
考えられる。
However, when the present inventors conducted experiments by changing the carbon material input height, the yield of the carbon material did not change even under the condition that the surface temperature could be kept at 800 ° C. or less, and the flow rate of the exhaust gas was simply changed. There was a tendency for the carbonaceous material yield to decrease with the increase. In addition, blowing of carbonaceous powder was observed near the furnace port during the experiment due to the pulsation of the furnace pressure, and a large amount of carbonaceous material was observed above the slag based on observations inside the furnace and sampling results of the slag after the experiment. Was observed. From these results, it is estimated that some of the carbon material charged into the furnace was caught in the slag and metal, but most of it was floating on the slag or suspended in the space inside the furnace. Was. For this reason, it is considered that the scattering of the carbonaceous material does not decrease even when a treatment for preventing the thermal collapse during the charging is performed.

【0006】このように、微細な炭材を添加する方法に
は添加歩留りが低いという問題点がある。
As described above, the method of adding a fine carbonaceous material has a problem that the addition yield is low.

【0007】[0007]

【課題を解決するための手段】本発明者らは、転炉を用
いた溶融還元工程におけるクロム還元歩留と炭材歩留の
向上を目的に、鋭意検討した結果、クロム還元歩留は添
加する炭素含有物質(炭材) の種類に大きく影響され、
ある種の炭素含有物質を用いるとクロム還元歩留が飛躍
的に向上すること、および、炭材歩留は底吹き酸素流量
に大きく影響され、最適な底吹き酸素流量の範囲が存在
することを知見した。
Means for Solving the Problems The present inventors have conducted intensive studies with the aim of improving the chromium reduction yield and carbon material yield in the smelting reduction process using a converter, and found that the chromium reduction yield was added. Greatly affected by the type of carbon-containing material (carbon material)
The chromium reduction yield was dramatically improved with the use of certain carbon-containing materials, and the carbon material yield was greatly affected by the bottom-blown oxygen flow rate, and there was an optimum range of the bottom-blown oxygen flow rate. I learned.

【0008】まず、本発明の基礎となった実験について
説明する。5ton 試験転炉で、転炉にクロム鉱石と各種
炭素含有物質を添加し、酸素を供給してクロム鉱石の溶
融還元を行い、クロム鉱石の還元率を調査した。その結
果、図2に示すように、添加した炭素含有物質が炉内添
加時に細粒化するものの場合に限り、高いクロム鉱石還
元率が得られることを見いだした。なお、予め、添加す
る炭素含有物質を、30kg級小型溶解炉内の炭素飽和溶銑
上に投入して、これら物質の崩壊性を調査し、添加した
炭素含有物質は投入時に瞬時に細粒化し、図4のように
粒度分布が変化するものとほとんど細粒化しないものと
に2分されることを確認している。
First, an experiment on which the present invention is based will be described. In a 5 ton test converter, chromium ore and various carbon-containing substances were added to the converter, and oxygen was supplied to perform smelting reduction of chromium ore, and the reduction rate of chromium ore was investigated. As a result, as shown in FIG. 2, it has been found that a high chromium ore reduction rate can be obtained only when the added carbon-containing substance is finely divided at the time of addition in the furnace. In addition, the carbon-containing substance to be added is charged in advance on carbon-saturated hot metal in a 30 kg-class small melting furnace, the disintegration of these substances is investigated, and the added carbon-containing substance is instantaneously granulated at the time of charging. As shown in FIG. 4, it has been confirmed that the particle size distribution is divided into two types: one in which the particle size distribution changes and one in which the particle size is hardly reduced.

【0009】ついで、本発明者らは、実験した各種炭素
含有物質の特性を調査し、炉内投入時の炭素含有物質の
崩壊性が同物質に含有される水素と炭素の原子数の比、
H/C値と、固定炭素量とに密接に関係していることを
知見した。すなわち、図1に示すように、H/C値が0.
5 以下でかつ固定炭素量が85%以上の範囲を有する炭素
含有物質は炉内投入時に細粒化するが、上記範囲外の炭
素含有物質では、ほとんど細粒化しない。
Next, the present inventors investigated the characteristics of the various carbon-containing substances that were tested, and found that the destructibility of the carbon-containing substance upon introduction into the furnace showed the ratio of the number of atoms of hydrogen and carbon contained in the substance,
It has been found that the H / C value is closely related to the fixed carbon amount. That is, as shown in FIG.
Carbon-containing substances having a carbon content of 5 or less and having a fixed carbon content of 85% or more are refined when charged into the furnace, but carbon-containing substances outside the above range hardly become fine.

【0010】さらに、本発明者らは、5ton 試験転炉
で、クロム鉱石と炭素含有物質(炭材)を転炉内に投入
して、全酸素供給流量を一定とし、底吹き酸素流量を種
々変化して溶融還元を行い、炭材歩留とクロム還元歩留
を調査した。その結果、図3に示すように、底吹き酸素
流量をある範囲内に調整することによりクロム還元歩留
と炭材歩留がともに高くできることを見いだした。すな
わち、図3から、底吹き酸素流量を0.3 〜0.8 Nm3/min
・t の範囲内とすることにより炭材歩留とクロム還元歩
留がともに85%以上と高くなる。
Further, the present inventors put chromium ore and a carbon-containing substance (carbonaceous material) into the converter in a 5 ton test converter, make the total oxygen supply flow rate constant, and make the bottom blown oxygen flow rate various. The smelting reduction was carried out by changing, and the carbon material yield and the chromium reduction yield were investigated. As a result, as shown in FIG. 3, it was found that both the chromium reduction yield and the carbonaceous material yield could be increased by adjusting the bottom blown oxygen flow rate within a certain range. That is, from FIG. 3, the bottom blown oxygen flow rate is set to 0.3 to 0.8 Nm 3 / min.
・ By setting it within the range of t, both the carbon material yield and the chromium reduction yield increase to 85% or more.

【0011】本発明は、上記した知見をもとに構成され
たものである。すなわち、本発明は、上底吹き機能を有
する転炉型溶融還元炉にクロム鉱石を炭素含有物質とと
もに添加し、酸素を供給することによりクロム含有溶湯
を溶製するクロム鉱石の溶融還元方法において、前記炭
素含有物質として水素と炭素の原子数の比、H/C値が
0.5 以下でかつ固定炭素量が85%以上の物質を使用し、
さらに底吹き酸素流量を0.3 〜0.8 Nm3/min ・t とする
ことを特徴とするクロム鉱石の溶融還元方法である。
The present invention has been made based on the above findings. That is, the present invention relates to a chromium ore smelting reduction method for adding a chromium ore together with a carbon-containing material to a converter type smelting reduction furnace having a top-bottom blowing function and supplying oxygen to smelt a chromium-containing molten metal, As the carbon-containing substance, the ratio of the number of atoms of hydrogen and carbon and the H / C value are
Use a substance with a fixed carbon content of 85% or less and 0.5 or less,
Further, there is provided a method for smelting and reducing chromium ore, wherein the flow rate of bottom-blown oxygen is 0.3 to 0.8 Nm 3 / min · t.

【0012】[0012]

【発明の実施の形態】本発明では、上底吹き機能を有す
る転炉型溶融還元炉を用いる。転炉にクロム鉱石を炭素
含有物質とともに添加し、上底吹きで酸素を供給するこ
とにより炭素含有物質を燃焼し、その燃焼熱でクロム鉱
石の溶融と還元を行い、クロム含有溶湯を溶製する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a converter type smelting reduction furnace having a top-bottom blowing function is used. The chromium ore is added to the converter together with the carbon-containing material, and the carbon-containing material is burned by supplying oxygen by top and bottom blowing, and the heat of combustion melts and reduces the chromium ore to melt the chromium-containing molten metal.

【0013】上底吹き転炉の使用は、上底の両方から大
量の酸素ガスを供給し高生産性の溶融還元を可能にし、
また、底吹きガスによる強力な攪拌によりスラグ中の金
属酸化物の還元反応速度を高める意味からも有効であ
る。本発明では、転炉に添加する炭素含有物質として、
含有する水素と炭素の原子数の比、H/C値が0.5 以下
でかつ固定炭素量が85%以上の物質を使用する。
[0013] The use of the top-bottom blow converter allows a large amount of oxygen gas to be supplied from both the top and bottom to enable high-productivity smelting reduction,
It is also effective from the viewpoint of increasing the reduction reaction rate of the metal oxide in the slag by vigorous stirring by the bottom blow gas. In the present invention, as a carbon-containing substance to be added to the converter,
A substance having an atomic ratio of hydrogen to carbon, an H / C value of 0.5 or less, and a fixed carbon amount of 85% or more is used.

【0014】炭素含有物質のH/C値が0.5 を超える
と、炭素含有物質が炉内に投入された場合に瞬時に細粒
化しないため、炭素含有物質の反応界面積が増加せず、
還元反応速度が低く、したがってクロム鉱石還元率が低
下する。このため、添加する炭素含有物質の含有する水
素と炭素の原子数の比、H/C値を0.5 以下に限定し
た。さらに、添加する炭素含有物質のH/C値が0.5 以
下でも固定炭素量が85%未満では、炭素含有物質の崩壊
性が低く炉内に投入されたときに細粒化しにくい。この
ため、添加する炭素含有物質の含有する水素と炭素の原
子数の比、H/C値を0.5 以下としかつ固定炭素量を85
%以上に限定した。また、炭素含有物質中の水素と炭素
の原子数の比および固定炭素量と炭素含有物質の細粒化
傾向との関係は炭素含有物質内部の構造と密接に関係す
ることが推察できるが詳細については不明である。
When the H / C value of the carbon-containing substance exceeds 0.5, the carbon-containing substance is not instantaneously refined when it is charged into the furnace, so that the reaction interface area of the carbon-containing substance does not increase,
The rate of the reduction reaction is low, and therefore the chromium ore reduction rate decreases. For this reason, the ratio of the number of atoms of hydrogen and carbon contained in the carbon-containing substance to be added and the H / C value are limited to 0.5 or less. Further, if the H / C value of the carbon-containing substance to be added is 0.5 or less and the fixed carbon amount is less than 85%, the carbon-containing substance has low disintegration and is hard to be granulated when put into a furnace. Therefore, the ratio of the number of atoms of hydrogen and carbon contained in the carbon-containing substance to be added, the H / C value is 0.5 or less, and the fixed carbon amount is 85%.
%. In addition, it can be inferred that the ratio between the number of atoms of hydrogen and carbon in the carbon-containing material and the relationship between the fixed carbon amount and the tendency to refine the carbon-containing material are closely related to the internal structure of the carbon-containing material. Is unknown.

【0015】本発明で好適な炭素含有物質としては、無
煙炭、半無煙炭等が例示でき、なかでも無煙炭が好適で
ある。これらの物質は含有する水素と炭素の原子数の
比、H/C値が0.5 以下でかつ固定炭素量が85%以上を
満足することは言うまでもない。本発明では、投入する
炭素含有物質を上記のように限定するとともに、底吹き
酸素流量を0.3 〜0.8 Nm3/min ・t とする。
Examples of the carbon-containing substance suitable in the present invention include anthracite, semi-anthracite and the like, among which anthracite is preferred. It goes without saying that these substances satisfy the ratio of the number of atoms of hydrogen to carbon, the H / C value, of 0.5 or less and the fixed carbon content of 85% or more. In the present invention, the carbon-containing substance to be charged is limited as described above, and the flow rate of the bottom-blown oxygen is set to 0.3 to 0.8 Nm 3 / min · t.

【0016】底吹き酸素流量が0.3 Nm3/min ・t 未満で
は、炭材のスラグ、メタルへの巻き込みが十分でなく、
還元が十分に進行せずクロム還元歩留が低下するとも
に、炭材の飛散が増して炭材歩留も低下する。一方、底
吹き酸素流量が0.8 Nm3/min ・t を超えるとスピッティ
ング量が増大しクロム還元歩留が低下する。このため、
底吹き酸素流量は0.3 〜0.8 Nm3/min ・t とした。
If the bottom blown oxygen flow rate is less than 0.3 Nm 3 / min · t, the carbon material is not sufficiently entrained in the slag and metal,
Since the reduction does not proceed sufficiently, the chromium reduction yield decreases, and the scattering of the carbonaceous material increases, and the carbonaceous material yield also decreases. On the other hand, when the bottom-blown oxygen flow rate exceeds 0.8 Nm 3 / min · t, the spitting amount increases and the chromium reduction yield decreases. For this reason,
The bottom-flow oxygen flow rate was 0.3 to 0.8 Nm 3 / min · t.

【0017】なお、本発明の溶融還元法の操業では、酸
素を底吹きするとともに、上吹きする。本発明では、酸
素の上吹き条件についてはとくに規定する必要はない
が、上吹き酸素は、炭材の一次燃焼と、生成したCOガス
をCO2 までにする二次燃焼を考慮して制御するのが望ま
しい。二次燃焼を利用すれば、炭材の使用量を増加させ
ることなく、多大のエネルギーを得ることができ、転炉
の生産性を高めることができる。二次燃焼効率を向上さ
せるためには、上吹きランス高さの上昇、上吹き酸素、
流速の低下等が知られている。これらの方法は本発明に
おいても好適に利用できることは言うまでもない。
In the operation of the smelting reduction method of the present invention, oxygen is blown downward and upward. In the present invention, it is not necessary to define particularly for top-blown conditions of oxygen top-blown oxygen, the primary combustion of the carbonaceous material is controlled in consideration of the secondary combustion to the generated CO gas until CO 2 It is desirable. If secondary combustion is used, a large amount of energy can be obtained without increasing the amount of carbon material used, and the productivity of the converter can be increased. In order to improve the secondary combustion efficiency, the height of the upper blowing lance, the upper blowing oxygen,
It is known that the flow velocity decreases. Needless to say, these methods can be suitably used in the present invention.

【0018】[0018]

【実施例】5ton 規模の上底吹き機能を有する転炉型溶
融還元炉を用いて、表1に示す水素と炭素の原子量の比
(H/C比)と固定炭素量を有する炭素含有物質を添加
し、表1に示す流量で酸素を上底吹きして、クロム鉱石
を溶融還元しクロム含有溶湯を得た。なお、操業中は、
上吹きランス高さを調節し、二次燃焼率(CO2 /CO2+CO
) を20%と一定にした。
EXAMPLE Using a 5-ton scale converter-type smelting reduction furnace having a top-bottom blowing function, a carbon-containing substance having a hydrogen / carbon atomic weight ratio (H / C ratio) and a fixed carbon content shown in Table 1 was prepared. The chromium ore was melted and reduced at a flow rate shown in Table 1 to obtain a chromium-containing molten metal. During operation,
Adjust the height of the upper blowing lance and adjust the secondary combustion rate (CO 2 / CO 2 + CO
) Was kept constant at 20%.

【0019】操業後、得られたクロム含有溶湯の成分、
重量と、添加したクロム鉱石量とから、クロム還元歩留
を求め、また、ダスト成分発生量と添加した炭素含有物
質とから炭材歩留を求め表1に示す。
After the operation, the components of the obtained chromium-containing molten metal,
The chromium reduction yield was determined from the weight and the amount of added chromium ore, and the carbon material yield was determined from the amount of generated dust component and the added carbon-containing material.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から、本発明の範囲の炭素含有物質を
使用し、本発明範囲の底吹き酸素流量で操業した実施例
(試験No.1、No.2)は、いずれもクロム鉱石の還元歩留
が90%以上、炭材歩留りも98%以上と高い。一方、本発
明範囲外の炭素含有物質を使用した比較例(試験No.3、
No.4)、および本発明範囲外の底吹き酸素流量で操業し
た比較例(試験No.5、No.6)は、いずれもクロム鉱石の
還元歩留が60〜70%と著しく低く、また、試験No.5、N
o.6では炭材歩留りも85〜88%と低い。
From Table 1, it can be seen that the examples (test Nos. 1 and 2) in which the carbon-containing material within the scope of the present invention was used and operated at the bottom-blown oxygen flow rate within the scope of the present invention were all the reduction of chromium ore. The yield is over 90%, and the carbon material yield is over 98%. On the other hand, a comparative example using a carbon-containing substance outside the scope of the present invention (Test No. 3,
No. 4) and the comparative examples (test No. 5 and No. 6) operated with the bottom-blown oxygen flow rate outside the range of the present invention, the reduction yield of chromium ore was remarkably low at 60 to 70%, and , Test No. 5, N
In o.6, the carbon material yield is as low as 85-88%.

【0022】なお、試験No.1で添加した炭素含有物質の
崩壊前後での粒度分布の1例を図4に示す。崩壊により
細粒となっているのがわかる。
FIG. 4 shows an example of the particle size distribution before and after the collapse of the carbon-containing substance added in Test No. 1. It can be seen that the fine particles are formed by the collapse.

【0023】[0023]

【発明の効果】本発明によれば、炉内添加後に炭素含有
物質が微細化し、炭材の添加量を増加せず炭材の表面積
が増加し還元反応速度を高めることができ、さらに、ス
ピッティングも抑制でき、これらにより高いクロム還元
歩留が得られるとともに、高い炭材歩留が得られるクロ
ム鉱石の溶融還元操業を可能にするという産業上多大の
効果を奏する。
According to the present invention, the carbon-containing material becomes finer after addition in the furnace, the surface area of the carbon material increases without increasing the amount of the carbon material added, and the reduction reaction speed can be increased. In addition to these, it is possible to obtain a high chromium reduction yield and thereby achieve a great industrial effect of enabling a smelting reduction operation of chromium ore capable of obtaining a high carbon material yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭素含有物質の固定炭素量、水素と炭素の原子
数の比、H/C値と細粒化の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the fixed carbon amount of a carbon-containing substance, the ratio of the number of atoms of hydrogen and carbon, the H / C value, and the grain refinement.

【図2】クロム鉱石還元率と炭素含有物質の細粒化との
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the chromium ore reduction rate and the refinement of carbon-containing substances.

【図3】炭材歩留、クロム還元歩留と底吹き酸素流量と
の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a carbon material yield, a chromium reduction yield, and a bottom-blown oxygen flow rate.

【図4】炭素含有物質の崩壊前後の粒度分布の1例を示
すグラフである。
FIG. 4 is a graph showing an example of a particle size distribution before and after the collapse of a carbon-containing substance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 別所 永康 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 寺畠 知道 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 岸本 康夫 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Nagayasu, Nagayasu 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Technical Research Institute of Kawasaki Steel Co., Ltd. Kawasaki Steel Corporation Chiba Works (72) Inventor Yasuo Kishimoto 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Corporation Chiba Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 上底吹き機能を有する転炉型溶融還元炉
にクロム鉱石を炭素含有物質とともに添加し、酸素を供
給することによりクロム含有溶湯を溶製するクロム鉱石
の溶融還元方法において、前記炭素含有物質として水素
と炭素の原子数の比、H/Cが0.5 以下でかつ固定炭素
量が85%以上の物質を使用し、さらに底吹き酸素流量を
0.3 〜0.8 Nm3/min ・t とすることを特徴とするクロム
鉱石の溶融還元方法。
1. A method for smelting and reducing chromium ore, comprising adding chromium ore together with a carbon-containing substance to a converter type smelting reduction furnace having a top-bottom blowing function and supplying oxygen to melt the chromium-containing molten metal. As the carbon-containing material, a material having a ratio of the number of atoms of hydrogen and carbon, H / C of 0.5 or less and a fixed carbon amount of 85% or more, is used.
A method for smelting and reducing chromium ore, wherein the method is 0.3 to 0.8 Nm 3 / min · t.
JP06308897A 1997-03-17 1997-03-17 Method for smelting reduction of chromium ore Expired - Fee Related JP3718945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06308897A JP3718945B2 (en) 1997-03-17 1997-03-17 Method for smelting reduction of chromium ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06308897A JP3718945B2 (en) 1997-03-17 1997-03-17 Method for smelting reduction of chromium ore

Publications (2)

Publication Number Publication Date
JPH10251729A true JPH10251729A (en) 1998-09-22
JP3718945B2 JP3718945B2 (en) 2005-11-24

Family

ID=13219231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06308897A Expired - Fee Related JP3718945B2 (en) 1997-03-17 1997-03-17 Method for smelting reduction of chromium ore

Country Status (1)

Country Link
JP (1) JP3718945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006745A (en) * 2009-06-26 2011-01-13 Jfe Steel Corp Smelting-reduction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006745A (en) * 2009-06-26 2011-01-13 Jfe Steel Corp Smelting-reduction method

Also Published As

Publication number Publication date
JP3718945B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP3162706B2 (en) Ferroalloy production using a molten bath reactor.
JP2001506315A (en) Direct reduction of metal oxide nodules
GB2077766A (en) Method of manufacturing stainless steel
US5728193A (en) Process for recovering metals from iron oxide bearing masses
JPH10251729A (en) Smelting reduction method for chromium ore
JP3317137B2 (en) Recovery device for zinc oxide from steelmaking dust
JP3336131B2 (en) Method for recovering zinc from zinc-containing dust
JPH07173549A (en) Method for recovering metallic zinc and iron from dust containing zinc and iron
JP2983087B2 (en) Operation method of smelting reduction
JPH03183719A (en) Method for accelerating reduction of manganese ore in steel making stage
JPH03277710A (en) Iron-making method with smelting reduction
US4131451A (en) Method for removing zinc from zinc-containing slags
JPS59113131A (en) Treatment of slag formed in smelting of ferrochromium
JPS62167808A (en) Production of molten chromium iron
JP2679188B2 (en) Iron bath melt reduction ironmaking method
JP3146066B2 (en) Method and apparatus for smelting reduction of steelmaking dust
JP3364414B2 (en) Smelting reduction smelting of chrome ore
JP2770305B2 (en) Feeding method for smelting reduction of iron ore
JPH09165612A (en) Operation of direct reduction apparatus
JPS62167809A (en) Production of molten chromium iron
JPH10317032A (en) Smelting and reduction method of chromium ore
JPH0987716A (en) Smelting reduction method for chromium ore
JPH0454722B2 (en)
JPH02141514A (en) Method for smelting reduction refining of iron
JPH03277707A (en) Production of carbon unsaturated liquid iron

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050518

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080916

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110916

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130916

LAPS Cancellation because of no payment of annual fees