[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0454722B2 - - Google Patents

Info

Publication number
JPH0454722B2
JPH0454722B2 JP61246680A JP24668086A JPH0454722B2 JP H0454722 B2 JPH0454722 B2 JP H0454722B2 JP 61246680 A JP61246680 A JP 61246680A JP 24668086 A JP24668086 A JP 24668086A JP H0454722 B2 JPH0454722 B2 JP H0454722B2
Authority
JP
Japan
Prior art keywords
chromium
furnace
tuyere
powdered
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61246680A
Other languages
Japanese (ja)
Other versions
JPS63103013A (en
Inventor
Katsuhiro Tanaka
Tomya Fukuda
Fumiaki Orimo
Yoshiaki Nishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP24668086A priority Critical patent/JPS63103013A/en
Publication of JPS63103013A publication Critical patent/JPS63103013A/en
Publication of JPH0454722B2 publication Critical patent/JPH0454722B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0026Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide in the flame of a burner or a hot gas stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、電力を製練用のエネルギーとして使
用することなく含クロム溶銑を製造する方法にお
いて、クロム源の一部としてクロム鉱石を使用し
このクロム鉱石の溶融還元も同時に行えるように
した熱経済的な含クロム溶銑の製造法に関する。 〔従来の技術〕 従来より、ステンレス鋼製造用の含クロム溶銑
の製造法としては、電気炉による方法が一つの技
術体系を形成している。この方法は、制鋼用アー
ム炉に、クロム源、コークス、フラツクおよび必
要に応じて副材料を装入して溶解し、含クロム溶
銑を得るものである。そのさいのクロム源として
は、高炭素フエロクロムが使用されるのが通常で
ある。この高炭素フエロクロムを製造するのにも
電気炉が使用され、この場合にはクロム鉱石の半
還元ペレツト等が使用されたり焼結鉱が使用され
たりする。この従来法によると電力消費量が非常
に大きいので、近年、クロム鉱石を炭材等の還元
材によつて直接的に溶融還元する方法の開発が推
進されている。その傾向としては、転炉によつて
クロム鉱石の溶融還元を行う方向に注力されてい
る。例えば、特開昭58−77548号公報、特開昭59
−145758号公報、特開昭59−150059号公報、特開
昭59−150060号公報、特開昭59−150061号公報、
特開昭59−150062号公報等は転炉によるクロム鉱
石の溶融還元を開示する。また特開昭50−116317
号公報は特殊な混合槽を使用してクロム鉱石の溶
融還元を行う方法を開示する。 一方、本願と同一出願人に係る特願昭59−
18219号(特開昭60−162718号公報)において、
特殊な堅型炉を使用し、この堅型炉の羽口にクロ
ム源の一部としての粉状のクロム鉱石を吹込むこ
とによつてその溶融還元を図る方法を提案した。
この出願人の提案に係る堅型炉による方法の骨子
は、炉の上部に原料装入口をそして炉の下部付近
に上下二段の羽口をもつ堅型炉を用いて含クロム
溶銑を製造するものであり、上部の原料装入口か
らクロム源、鉄源、炭材および造滓材を装入し、
該上下の羽口から熱風を吹込むと同時に、羽口か
ら粉状クロム鉱石および発熱材を炉内に供給する
ことにより、この粉状クロム鉱石を溶融還元しな
がら含クロム溶銑を得るものである。 また、この特開昭60−162718号公報に提案した
方法を部分的に改善した含クロム溶銑の製造法を
特願昭60−192751号、特願昭61−9585号および特
願昭61−9586号に提案した。 〔発明の目的〕 本発明の目的とするところは、前記の特願昭59
−18219号(特開昭60−162718号公報)に提案し
た堅型炉による含クロム溶銑製造法の一層の改善
にあり、より具体的には、上下段羽口から高温酸
素富化空気を供給しつつ上段羽口から粉状クロム
鉱石を炉内に吹き込むさいに、上下二段の羽口の
相対距離(垂直距離)の設定基準を明らかにする
ことによつて粉状クロム鉱石を高いクロム収率の
もとで溶融還元することにある。 〔発明の要旨〕 本発明は、炉の上部に原料装入口をそして炉の
下部付近に上下二段の羽口をもつ堅型炉を用いて
含クロム溶銑を製造するにさいし、該上部の原料
装入口からクロム源、鉄源、炭材および造滓材を
装入し、該上下の羽口から高温酸素富化空気を吹
込むと同時に上段羽口から粉状クロム鉱石および
粉状造滓材からなる粉状材料を炉内に供給するこ
とにより粉状クロム鉱石を溶融還元しながら含ク
ロム溶銑を製造する方法において、 上段羽口と下段羽口の間の垂直方向の間隔を下
式(1)で表される羽口限界間隔(L*)以下に設定
することを特徴とする。 ただし、VuおよびVLは上段羽口および下段羽
口から吹き込む羽口一本当りの高温酸素富化空気
の流量(m3/min)、DutおよびLtは上段羽口およ
び下段羽口の直径(m)そしてDPCは原料装入口
から装入する炭材の平均粒子径(m)である。 第1図に本発明法を実施する堅型炉の例を示し
た。図示のように、この堅型炉は全体としては縦
長のシヤフトからなり、この炉の上部には、原料
装入口1が、また下部には、上段羽口(複数個)
2と下段羽口(複数個)3とからなる二段羽口が
設けられている。4は熱風炉であり、この熱風炉
4で得られた熱風が各羽口2と3に供給される。
そのさい、酸素源5によつて熱風に酸素を富化す
ることができるようになつている。上段羽口2に
はこの高温酸素富化空気と共に容器6内の粉状ク
ロム鉱石15と容器7内の造滓材16キヤリヤガ
ス8によつて供給され、これが上段羽口2から炉
内に吹き込まれる。なお図において、10〜12
は、クロム源としての高炭素フエロクロム、鉄源
としての鋼屑、炭材としてのコークス、造滓材と
しての石炭石や螢石などを収容する容器群であ
り、これらの炉頂装入原料は計量器13によつて
所定の量となるように計量されながら原料装入口
1から炉内に装入される。17は出銑口、18は
生成した炉内含クロム溶銑を示している。なお、
上段羽口および下段羽口をそれぞれ複数個設ける
場合には、複数の上段羽口は同じ高さレベルに、
また複数の下段羽口も同じ高さレベルに設置す
る。 本発明者らは、このような堅型炉によるクロム
鉱石の吹き込みにさいし、上段羽口から炉内に吹
込む粉状クロム鉱石を高い還元率のもとで溶融還
元せしめるには、上下段の羽口間隔(垂直距離)
をどのように設定すればよいかという点を重点項
目にして実験を重ねた。その結果、該目的を達成
するには、上下段羽口間隔には超えてはならない
上限が存在すること、そしてこの上限はVuおよ
びVL(上段羽口および下段羽口から吹き込む羽口
一本当りの高温酸素富化空気の流量(m3
min))、DutおよびDLt(上段羽口および下段羽口
の直径(m))そしてDpc(原料装入口から装入す
る炭材の平均粒子径(m))によつて定まるもの
であることがわかつた。すなわち、第2図に実験
結果の一例を示すが、この第2図は、実験時に設
定した実際の上下段羽口間隔(L)と、下記の(2)式に
よつて算出した(L′)との比L/L′によつて、実
験ごとのクロム収率を整理して表したものであ
る。 L′=(Vu/Dut+VL/DLt)/√PC ……(2) ただし、Vu、VL、Dut、DLt、DPCは前述のとお
りのものである。 第2図の結果に見られるとおり、L/L′が2.1
×10-4を超えるとクロム収率が急激に悪化するこ
とがわかる。つまり、高いクロム収率を得るため
には(1)式で表される羽口限界間隔(L*)以下に
上下段羽口間隔を設定することが必要となる。 このように、上下段羽口間隔は、高温酸素富化
空気の流量、羽口径および炭材の平均粒径という
操業上の変動因子で定まる羽口限界間隔(L*
以下に設定することが必要となることが明らかと
なつた。これは次のような理由に基づくものと考
えられる。 上段羽口から吹き込まれる粉状クロム鉱石と粉
状造滓材は、上段羽口前のコークス燃焼領域で溶
融し、その溶融物がコークス充填層を滴下する間
に還元されることになるが、この還元反応は吸熱
反応でありしかも高温ほど速やかに進行する。し
たがつて、クロム鉱石の溶融還元反応を効率よく
進行させようとすれば、その溶融物が滴下する領
域すなわち上下段羽口間の領域を高温状態に維持
することが必要となる。上下段羽口前には高温の
コークス燃焼領域が存在するが、この領域から遠
ざかるほど温度は低下し、しかもこの傾向はコー
クス燃焼領域が小さいほど顕著となる。高温酸素
富化空気の流量、羽口径および炭材の平均粒径に
よつて定まる前記(2)式のL′は、このコークスの燃
焼領域の大きさを決定する因子であると理解する
ことができ、このL′の値が大きくなるほど該燃焼
領域は拡大する。したがつて、コークスの燃焼領
域の大きさに対する上下段羽口間隔の比、つまり
L/L′が或る域値を超えて過大となれば、クロム
鉱石の溶融還元反応が速やかに進行しなくなる。
つまり、この場合には、比較的低い温度の領域が
上下段羽口間に形成されためにクロム鉱石の還元
率が低下してスラグ中での未還元クロムの量が多
くなるものと考えられる。 以下に実施例によりこれを実証する。 実施例 1 第1図に示したような炉内径が0.6mの竪型炉
であつて上下段羽口間隔を0.4mとした竪型炉の
上部から、第1表に示すような量で鋼屑、高炭素
フエロクロムおよび平均粒径が0.015mの冶金用
コークスを装入し、内径がそれぞれ16mmの上段羽
口および下段羽口から各1.0Nm3/minの流量で、
温度が800℃、酸素濃度が28.5%の高温酸素富化
空気を炉内に吹き込み、且つ上段羽口からは、第
2表に示す粉末の混合物を吹き込んだ。この条件
では(1)式に従う羽口限界間隔(L*)は0.842mと
算出される。この結果、出滓口から取り出された
スラグ中の未還元クロム濃度は0.9%、またクロ
ムの収率は96.8%と良好にクロム鉱石の溶融還元
を行うことができ、第3表に示すような組成の含
クロム溶銑を得ることができた。
[Industrial Application Field] The present invention is a method for producing chromium-containing hot metal without using electricity as energy for smelting, in which chromium ore is used as part of the chromium source and the smelting reduction of the chromium ore is also carried out. This invention relates to a thermoeconomic method for producing chromium-containing hot metal that can be carried out simultaneously. [Prior Art] Conventionally, as a method for producing chromium-containing hot metal for producing stainless steel, a method using an electric furnace has formed one technological system. In this method, a chromium source, coke, flakes, and optionally auxiliary materials are charged into a steelmaking arm furnace and melted to obtain chromium-containing hot metal. High carbon ferrochrome is usually used as the chromium source in this case. An electric furnace is also used to produce this high carbon ferrochrome, and in this case semi-reduced pellets of chromium ore or sintered ore are used. Since this conventional method consumes a very large amount of electricity, in recent years, the development of a method for directly melting and reducing chromium ore using a reducing agent such as carbonaceous material has been promoted. The trend is to focus on smelting and reducing chromium ore using a converter. For example, JP-A-58-77548, JP-A-59
-145758, JP 59-150059, JP 59-150060, JP 59-150061,
JP-A-59-150062 and others disclose melting and reduction of chromium ore using a converter. Also, JP-A-50-116317
The publication discloses a method of melting and reducing chromium ore using a special mixing tank. On the other hand, a patent application filed in 1983 by the same applicant as the present application
In No. 18219 (Japanese Unexamined Patent Publication No. 162718/1983),
We proposed a method of melting and reducing chromium ore as part of the chromium source by injecting powdered chromium ore into the tuyere of the vertical furnace using a special vertical furnace.
The gist of the method using a vertical furnace proposed by this applicant is to produce chromium-containing hot metal using a vertical furnace that has a raw material charging port in the upper part of the furnace and two upper and lower tuyeres near the lower part of the furnace. The chromium source, iron source, carbon material, and slag material are charged from the upper raw material charging port.
By blowing hot air through the upper and lower tuyeres and at the same time supplying powdered chromium ore and heat generating material from the tuyeres into the furnace, chromium-containing hot metal is obtained while melting and reducing the powdered chromium ore. . In addition, a method for producing chromium-containing hot metal that is a partial improvement of the method proposed in JP-A-60-162718 has been published in Japanese Patent Application No. 1927-1985, Patent Application No. 9585-1982, and Patent Application No. 9585-1986. I proposed the issue. [Object of the Invention] The object of the present invention is to
This is a further improvement of the method for producing chromium-containing hot metal using a vertical furnace proposed in No. 18219 (Japanese Unexamined Patent Publication No. 60-162718), and more specifically, high-temperature oxygen-enriched air is supplied from the upper and lower tuyeres. By clarifying the setting standard for the relative distance (vertical distance) between the upper and lower tuyeres when powdered chromium ore is injected into the furnace from the upper tuyeres, powdered chromium ore can be injected into the furnace with a high chromium yield. It consists in melting and reducing under a certain temperature. [Summary of the Invention] The present invention provides a method for producing chromium-containing hot metal using a vertical furnace having a raw material charging port in the upper part of the furnace and upper and lower tuyeres near the lower part of the furnace. A chromium source, iron source, carbon material, and slag material are charged through the charging port, and high-temperature oxygen-enriched air is blown through the upper and lower tuyeres. At the same time, powdered chromium ore and powdered slag material are charged from the upper tuyere. In the method of producing chromium-containing hot metal while melting and reducing powdered chromium ore by supplying powdered material consisting of ) is set below the tuyere limit interval (L * ). However, V u and V L are the flow rate (m 3 /min) of high-temperature oxygen-enriched air per tuyere blown from the upper and lower tuyeres, and D ut and Lt are the flow rates of the upper and lower tuyeres. The diameter (m) and D PC are the average particle diameters (m) of the carbon material charged from the raw material charging port. FIG. 1 shows an example of a vertical furnace for carrying out the method of the present invention. As shown in the figure, this vertical furnace consists of a vertically long shaft as a whole, and the upper part of the furnace has a raw material charging port 1, and the lower part has upper tuyeres (multiple pieces).
A two-stage tuyere consisting of a lower tuyere 2 and a lower tuyere (plurality) 3 is provided. 4 is a hot air stove, and hot air obtained from this hot air stove 4 is supplied to each tuyere 2 and 3.
At this time, the hot air can be enriched with oxygen by the oxygen source 5. The upper tuyere 2 is supplied with this high-temperature oxygen-enriched air by the powdered chromium ore 15 in the container 6, the slag material 16 in the container 7, and the carrier gas 8, and this is blown into the furnace from the upper tuyere 2. . In the figure, 10 to 12
is a group of containers that contain high carbon ferrochrome as a chromium source, steel scrap as an iron source, coke as a carbon material, coal stone and fluorite as a slag material, and these raw materials charged at the top of the furnace are The raw material is charged into the furnace through the raw material charging port 1 while being weighed to a predetermined amount by a measuring device 13. Reference numeral 17 indicates a tap hole, and reference numeral 18 indicates the generated chromium-containing hot metal in the furnace. In addition,
When providing multiple upper and lower tuyeres, the upper tuyeres should be at the same height.
Multiple lower tuyeres will also be installed at the same height level. The present inventors have discovered that when blowing chromium ore using such a vertical furnace, in order to melt and reduce the powdered chromium ore that is blown into the furnace from the upper tuyeres at a high reduction rate, it is necessary to Tuyere spacing (vertical distance)
We conducted repeated experiments with a focus on how to set this. As a result, in order to achieve this objective, there is an upper limit on the spacing between the upper and lower tuyeres that must not be exceeded, and this upper limit is defined by V u and V Real high temperature oxygen enriched air flow rate ( m3 /
min)), D ut and D Lt (diameters of the upper and lower tuyeres (m)) and D pc (average particle diameter (m) of the carbon material charged from the raw material charging port). I found out something. In other words, an example of the experimental results is shown in Figure 2, which shows the actual upper and lower tuyere spacing (L) set during the experiment and (L') calculated using the following equation (2). ) The chromium yield for each experiment is organized and expressed by the ratio L/L'. L′=(V u /D ut +V L /D Lt )/√ PC (2) However, V u , V L , D ut , D Lt , and D PC are as described above. As seen in the results in Figure 2, L/L' is 2.1
It can be seen that when the concentration exceeds ×10 -4 , the chromium yield deteriorates rapidly. In other words, in order to obtain a high chromium yield, it is necessary to set the upper and lower tuyere spacing below the tuyere limit spacing (L * ) expressed by equation (1). In this way, the spacing between the upper and lower tuyeres is determined by the critical tuyere spacing (L * ), which is determined by operational variables such as the flow rate of high-temperature oxygen-enriched air, the tuyere diameter, and the average grain size of the carbonaceous material.
It became clear that the following settings were required. This is considered to be based on the following reasons. Powdered chromium ore and powdered slag material injected from the upper tuyere are melted in the coke combustion area in front of the upper tuyere, and the melt is reduced while dripping through the coke packed bed. This reduction reaction is an endothermic reaction and proceeds more rapidly at higher temperatures. Therefore, in order to efficiently progress the melt reduction reaction of chromium ore, it is necessary to maintain the region where the melt drops, that is, the region between the upper and lower tuyeres, at a high temperature. A high-temperature coke combustion region exists in front of the upper and lower tuyeres, but the temperature decreases as the distance from this region increases, and this tendency becomes more pronounced as the coke combustion region becomes smaller. It can be understood that L′ in equation (2) above, which is determined by the flow rate of high-temperature oxygen-enriched air, the tuyere diameter, and the average particle size of the carbonaceous material, is a factor that determines the size of the combustion region of this coke. The combustion region expands as the value of L' increases. Therefore, if the ratio of the distance between the upper and lower tuyeres to the size of the coke combustion area, that is, L/L', becomes excessive beyond a certain threshold, the smelting and reduction reaction of chromium ore will not proceed quickly. .
That is, in this case, it is considered that a relatively low temperature region is formed between the upper and lower tuyeres, which reduces the reduction rate of the chromium ore and increases the amount of unreduced chromium in the slag. This will be demonstrated below with examples. Example 1 A vertical furnace with an inner diameter of 0.6 m as shown in Fig. 1 was used, and the interval between the upper and lower tuyeres was 0.4 m. Scraps, high carbon ferrochrome, and metallurgical coke with an average particle size of 0.015 m were charged, and the flow rate was 1.0 Nm 3 /min from the upper and lower tuyeres, each having an inner diameter of 16 mm.
High-temperature oxygen-enriched air having a temperature of 800° C. and an oxygen concentration of 28.5% was blown into the furnace, and a powder mixture shown in Table 2 was blown through the upper tuyere. Under this condition, the tuyere limit spacing (L * ) according to equation (1) is calculated to be 0.842 m. As a result, the unreduced chromium concentration in the slag taken out from the slag was 0.9%, and the chromium yield was 96.8%, making it possible to successfully melt and reduce chromium ore, as shown in Table 3. We were able to obtain chromium-containing hot metal with the following composition.

【表】【table】

【表】【table】

【表】 実施例 2 上下段羽口間隔を0.75mとした以外は、実施例
1と同一の条件(L*=0.842m)で含クロム溶銑
の製造を行つた。この結果、スラグ中の未還元ク
ロム濃度は1.0%、また、クロム収率は96.5%と
なり、実施例1と同様に良好にクロム鉱石の溶融
還元を行うことができた。得られた含クロム溶銑
の組成を第4表に示した。
[Table] Example 2 Chromium-containing hot metal was produced under the same conditions as Example 1 (L * = 0.842 m) except that the interval between the upper and lower tuyeres was 0.75 m. As a result, the unreduced chromium concentration in the slag was 1.0%, and the chromium yield was 96.5%, and the chromium ore could be melted and reduced as well as in Example 1. The composition of the obtained chromium-containing hot metal is shown in Table 4.

【表】 実施例 3 (比較例) 上下段羽口間隔を0.96mとした以外は、実施例
1と同一の条件(L*=0.842m)で含クロム溶銑
の製造を行つた。この結果、スラグ中の未還元ク
ロム濃度は3.4%と高い値を示し、クロム収率は
88.1%と低い値となつた。得られた含クロム溶銑
の組成を第5表に示した。
[Table] Example 3 (Comparative Example) Chromium-containing hot metal was produced under the same conditions as Example 1 (L * = 0.842 m) except that the interval between the upper and lower tuyeres was 0.96 m. As a result, the unreduced chromium concentration in the slag was as high as 3.4%, and the chromium yield was
It was a low value of 88.1%. The composition of the obtained chromium-containing hot metal is shown in Table 5.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法に実施するのに好適な竪型炉
の略断面図、第2図はクロム収率と本文で説明し
たL/L′との関係図である。 1……炉上部の原料装入口、2……上段羽口、
3……下段羽口、4……熱風炉、5……酸素源、
15……粉状クロム鉱石、16……粉状造滓材。
FIG. 1 is a schematic cross-sectional view of a vertical furnace suitable for carrying out the method of the present invention, and FIG. 2 is a diagram showing the relationship between chromium yield and L/L' as explained in the text. 1... Raw material charging port in the upper part of the furnace, 2... Upper tuyere,
3...Lower tuyere, 4...Hot stove, 5...Oxygen source,
15... Powdered chromium ore, 16... Powdered slag material.

Claims (1)

【特許請求の範囲】 1 炉の上部に原料装入口をそして炉の下部付近
に上下二段の羽口をもつ緊型炉を用いて含クロム
溶銑を製造するにさいし、該上部の原料装入口か
らクロム源、鉄源、炭材および造滓材を装入し、
該上下の羽口から高温酸素富化空気を吹込むと同
時に上段羽口から粉状クロム鉱石および粉状造滓
材からなる粉状材料を炉内に供給することによ
り、該粉状クロム鉱石を溶融還元しながら含クロ
ム溶銑を製造する方法において、 上段羽口と下段羽口の間の垂直方向の間隔を下
式(1)で表される羽口限界間隔(L*以下に設定す
ることを特徴とする含クロム溶銑の製造方法、 ただし、VuおよびVLは上段羽口および下段羽
口から吹き込む羽口一本当りの高温酸素富化空気
の流量(m3/min)、DutおよびDLtは上段羽口お
よび下段羽口の直径(m)そしてDpcは原料装入
口から装入する炭材の平均粒子径(m)である。
[Scope of Claims] 1. When producing chromium-containing hot metal using a tight furnace that has a raw material charging port in the upper part of the furnace and two upper and lower tuyeres near the bottom of the furnace, the raw material charging port in the upper part Charge chromium source, iron source, carbon material and slag material from
By blowing high-temperature oxygen-enriched air through the upper and lower tuyeres and at the same time supplying powdered material consisting of powdered chromium ore and powdered slag material into the furnace from the upper tuyere, the powdered chromium ore is In the method of producing chromium-containing hot metal while melting and reducing, it is recommended that the vertical distance between the upper and lower tuyeres be set to the tuyere limit distance (L * or less) expressed by the following formula (1). Characteristic method for producing chromium-containing hot metal, However, V u and V L are the flow rates (m 3 /min) of high-temperature oxygen-enriched air per tuyere blown from the upper and lower tuyeres, and D ut and D Lt are the flow rates of high-temperature oxygen-enriched air per tuyere (m 3 /min), The diameter (m) of D pc is the average particle diameter (m) of the carbon material charged from the raw material charging port.
JP24668086A 1986-10-17 1986-10-17 Production of molten iron containing chromium Granted JPS63103013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24668086A JPS63103013A (en) 1986-10-17 1986-10-17 Production of molten iron containing chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24668086A JPS63103013A (en) 1986-10-17 1986-10-17 Production of molten iron containing chromium

Publications (2)

Publication Number Publication Date
JPS63103013A JPS63103013A (en) 1988-05-07
JPH0454722B2 true JPH0454722B2 (en) 1992-09-01

Family

ID=17152020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24668086A Granted JPS63103013A (en) 1986-10-17 1986-10-17 Production of molten iron containing chromium

Country Status (1)

Country Link
JP (1) JPS63103013A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945725A (en) * 1982-09-08 1984-03-14 Victor Co Of Japan Ltd Impulsive noise reducing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945725A (en) * 1982-09-08 1984-03-14 Victor Co Of Japan Ltd Impulsive noise reducing device

Also Published As

Publication number Publication date
JPS63103013A (en) 1988-05-07

Similar Documents

Publication Publication Date Title
AU628987B2 (en) Manufacture of ferroalloys using a molten bath reactor
CA1160056A (en) Method of, and arrangement for, producing molten pig iron or steel pre-material
US4533385A (en) Method for producing metals, such as molten pig iron, steel pre-material and ferroalloys
US4518419A (en) Method of carrying out metallurgical or chemical processes in a shaft furnace, and a low shaft furnace therefor
JPH0454722B2 (en)
JPS6250544B2 (en)
EP0409853B1 (en) Production of manganese carbide and ferrous alloys
JP3516793B2 (en) How to load raw fuel such as dust agglomerate, self-reducing ore, iron scrap, solid fuel, etc. into vertical furnace
US3524742A (en) Process for refining steel
JPS62167808A (en) Production of molten chromium iron
JP3718945B2 (en) Method for smelting reduction of chromium ore
JPS62167809A (en) Production of molten chromium iron
JP2008240109A (en) Method for operating blast furnace
JPH07252518A (en) Method for raising temperature of molten steel and temperature raising agent
JPH01195211A (en) Method for melting and reducing iron oxide
JP2837282B2 (en) Production method of chromium-containing hot metal
JPH01252709A (en) Method for operating iron bath type smelting reduction furnace
GB1178853A (en) Improvements in or relating to Processes and Apparatus for Producing Metallurgical Products
JP2666397B2 (en) Hot metal production method
JPH0453922B2 (en)
JPS60162718A (en) Production of chromium-containing molten iron by vertical furnace
JPH01195212A (en) Method for using powdered coal in iron bath type melting and reducing furnace
JPH0689383B2 (en) Equipment for manufacturing molten iron alloys
JPH03277710A (en) Iron-making method with smelting reduction
JPH08301611A (en) Production of mixture of chromium carbide with iron carbide