JPH1018310A - Earthquake resistant reinforcement for structure - Google Patents
Earthquake resistant reinforcement for structureInfo
- Publication number
- JPH1018310A JPH1018310A JP19133096A JP19133096A JPH1018310A JP H1018310 A JPH1018310 A JP H1018310A JP 19133096 A JP19133096 A JP 19133096A JP 19133096 A JP19133096 A JP 19133096A JP H1018310 A JPH1018310 A JP H1018310A
- Authority
- JP
- Japan
- Prior art keywords
- ground
- wall
- liquefaction
- enclosure wall
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Foundations (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は橋脚やビル等の既設
柱体構造物を対象とした耐震補強技術に関し、より詳細
には地盤の剪断変形と体積変化を拘束し、土中の間隙水
の移動を抑制することで液状化を防止する、構造物の耐
震補強方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic retrofitting technique for an existing columnar structure such as a pier or a building, and more particularly, to restraining shear deformation and volume change of the ground and removing pore water in soil. The present invention relates to a seismic reinforcement method for a structure, which prevents liquefaction by suppressing movement.
【0002】[0002]
【従来の技術】近時の兵庫県南部地震においては、橋脚
やビルの傾倒、橋梁桁の落下、港湾擁壁の崩壊といった
各種構造物に予想外の被害をもたらした。特に埋立地近
隣に水路や河川のある地域ほど被害が大きかった。一般
に地盤の流動化現象とは、地震時に地盤の間隙水圧が上
昇し、地盤の液状化に伴い、地盤が大きく側方へ流動す
る現象を意味している。既設構造物の直下の地盤を対象
とした液状化抑制策としては、つぎの方法が提案されて
いる。 〈1〉地盤を区画する方法 既設構造物の周囲に鋼矢板又はコンクリート製の連続地
中壁で包囲し、周辺地盤と既設構造物の直下地盤とを区
画することで、地盤の剪断変形を抑止する方法。〈2〉
排水方法 既設構造物の周囲に設けたディープウェルで揚水して地
下水位を強制的に下げる方法や、既設構造物の周囲に各
種のドレーン材を配置し、地震時の過剰間隙水を排水す
る方法。2. Description of the Related Art The recent Hyogoken Nanbu Earthquake has caused unexpected damage to various structures such as tilting of piers and buildings, falling of bridge girders, and collapse of harbor retaining walls. In particular, areas with waterways and rivers near the landfill were more damaged. Generally, the fluidization phenomenon of the ground means a phenomenon in which the pore water pressure of the ground increases during an earthquake, and the ground largely flows to the side as the ground liquefies. The following method has been proposed as a liquefaction control measure for the ground immediately below an existing structure. <1> Method of dividing the ground The surrounding ground is surrounded by a continuous underground wall made of steel sheet pile or concrete around the existing structure, and the surrounding ground and the base ground of the existing structure are sectioned to suppress shear deformation of the ground. how to. <2>
Drainage method A method of forcibly lowering the groundwater level by pumping water from a deep well provided around the existing structure, or a method of arranging various drain materials around the existing structure to drain excess pore water during an earthquake .
【0003】[0003]
【発明が解決しようとする課題】前記した液状化抑制策
は既設構造物の直下地盤にある程度の剪断変形や地盤の
間隙水圧の消散を許容するため、地震規模に比例して液
状化する危険性が高くなる。そのため、大規模地震を想
定した場合、液状化抑制効果に不安が残る。大地震時の
被害を最小限に抑えるためにも、既設構造物を対象とす
る耐震補強技術の提案が切望されている。The above-mentioned liquefaction control measures allow a certain amount of shear deformation and dissipation of pore water pressure in the ground directly under the existing structure, so that there is a risk of liquefaction in proportion to the magnitude of the earthquake. Will be higher. For this reason, when a large-scale earthquake is assumed, the liquefaction suppression effect remains uneasy. In order to minimize the damage caused by a large earthquake, there is an urgent need for a proposal of a seismic retrofitting technique for existing structures.
【0004】本発明は以上の点に鑑みてなされたもの
で、その目的とするところは、大規模地震に対する地盤
の液状化と側方流動の抑制を図れる、構造物の耐震補強
方法を提供することにある。The present invention has been made in view of the above points, and an object of the present invention is to provide a method for seismic reinforcement of a structure capable of suppressing liquefaction of the ground and lateral flow against a large-scale earthquake. It is in.
【0005】[0005]
【課題を解決するための手段】請求項1に係る発明は、
構造物の直下地盤の液状化を抑制する方法において、構
造物の周囲の地盤を締切壁で包囲し、前記構造物と締切
壁の上部間を固化材で閉鎖することによって、構造物の
直下地盤を拘束し、締切壁で包囲した地盤の剪断変形と
体積変化を抑制することを特徴とする、構造物の耐震補
強方法である。請求項2に係る発明は、請求項1におい
て、締切壁を液状化予測層を貫通し、非液状化層に根入
れすることを特徴とする、構造物の耐震補強方法であ
る。請求項3に係る発明は、請求項1又は請求項2にお
いて、少なくとも締切壁上部と固化材とを一体に連結す
ることを特徴とする、構造物の耐震補強方法である。
請求項4に係る発明は、請求項1又は請求項2におい
て、少なくとも固化材と構造物とを一体化することを特
徴とする、構造物の耐震補強方法である。請求項5に係
る発明は、請求項1〜請求項4のいずれかにおいて、締
切壁躯体の内部に止水性と拘束性に優れた拘束板を埋設
することを特徴とする、構造物の耐震補強方法である。
請求項6に係る発明は、請求項1〜請求項5のいずれか
において、水路に接近する構造物と護岸の間の地盤を地
盤改良して補強殻を構築することを特徴とする、構造物
の耐震補強方法である。The invention according to claim 1 is
In a method for suppressing liquefaction of a foundation of a structure, a ground around the structure is surrounded by a cut-off wall, and a space between the structure and an upper portion of the cut-off wall is closed with a solidifying material, thereby forming a ground of the structure. A seismic reinforcement method for a structure, characterized in that shearing deformation and volume change of the ground surrounded by a closing wall are restrained. The invention according to claim 2 is the seismic retrofitting method for a structure according to claim 1, wherein the cutoff wall penetrates the liquefaction prediction layer and is embedded in the non-liquefaction layer. The invention according to claim 3 is the method for seismic reinforcement of a structure according to claim 1 or 2, wherein at least an upper portion of the shutoff wall and the solidified material are integrally connected.
The invention according to claim 4 is the method for seismic reinforcement of a structure according to claim 1 or 2, wherein at least the solidified material and the structure are integrated. The invention according to claim 5 is the seismic retrofit of a structure according to any one of claims 1 to 4, characterized in that a restraint plate having excellent water stopping property and restraint property is buried inside the closing wall frame. Is the way.
The invention according to claim 6 is the structure according to any one of claims 1 to 5, characterized in that the ground between the structure approaching the waterway and the seawall is ground-improved to construct a reinforcing shell. This is the seismic reinforcement method.
【0006】[0006]
【発明の実施の形態1】以下図面を参照しながら本発明
の実施の形態について説明する。Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
【0007】<イ>締切壁の構築 図2は橋脚等の既設構造物10を支承する地盤の縦断面
図を示す。図中Aは不飽和層、Bは液状化する可能性の
ある液状化予測層、Cは非液状化層、Dは支持地盤を示
す。既設構造物10は支持地盤に達する長さの複数の基
礎杭11によって支持されている。<A> Construction of the closing wall FIG. 2 is a longitudinal sectional view of the ground supporting the existing structure 10 such as a pier. In the figure, A indicates an unsaturated layer, B indicates a liquefaction prediction layer that may liquefy, C indicates a non-liquefaction layer, and D indicates a supporting ground. The existing structure 10 is supported by a plurality of foundation piles 11 having a length reaching the support ground.
【0008】液状化対策としては、まず既設構造物10
の裾部の周囲に締切壁12を構築する。締切壁12は液
状化予測層Bを貫通し、非液状化層Cに達する深さまで
根入れし、仕切壁12の内外で液状化予測層Bを分断
し、仕切壁12の内部の地盤を液状化対策区域Eとして
区画する。締切壁12の横断面形状は、閉鎖する形状で
あれば図4に示す断面円形の他に楕円形や多角形やその
他の形状でもよい。締切壁12は例えば、連続地中壁工
法や柱列杭工法等によるコンクリート製又は鋼製の筒
体、或いは鋼矢板の連結体などで構成される。締切壁1
2は、止水性と、地盤の剪断力を伝達しない程度の剛性
とを具備していれば、上記例示した他に各種公知の工法
を採用してもよい。As a measure against liquefaction, first, the existing structure 10
A cut-off wall 12 is constructed around the skirt. The cut-off wall 12 penetrates the predicted liquefaction layer B and is inserted to a depth reaching the non-liquefied layer C, divides the predicted liquefaction layer B inside and outside the partition wall 12, and liquefies the ground inside the partition wall 12. It is divided as the mitigation measures area E. The cross-sectional shape of the closing wall 12 may be an elliptical shape, a polygonal shape, or another shape in addition to the circular shape shown in FIG. The cut-off wall 12 is made of, for example, a concrete or steel cylinder or a steel sheet pile connection by a continuous underground wall method, a column-column pile method, or the like. Deadline 1
As long as it has water-stopping property and rigidity that does not transmit the shearing force of the ground, various known construction methods other than the above examples may be adopted.
【0009】<ロ>固化材の充填(図3,4) 既設構造物10の地上部を囲む締切壁12内に固化材1
3を充填し、既設構造物10の上部部と締切壁12の上
部間を一体化して施工を完了する。既設構造物10の直
下の液状化対策区域Eの地盤は、締切壁12及び締切壁
12の上口を閉鎖する固化材13及び締切壁12の下口
を閉鎖する非液状化層Cによって全周囲を囲まれ、周囲
の液状化予測層Bから完全に隔絶される。固化材13と
しては、発泡モルタル、コンクリート等のセメント系の
固化材や、樹脂系の固化材を使用できる。<B> Filling of the solidified material (FIGS. 3 and 4) The solidified material 1 is placed in the cut-off wall 12 surrounding the above-ground portion of the existing structure 10.
3 and the upper part of the existing structure 10 and the upper part of the closing wall 12 are integrated to complete the construction. The ground in the liquefaction countermeasure area E immediately below the existing structure 10 is entirely surrounded by the cutoff wall 12 and the solidified material 13 that closes the upper opening of the cutoff wall 12 and the non-liquefaction layer C that closes the lower opening of the cutoff wall 12. And completely isolated from the surrounding liquefaction prediction layer B. As the solidifying material 13, a cement-based solidifying material such as foam mortar or concrete, or a resin-based solidifying material can be used.
【0010】[0010]
【作用】つぎに図1を基に既設構造物10の耐震メカニ
ズムについて説明する。Next, the seismic mechanism of the existing structure 10 will be described with reference to FIG.
【0011】地震の発生により、締切壁12の周囲の液
状化予測層Bは、繰り返し剪断力の作用によって過剰間
隙水圧が上昇して液状化する(液状化層b)が、締切壁
12内の液状化対策区域Eの地盤は以下のメカニズムに
よって液状化しない。Due to the occurrence of the earthquake, the liquefaction prediction layer B around the cutoff wall 12 liquefies due to the excessive pore water pressure rising due to the action of the repeated shearing force (liquefied layer b). The ground in the liquefaction countermeasure area E is not liquefied by the following mechanism.
【0012】締切壁12及び固化材13は既設構造物1
0の直下地盤(液状化対策区域E)を完全に拘束してい
る。そのためこれら内部の地盤の剪断変形や体積変化を
拘束している。さらに既設構造物10の直下地盤とその
周囲の地盤を隔絶している。そのため、締切壁12の外
部に発生した間隙水やその水圧は、締切壁12で遮断さ
れて締切壁12内の地盤に伝わらない。そのため、締切
壁12内の液状化対策区域Eの地盤は液状化しない。The cut-off wall 12 and the solidified material 13 are connected to the existing structure 1
The zero direct underlayer (liquefaction countermeasure area E) is completely restrained. Therefore, the shear deformation and the volume change of the inside ground are restricted. Further, the base layer of the existing structure 10 is isolated from the surrounding ground. Therefore, pore water generated outside the cutoff wall 12 and its water pressure are blocked by the cutoff wall 12 and are not transmitted to the ground in the cutoff wall 12. Therefore, the ground in the liquefaction countermeasure area E in the cutoff wall 12 does not liquefy.
【0013】仮に、既設構造物10の周囲を締切壁12
で囲っただけでは、締切壁12で囲った直下地盤は体積
変化を起こし液状化してしまう。本発明は液状化が土粒
の移動を拘束することによって、間隙水圧の上昇を抑制
できることに着目し、水密性の高い構造部材によって地
盤の変形を拘束することとした。すなわち、本発明は既
設構造物10の直下の地盤を締切壁12、固化材13及
び非液状化層Cによってほぼ密封に近い状態で包囲する
ものであるから、壁等の構造部材によってフープテンシ
ョン等の地盤拘束効果が発揮されることとなる。これに
より液状化対策区域Eの地盤の剪断変形、体積変化及び
間隙水の移動を抑制できる。したがって、地震時に既設
構造物10の直下地盤が揺れても、矢印で示す地盤の間
隙水の圧力が、地震発生前とほぼ同等の圧力が均等に作
用するだけで、間隙水や土粒の移動が抑制される。[0013] Suppose that the periphery of the existing structure 10 is a closing wall 12.
If it is just enclosed by a circle, the base plate surrounded by the cut-off wall 12 changes in volume and liquefies. The present invention focuses on the fact that liquefaction can restrain the movement of soil particles, thereby suppressing an increase in pore water pressure, and has decided to restrain the deformation of the ground with a highly watertight structural member. That is, in the present invention, the ground immediately below the existing structure 10 is surrounded by the shut-off wall 12, the solidified material 13, and the non-liquefied layer C in a state that is almost almost sealed. The ground restraint effect is exhibited. Thereby, the shear deformation of the ground in the liquefaction countermeasure area E, the change in volume, and the movement of pore water can be suppressed. Therefore, even if the base ground of the existing structure 10 shakes during an earthquake, the pressure of the pore water in the ground indicated by the arrow is substantially equal to the pressure before the occurrence of the earthquake. Is suppressed.
【0014】また耐震効果を高める上で地盤の剛性は高
いほど有利である。本発明では、既設構造物10の直下
の地盤は閉合されているため、側方変形の拘束力が、周
囲の非拘束地盤と比べて数十倍も大きいことが各種の実
験により確認された。このように既設構造物10の地上
部と締切壁12の上部を固化材13で連結することは、
既設構造物10の直下地盤の剛性を高めて、既設構造物
10の耐震性能の向上にも大きく貢献している。The higher the rigidity of the ground, the more advantageous in increasing the seismic effect. In the present invention, since the ground immediately below the existing structure 10 is closed, it has been confirmed by various experiments that the restraining force of the lateral deformation is several tens times larger than the surrounding non-restrained ground. As described above, connecting the ground portion of the existing structure 10 and the upper portion of the cutoff wall 12 with the solidifying material 13
The rigidity of the base plate of the existing structure 10 is increased, which greatly contributes to the improvement of the seismic performance of the existing structure 10.
【0015】[0015]
【発明の実施の形態2】本実施の形態以降の説明におい
て、前記した実施の形態1と同一の部位は同一の符号を
付して説明を省略する。図5は現場発生土にセメント等
の固化材を撹拌混合して構築した低強度の躯体12aに
拘束板12bを埋設して締切壁12を構成する他の形態
を示す。拘束板12bは大きなフープテンションと高い
止水性が得られる例えば直線鋼矢板の連結体や筒鋼板を
使用できる。本例にあっては、拘束板12bにフープテ
ンション機能と止水性の大半を負担させることで、躯体
12aを薄肉に設計できる。[Embodiment 2] In the following description of the present embodiment, the same portions as those of the above-described first embodiment are denoted by the same reference numerals, and description thereof will be omitted. FIG. 5 shows another embodiment in which the restricting plate 12b is buried in the low-strength skeleton 12a constructed by stirring and mixing a solidifying material such as cement with the soil generated on site to form the closing wall 12. As the restraining plate 12b, for example, a connected body of a straight steel sheet pile or a tubular steel plate that can provide a large hoop tension and a high water stoppage can be used. In this example, the skeleton 12a can be designed to be thin by making the restraint plate 12b bear most of the hoop tension function and the waterproofness.
【0016】[0016]
【発明の実施の形態3】図6は既設構造物10の浮上を
抑制するための他の実施の形態を示す。本実施の形態
は、締切壁12と固化材13及び既設構造物10の間
を、ボルトや鉄筋等の連結材14で連結した例を示す。
これにより地中に貫入する締切壁12の引抜抵抗力を締
切壁12へ伝えて、拘束材の浮上を効果的に抑制するこ
とができる。また連結材14は、少なくとも締切壁1
2と固化材13の間、又は固化材13と既設構造物1
0の間だけに配置するようにしても良い。Third Embodiment FIG. 6 shows another embodiment for suppressing the floating of the existing structure 10. In the present embodiment, an example is shown in which the cutoff wall 12, the solidified material 13, and the existing structure 10 are connected by a connecting material 14 such as a bolt or a reinforcing bar.
Thereby, the pull-out resistance of the cut-off wall 12 penetrating into the ground is transmitted to the cut-off wall 12, so that the floating of the restraint member can be effectively suppressed. In addition, the connecting member 14 is at least
2 and the solidified material 13 or between the solidified material 13 and the existing structure 1
It may be arranged only between 0.
【0017】[0017]
【発明の実施の形態4】図7,8は既設構造物10が水
路15に接近している場合の他の耐震補強方法を示す。
一般に護岸周辺地盤が液状化すると、護岸背面土の液状
化土圧を含む泥水圧に抵抗しきれなくなり、護岸が前面
にはらみ出していた。これに伴い、陸側から水路15側
に地盤の流動化が励起されて、基礎杭11の塑性変形や
永久変形を生じていた。そこで、水路15と既設構造物
10との間の地盤を格子状に地盤改良して補強殻16を
構築すれば、護岸背面の地盤の側方流動化を効果的に抑
制できる。Embodiment 4 FIGS. 7 and 8 show another seismic retrofitting method when the existing structure 10 is approaching the water channel 15. FIG.
In general, when the ground around the revetment liquefied, it became impossible to withstand the mud pressure including the liquefied earth pressure on the back soil of the revetment, and the revetment protruded to the front. Along with this, fluidization of the ground was excited from the land side to the water channel 15 side, causing plastic deformation and permanent deformation of the foundation pile 11. Therefore, if the ground between the water channel 15 and the existing structure 10 is improved in a grid-like ground to form the reinforcing shell 16, the lateral fluidization of the ground behind the seawall can be effectively suppressed.
【0018】[0018]
【発明の実施の形態5】以上は既設構造物10を対象と
する場合について説明したが、新設の構造物も対象とす
ることができることは勿論である。Fifth Embodiment The case where the existing structure 10 is targeted has been described above, but it goes without saying that a new structure can also be targeted.
【0019】[0019]
【発明の効果】本発明は以上説明したようになるから次
のような効果を得ることができる。 <イ> 構造物の直下地盤を締切壁と固化材とにより閉
鎖することで、構造物の直下地盤の剪断変形や体積変化
を効果的に抑制できる。そのため大規模な地震に対して
も構造物の直下地盤の液状化と側方流動を防止できる。 <ロ> 構造物の直下地盤が閉鎖されるため、構造物が
沈下したり浮上するのを確実に抑制できる。 <ハ> 水路と構造物との間の地盤を地盤改良して補強
殻を構築すれば、護岸背面の地盤の側方流動化を効果的
に抑制できる。As described above, the present invention has the following effects. <B> By closing the base plate of the structure with the closing wall and the solidifying material, shear deformation and volume change of the base plate of the structure can be effectively suppressed. Therefore, even in the case of a large-scale earthquake, liquefaction and lateral flow of the direct foundation of the structure can be prevented. <B> Since the base plate of the structure is closed, the structure can be reliably prevented from sinking or floating. <C> If the ground between the waterway and the structure is improved and the reinforcing shell is constructed, lateral fluidization of the ground behind the revetment can be effectively suppressed.
【図1】 地震時における既設構造物のモデル図Fig. 1 Model diagram of existing structures during an earthquake
【図2】 締切壁施工時の説明図[Fig. 2] Explanatory drawing when the closing wall is constructed
【図3】 既設構造物の地上部と締切壁間を固化材で一
体化した、施工方法の説明図FIG. 3 is an explanatory view of a construction method in which the ground portion of an existing structure and a cutoff wall are integrated with a solidifying material.
【図4】 図3におけるIV−IVの断面図4 is a sectional view taken along line IV-IV in FIG.
【図5】 締切壁内に拘束板を設けた他の実施の形態を
示す概念図FIG. 5 is a conceptual diagram showing another embodiment in which a restraint plate is provided in a cutoff wall.
【図6】 既設構造物と締切壁間を連結材で連結した他
の実施の形態の説明図FIG. 6 is an explanatory view of another embodiment in which an existing structure and a cutoff wall are connected by a connecting member.
【図7】 水路に接近して既設構造物が位置する場合の
地盤の耐震補強方法の説明図FIG. 7 is an explanatory view of a method for reinforcing a ground in a case where an existing structure is located close to a waterway.
【図8】 図7におけるVIII−VIIIの断面図FIG. 8 is a sectional view of VIII-VIII in FIG. 7;
10……既設構造物 11……基礎杭 12……締切壁 13……固化材 14……連結材 15……水路 10: Existing structure 11: Foundation pile 12: Closing wall 13: Solidified material 14: Connection material 15: Water channel
Claims (6)
方法において、 構造物の周囲の地盤を締切壁で包囲し、 前記構造物と締切壁の上部間を固化材で閉鎖することに
よって、構造物の直下地盤を拘束し、締切壁で包囲した
地盤の剪断変形と体積変化を抑制することを特徴とす
る、 構造物の耐震補強方法。1. A method for suppressing liquefaction of a foundation immediately below a structure, comprising: surrounding a ground around the structure with a cut-off wall; and closing a space between the structure and an upper portion of the cut-off wall with a solidifying material. A seismic retrofitting method for a structure, characterized by restraining the ground immediately below the structure and suppressing shear deformation and volume change of the ground surrounded by a cutoff wall.
測層を貫通し、非液状化層に根入れすることを特徴とす
る、構造物の耐震補強方法。2. The method according to claim 1, wherein the cutoff wall penetrates the liquefaction prediction layer and is embedded in the non-liquefaction layer.
くとも締切壁上部と固化材とを一体に連結することを特
徴とする、構造物の耐震補強方法。3. The method for reinforcing a structure according to claim 1, wherein at least the upper portion of the closing wall and the solidified material are integrally connected.
くとも固化材と構造物とを一体化することを特徴とす
る、構造物の耐震補強方法。4. The method for reinforcing a structure according to claim 1, wherein at least the solidified material and the structure are integrated.
て、締切壁躯体の内部に止水性と拘束性に優れた拘束板
を埋設することを特徴とする、構造物の耐震補強方法。5. A method for seismic reinforcement of a structure according to any one of claims 1 to 4, further comprising burying a restraining plate having excellent water stopping and restraining properties inside the closing wall frame.
て、水路に接近する構造物と護岸の間の地盤を地盤改良
して補強殻を構築することを特徴とする、構造物の耐震
補強方法。6. The seismic retrofitting of a structure according to claim 1, wherein the ground between the structure approaching the waterway and the revetment is ground improved to form a reinforcing shell. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19133096A JPH1018310A (en) | 1996-07-02 | 1996-07-02 | Earthquake resistant reinforcement for structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19133096A JPH1018310A (en) | 1996-07-02 | 1996-07-02 | Earthquake resistant reinforcement for structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1018310A true JPH1018310A (en) | 1998-01-20 |
Family
ID=16272769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19133096A Pending JPH1018310A (en) | 1996-07-02 | 1996-07-02 | Earthquake resistant reinforcement for structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1018310A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004124493A (en) * | 2002-10-02 | 2004-04-22 | Yukitake Shioi | Aseismatic reinforcement construction of structure |
JP2005299188A (en) * | 2004-04-09 | 2005-10-27 | Yukitake Shioi | Enlarged-diameter caisson foundation structure, and antiseismic reinforcement structure for existing caisson foundation |
JP2006316490A (en) * | 2005-05-12 | 2006-11-24 | Shimizu Corp | Seismic strengthening structure and seismic strengthening method for pile foundation |
JP2007321482A (en) * | 2006-06-02 | 2007-12-13 | Chem Grouting Co Ltd | Liquefaction preventive construction method |
JP2008196255A (en) * | 2007-02-15 | 2008-08-28 | Railway Technical Res Inst | Pile foundation reinforcing structure and pile foundation reinforcing method |
JP2008240356A (en) * | 2007-03-27 | 2008-10-09 | Railway Technical Res Inst | Reinforcing structure and method for pile foundation |
JP2009114722A (en) * | 2007-11-06 | 2009-05-28 | Fudo Tetra Corp | Repairing and reinforcing structure for aguatic construction |
JP2010070973A (en) * | 2008-09-18 | 2010-04-02 | Central Japan Railway Co | Supporting structure and construction method for bridge |
JP2010168803A (en) * | 2009-01-22 | 2010-08-05 | Mitsubishi Plastics Inc | Reinforcing material-mixed underground continuous wall and method of constructing the same |
JP2010216150A (en) * | 2009-03-17 | 2010-09-30 | Jfe Steel Corp | Pier foundation structure and pier foundation construction method |
JP2010261269A (en) * | 2009-05-11 | 2010-11-18 | Shimizu Corp | Liquefaction countermeasure structure and method for structure |
JP2013224529A (en) * | 2012-04-20 | 2013-10-31 | Kajima Corp | Structure and method for reinforcing pile foundation |
JP2013238034A (en) * | 2012-05-15 | 2013-11-28 | Nishimatsu Constr Co Ltd | Soil structure and soil improvement method |
JP2014101625A (en) * | 2012-11-16 | 2014-06-05 | Taisei Corp | Water stop structure |
JP2015108216A (en) * | 2013-12-03 | 2015-06-11 | 鹿島建設株式会社 | Structure and method for inhibiting lateral flow |
JP2019065629A (en) * | 2017-10-03 | 2019-04-25 | 株式会社竹中工務店 | Support structure for structural article |
CN112575777A (en) * | 2020-12-15 | 2021-03-30 | 杭州京杭运河二通道建设投资有限公司 | Frame reinforcing system and method for high-speed railway pier foundation penetrating through under channel |
-
1996
- 1996-07-02 JP JP19133096A patent/JPH1018310A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004124493A (en) * | 2002-10-02 | 2004-04-22 | Yukitake Shioi | Aseismatic reinforcement construction of structure |
JP4607485B2 (en) * | 2004-04-09 | 2011-01-05 | 幸武 塩井 | Expanded caisson foundation structure and seismic reinforcement structure for existing caisson foundation |
JP2005299188A (en) * | 2004-04-09 | 2005-10-27 | Yukitake Shioi | Enlarged-diameter caisson foundation structure, and antiseismic reinforcement structure for existing caisson foundation |
JP2006316490A (en) * | 2005-05-12 | 2006-11-24 | Shimizu Corp | Seismic strengthening structure and seismic strengthening method for pile foundation |
JP2007321482A (en) * | 2006-06-02 | 2007-12-13 | Chem Grouting Co Ltd | Liquefaction preventive construction method |
JP2008196255A (en) * | 2007-02-15 | 2008-08-28 | Railway Technical Res Inst | Pile foundation reinforcing structure and pile foundation reinforcing method |
JP2008240356A (en) * | 2007-03-27 | 2008-10-09 | Railway Technical Res Inst | Reinforcing structure and method for pile foundation |
JP2009114722A (en) * | 2007-11-06 | 2009-05-28 | Fudo Tetra Corp | Repairing and reinforcing structure for aguatic construction |
JP2010070973A (en) * | 2008-09-18 | 2010-04-02 | Central Japan Railway Co | Supporting structure and construction method for bridge |
JP2010168803A (en) * | 2009-01-22 | 2010-08-05 | Mitsubishi Plastics Inc | Reinforcing material-mixed underground continuous wall and method of constructing the same |
JP2010216150A (en) * | 2009-03-17 | 2010-09-30 | Jfe Steel Corp | Pier foundation structure and pier foundation construction method |
JP2010261269A (en) * | 2009-05-11 | 2010-11-18 | Shimizu Corp | Liquefaction countermeasure structure and method for structure |
JP2013224529A (en) * | 2012-04-20 | 2013-10-31 | Kajima Corp | Structure and method for reinforcing pile foundation |
JP2013238034A (en) * | 2012-05-15 | 2013-11-28 | Nishimatsu Constr Co Ltd | Soil structure and soil improvement method |
JP2014101625A (en) * | 2012-11-16 | 2014-06-05 | Taisei Corp | Water stop structure |
JP2015108216A (en) * | 2013-12-03 | 2015-06-11 | 鹿島建設株式会社 | Structure and method for inhibiting lateral flow |
JP2019065629A (en) * | 2017-10-03 | 2019-04-25 | 株式会社竹中工務店 | Support structure for structural article |
CN112575777A (en) * | 2020-12-15 | 2021-03-30 | 杭州京杭运河二通道建设投资有限公司 | Frame reinforcing system and method for high-speed railway pier foundation penetrating through under channel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1018310A (en) | Earthquake resistant reinforcement for structure | |
KR100857772B1 (en) | Construction structure of open caisson cofferdam using assembling sheet pile and it's method | |
KR100854338B1 (en) | Construction structure of open caisson cofferdam using holding type sheet pile | |
JP2006225926A (en) | Banking construction method utilizing backfilling material such as fluidized soil, pit sand, local soil and crushed stone | |
JP2803409B2 (en) | Liquefaction countermeasure structure for embankment | |
JP2018044337A (en) | Structure and method for reinforcing embankment | |
JP4206165B2 (en) | Temporary deadline construction method | |
JP2006204965A (en) | Method of constructing impervious layer | |
JPH06146305A (en) | Underwater foundation and installation method thereof | |
JPH0598636A (en) | Cylindrical shell foundation and construction method thereof | |
JP4485006B2 (en) | Construction method for underground structures | |
JPS62260919A (en) | Small pile for reinforcing foundation ground to earthquake | |
JP2726611B2 (en) | How to set up an open caisson | |
AU2015258319B2 (en) | Erosion prevention arrangement | |
JP2860396B2 (en) | Water sheet pile wall structure with a slit for wave dissipation on top | |
JP3148230U (en) | Manhole lift prevention structure during earthquake | |
JP2003119750A (en) | Drag structural body of structure | |
CN205557573U (en) | Underground structure | |
JPH1082055A (en) | Method of earthquake-resisting pile foundation construction | |
JP2835799B2 (en) | Construction method of continuous underground water barrier with pumping well | |
JPH1046619A (en) | Foundation structure of construction in sand-layer ground | |
CN109763518A (en) | A kind of construction method of basement post-pouring zone | |
JP7480069B2 (en) | How to reinforce existing revetments | |
KR102272494B1 (en) | Slope reinforcement structure using support and tension and Its Construction method | |
JPH0645943B2 (en) | Liquefaction countermeasure construction method for buried structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050215 |
|
A521 | Written amendment |
Effective date: 20050325 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050627 |
|
A02 | Decision of refusal |
Effective date: 20050726 Free format text: JAPANESE INTERMEDIATE CODE: A02 |