JPH10158755A - Production of bcc type hydrogen storage alloy - Google Patents
Production of bcc type hydrogen storage alloyInfo
- Publication number
- JPH10158755A JPH10158755A JP32683396A JP32683396A JPH10158755A JP H10158755 A JPH10158755 A JP H10158755A JP 32683396 A JP32683396 A JP 32683396A JP 32683396 A JP32683396 A JP 32683396A JP H10158755 A JPH10158755 A JP H10158755A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- bcc
- phase
- hydrogen storage
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素吸蔵合金の製
造方法に関し、特に溶湯から直接急冷することによっ
て、熱処理をしなくても室温でBCC相の状態を維持
し、水素吸放出量を向上可能とするBCC型水素吸蔵合
金の製造方法に関する。[0001] The present invention relates to a method for producing a hydrogen storage alloy, and more particularly to a method of rapidly cooling directly from a molten metal to maintain the state of a BCC phase at room temperature without heat treatment, thereby improving the amount of hydrogen absorbed and released. The present invention relates to a method for producing a hydrogen storage alloy of the BCC type.
【0002】[0002]
【従来の技術】水素の貯蔵・輸送手段として、水素吸蔵
合金は、合金自身の体積の約1000倍以上の水素ガス
を吸蔵し貯蔵することが可能であり、この水素吸蔵材料
として、V,Nb,TaやTiVMn系、TiVCr系
合金などの体心立方構造(以下BCCと呼称する)の金
属は、すでに実用化されているLaNi5 などのAB5
型合金やTiMn2 などのAB2 型合金に比べ、大量の
水素を吸蔵することが古くから知られていた。このよう
なTiを含むBCC型水素吸蔵合金は、高容量であるが
いずれも高価なVを含むので、これに対してVを含むこ
となくかつ同等レベルの容量を有する水素吸蔵合金は、
EV用水素タンクなどの高容量な水素吸蔵合金を必要と
するアプリケーションにおいて、画期的なコストメリッ
トが期待できる。2. Description of the Related Art As a means for storing and transporting hydrogen, a hydrogen storage alloy can store and store hydrogen gas of about 1000 times or more the volume of the alloy itself. , Ta and TiVMn system, metal having a body-centered cubic structure, such as TiVCr alloy (hereinafter referred to as BCC) is, AB 5, such as LaNi 5 has been already put to practical use
It has been known for a long time to absorb a large amount of hydrogen as compared with an AB 2 type alloy such as a type alloy or TiMn 2 . Such a BCC type hydrogen storage alloy containing Ti has a high capacity but contains expensive V. Therefore, a hydrogen storage alloy which does not contain V and has the same level of capacity,
In applications that require a high-capacity hydrogen storage alloy, such as an EV hydrogen tank, a breakthrough cost advantage can be expected.
【0003】本発明者等は先に出願した特願平8−27
3438号において、一般式Ti10 0-a-b Cra Xb 、
但し、XはMo,Wの少なくとも1種で、式中a,bは
原子%表示で、40≦a≦70,0<b≦20で表され
る水素吸蔵合金を提案した。このBBC型水素吸蔵合金
の製造には、高温安定相であるBCC(体心立方構造)
相を常温にて凍結させるため、通常、母合金を溶解・鋳
造した後、1200〜1400℃にて1〜5時間保持
し、油中または氷水中にて冷却する必要があるものが多
い。The present inventors have filed a Japanese Patent Application No. Hei 8-27 filed earlier.
No. 3438, a compound represented by the general formula Ti 100 -ab C a X b ,
Here, X is at least one of Mo and W, wherein a and b are represented by atomic%, and a hydrogen storage alloy represented by 40 ≦ a ≦ 70 and 0 <b ≦ 20 has been proposed. For the production of this BBC type hydrogen storage alloy, BCC (body-centered cubic structure) which is a high-temperature stable phase
In order to freeze the phase at room temperature, it is usually necessary to melt and cast the master alloy, hold it at 1200 to 1400 ° C. for 1 to 5 hours, and cool it in oil or ice water.
【0004】さらに、水素吸放出可能な状態とするため
に、合金を数十ミクロン程度に粉砕し、水素雰囲気中で
活性化する必要がある。この点に関し、平均粒径を制御
して粉砕、分級工程を省略する方法として、例えば特開
平6−192712号に原料粉末の直接的製造方法とし
て、ニッケル水素二次電池の負極材料の合金粉末をガス
アトマイズによって製造する方法が開示されている。し
かし、一般的な合金としての水素吸蔵合金の製造では、
母合金の溶解・鋳造、熱処理、粉砕および活性化の四工
程を必要とする。しかしこの四工程では、製造効率およ
びコストの点から出来るだけ簡略化することが必要であ
り、そのため、前記熱処理および粉砕工程の二工程を省
略可能とする製造方法の開発が望まれていた。Further, in order to make the state capable of absorbing and releasing hydrogen, it is necessary to pulverize the alloy to about several tens of microns and activate it in a hydrogen atmosphere. In this regard, as a method of controlling the average particle size and omitting the pulverization and classification steps, for example, Japanese Patent Application Laid-Open No. 6-192712 discloses a direct production method of a raw material powder. A method of manufacturing by gas atomization is disclosed. However, in the production of hydrogen storage alloys as general alloys,
It requires four steps: melting and casting of the master alloy, heat treatment, pulverization and activation. However, in these four steps, it is necessary to simplify as much as possible from the viewpoint of production efficiency and cost. Therefore, it has been desired to develop a production method that can omit the two steps of the heat treatment and the pulverization step.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、BC
C型水素吸蔵合金として室温でBCC相を持ち来るため
の急冷工程を検討し、同時に熱処理および粉砕工程を省
略を可能とするBCC型水素吸蔵合金の製造方法を提供
することにある。SUMMARY OF THE INVENTION The object of the present invention is to provide a BC
It is an object of the present invention to provide a method of manufacturing a BCC type hydrogen storage alloy which allows a quenching step for bringing a BCC phase at room temperature as a C type hydrogen storage alloy and at the same time, omit the heat treatment and pulverization steps.
【0006】また、本発明の他の目的は、前記急冷工程
としてロール急冷を検討し、合金をリボン状となし水素
ガスとの接触面積を増大し、活性化を容易とするBCC
型水素吸蔵合金の製造方法を提供することにある。さら
に、本発明の別の目的は、合金特性としての高容量の水
素吸放出特性を有する水素吸蔵合金を低コストにて製造
可能とする合金によって、工業的規模に適用可能とする
水素吸放出特性に優れたBCC型水素吸蔵合金の製造方
法を提供することにある。Another object of the present invention is to consider roll quenching as the quenching step, to make the alloy into a ribbon shape, to increase the contact area with hydrogen gas, and to facilitate the activation of BCC.
To provide a method for producing a hydrogen storage alloy. Further, another object of the present invention is to provide an alloy capable of producing a hydrogen storage alloy having a high capacity of hydrogen absorption / desorption characteristics as an alloy characteristic at a low cost, thereby making it applicable to an industrial scale. It is an object of the present invention to provide a method for producing a BCC type hydrogen storage alloy which is excellent in quality.
【0007】[0007]
【課題を解決するための手段】上記の目的は、組成が、
一般式Ti100-a-b Cra Xb 、但し、XはMo,Wの
少なくとも1種で、式中a,bは原子%表示で、40≦
a≦70,0<b≦20で表される組成の合金溶湯を、
不活性ガス雰囲気で急速冷却し、室温でBCC相の状態
となすことを特徴とするBCC型水素吸蔵合金の製造方
法によって達成される。また、上記の目的は、前記急速
冷却が双ロール法、片ロール法またはアトマイズ法であ
り、冷却時の冷却速度が102 K/sec以上であるこ
とを特徴とするBCC型水素吸蔵合金の製造方法によっ
ても達成される。SUMMARY OF THE INVENTION The object of the present invention is to provide a composition comprising:
General formula Ti 100-ab C a X b , wherein X is at least one of Mo and W, wherein a and b are represented by atomic% and 40 ≦
a ≦ 70, 0 <b ≦ 20.
This is achieved by a method for producing a BCC-type hydrogen storage alloy, characterized by rapidly cooling in an inert gas atmosphere and forming a BCC phase at room temperature. Further, the object of the present invention is to produce a BCC type hydrogen storage alloy, wherein the rapid cooling is a twin roll method, a single roll method or an atomizing method, and the cooling rate during cooling is 10 2 K / sec or more. It is also achieved by the method.
【0008】[0008]
【発明の実施の形態】本発明の合金組成として、Ti−
Cr−X系合金での範囲を、図2に示す。この三元状態
図では、Ti−Cr系のTiCr2 であるC14ラーベ
ス相の単相領域が存在し、本発明はこの範囲を回避して
いる。一方、誘導加熱法、アーク溶解法などにより溶融
された合金は、通常冷却時に1200℃以下でより安定
なC14ラーベス相へと変態する。このため、本発明で
は、上記組成にてBCC相を形成するために、高温安定
なBCC相を常温まで凍結し、合金が均一なるBCC相
からなる範囲とするものである。すなわち、図2の点A
(Ti30Cr70)、B(Ti10Cr7 0X20) 、C(Ti40Cr40X20) 、お
よびD(Ti60Cr40)からなる線分で囲まれた範囲内で、た
だし、AD以外の線分上を含む組成とするものである。BEST MODE FOR CARRYING OUT THE INVENTION As an alloy composition of the present invention, Ti-
FIG. 2 shows the range for the Cr-X alloy. In the ternary phase diagram, there is a single phase region of the C14 Laves phase, which is Ti—Cr-based TiCr 2 , and the present invention avoids this range. On the other hand, an alloy melted by an induction heating method, an arc melting method, or the like transforms to a more stable C14 Laves phase at 1200 ° C. or less during normal cooling. Therefore, in the present invention, in order to form a BCC phase with the above composition, the BCC phase which is stable at a high temperature is frozen to normal temperature to make the range of the BCC phase in which the alloy is uniform. That is, point A in FIG.
(Ti 30 Cr 70), B (Ti 10 Cr 7 0 X 20), C (Ti 40 Cr 40 X 20), and within the range surrounded by line segments consisting of D (Ti 60 Cr 40), however, The composition includes a line segment other than AD.
【0009】これまでの本発明者等の知見では、BCC
合金のなかでも、その内部でスピノーダル分解により、
ナノオーダの微細な二相に規則的に分解した状態では、
水素放出特性が著しく影響される。本三元系合金の基本
となる二元系状態図で、特にTi−Cr系,Cr−Mo
系およびCr−W系では、二相分離の領域が存在するこ
とがわかる。一例として図3に、Ti−Cr系の二元の
状態図を示す。この図において、TiCr2 の1370℃と
共晶点を結ぶ二相分離の固相線があり、これ以上の温度
では、均一BCC相である。本発明ではこの状態を室温
まで急冷して持ち来たることによって、BCC相であっ
てかつ水素放出特性が著しく改善されたリボン状合金を
製造することを可能とする。According to the findings of the present inventors, BCC
Among the alloys, by spinodal decomposition inside,
In the state where it is regularly decomposed into two fine phases of nano order,
Hydrogen release characteristics are significantly affected. This is a binary phase diagram that is the basis of the ternary alloy, especially Ti-Cr-based, Cr-Mo
It can be seen that the system and the Cr-W system have a region of two-phase separation. As an example, FIG. 3 shows a binary phase diagram of a Ti—Cr system. In this figure, there is a solid phase line of two-phase separation connecting the eutectic point to 1370 ° C. of TiCr 2 , and at a temperature higher than this, it is a homogeneous BCC phase. In the present invention, by bringing this state to a room temperature and rapidly cooling it, it is possible to produce a ribbon-like alloy which is a BCC phase and has significantly improved hydrogen release characteristics.
【0010】さらに、前記リボン状合金は厚み50〜1
00μm、幅3〜4mm程度とすることによって、比表
面積を大きくして、水素化時の水素ガスとの直接接触面
積を増大させ、粉砕しなくても十分に活性化できるもの
とする。この急冷方法は、工業生産に適している液体急
冷法の一種であって、例えば双ロール法、片ロール法ま
たはアトマイズ法が含まれ、その際の冷却速度は、10
2 K/sec以上とする。この液体急冷法では、電気炉
または高周波溶解炉によって所定の合金を溶解し、その
溶融合金をガス圧によりルツボ先端のノズルから噴出さ
せ、高速回転する冷却用回転体の表面上で接触凝固させ
る。図1に本発明の製造装置の概要を示す。Further, the ribbon-like alloy has a thickness of 50 to 1
By setting the thickness to about 00 μm and the width of about 3 to 4 mm,
Large area, direct contact surface with hydrogen gas during hydrogenation
One that can increase the volume and can be activated sufficiently without grinding
And This quenching method uses liquid quenching suitable for industrial production.
A type of cooling method, such as the twin-roll method or the single-roll method.
Or the atomizing method, in which case the cooling rate is 10
TwoK / sec or more. In this liquid quenching method, an electric furnace
Alternatively, a given alloy is melted by a high-frequency melting furnace,
The molten alloy is ejected from the nozzle at the crucible tip by gas pressure.
And contact solidify on the surface of the high-speed rotating rotor for cooling.
You. FIG. 1 shows an outline of the manufacturing apparatus of the present invention.
【0011】雰囲気からの溶湯から製品までにおける酸
化を防止するために、装置全体を不活性ガス雰囲気1と
してその中に、噴射ノズル2、高周波コイル3と、急冷
装置としてCu製ロール4を設ける。本発明の合金組成
に調整した母合金を高周波コイル3により発生する誘導
電流によって溶解する。この溶解では、例えば図1のよ
うに耐火物製の噴射ノズル2中で行われ溶解合金が連続
的に供給され一定の圧力条件にて噴射されるように構成
する。高周波コイル3による誘導電流による溶解では、
攪拌が十分になされ、溶湯8の成分を均一にするのに有
利である。本発明では特に溶解装置を限定するものでは
なく、不活性雰囲気で溶解・冷却が連続的になされるも
のであればよい。In order to prevent oxidation from the molten metal to the product from the atmosphere, the entire apparatus is made into an inert gas atmosphere 1, in which an injection nozzle 2, a high frequency coil 3, and a Cu roll 4 as a quenching device are provided. The master alloy adjusted to the alloy composition of the present invention is melted by the induction current generated by the high-frequency coil 3. This melting is performed, for example, in a refractory injection nozzle 2 as shown in FIG. 1 so that the molten alloy is continuously supplied and injected under a constant pressure condition. In the melting by the induced current by the high-frequency coil 3,
This is advantageous in that the stirring is sufficiently performed and the components of the molten metal 8 are made uniform. In the present invention, the melting apparatus is not particularly limited as long as melting and cooling are continuously performed in an inert atmosphere.
【0012】急冷装置は例えば矢印5のように高速回転
する冷却用回転体としてのCu製ロール4上で溶湯流8
が薄く引き延ばされて急冷凝固する。この場合の冷却速
度はこの冷却用回転体の材質としての特性値(熱伝達
率、熱容量等)と溶湯流8の厚みに依存し、この厚みは
合金組成による溶湯の物性値により決まる噴出溶湯量に
関連する特性(ノズル径、圧力等)と回転体の周速によ
って決められる。例えば、速度Vで高速回転するCu製
ロール4上に溶湯Qを噴出させる場合、Q∝πa 2 p
(a:ノズル径、p:噴出圧力)なる関係で表され、こ
れによって厚みt、幅wの急冷リボン6が得られたとす
ると、Q∝wtVの関係式として表される。本発明にお
いては、合金成分を一定として前記の関係式からの計算
値と実際の製造との関連を把握し、その条件を最適とす
る製造条件が得られる。The quenching device rotates at a high speed as indicated by an arrow 5, for example.
Of molten metal 8 on a Cu roll 4 as a cooling rotator
Are thinly stretched and rapidly solidified. Cooling speed in this case
The degree is the characteristic value (heat transfer
Rate, heat capacity, etc.) and the thickness of the molten metal stream 8.
The amount of molten metal spouted depends on the physical properties of the molten metal depending on the alloy composition
Related characteristics (nozzle diameter, pressure, etc.) and the peripheral speed of the rotating body
I can decide. For example, Cu made of high-speed rotation at speed V
When the molten metal Q is ejected onto the roll 4, Q∝πa Twop
(A: nozzle diameter, p: ejection pressure)
As a result, a quenched ribbon 6 having a thickness t and a width w is obtained.
Then, it is expressed as a relational expression of Q∝wtV. The present invention
In other words, the calculation from the above relational expression
Understand the relationship between values and actual production and optimize the conditions.
Manufacturing conditions are obtained.
【0013】次に、本発明の成分限定理由について説明
する。本合金は一般式Ti100-a-bCra Xb 、但し、
XはMoおよび/またはW、式中a,bは原子%表示
で、40≦a≦70,0<b≦20で表される。前記組
成範囲ではBCC相の均一相を有し、これを室温まで持
ち来るための急冷後、合金中の二相分離状態での結晶構
造の歪みが最適化され、水素吸蔵合金としての水素の移
動度を促進可能とする微細組織に調整される。Next, the reasons for limiting the components of the present invention will be described. This alloy has the general formula Ti 100-ab C a X b , where
X is Mo and / or W, wherein a and b are represented by atomic% and represented by 40 ≦ a ≦ 70 and 0 <b ≦ 20. In the above composition range, there is a homogeneous phase of the BCC phase, after quenching to bring it to room temperature, the distortion of the crystal structure in the two-phase separated state in the alloy is optimized, and the movement of hydrogen as a hydrogen storage alloy It is adjusted to a microstructure that can promote the degree.
【0014】すなわち、Crが40at%未満では、水
素吸蔵合金の水素吸放出特性(圧力組成等温線:PCT
線図)における平衡圧力が低く、吸蔵した水素を再び常
温で取り出すことが困難となる。また、Crが70at
%超では、前記平衡圧力が高く、常温での水素吸蔵量が
少ない。さらに、Moおよび/またはWが、0at%で
は熱処理を施しても合金がBCC化されない。また、2
0at%超では水素吸蔵量が低下するため実用的でなく
なる。このため上記の組成範囲に限定した。That is, when Cr is less than 40 at%, the hydrogen storage / release characteristics of the hydrogen storage alloy (pressure composition isotherm: PCT
(Diagram), the equilibrium pressure is low, and it becomes difficult to remove the stored hydrogen at room temperature again. In addition, Cr is 70 at
%, The equilibrium pressure is high and the amount of hydrogen absorbed at room temperature is small. Further, when Mo and / or W is 0 at%, the alloy is not converted to BCC even if heat treatment is performed. Also, 2
If it exceeds 0 at%, the amount of hydrogen storage decreases, which is not practical. For this reason, it was limited to the above composition range.
【0015】本発明では、前記合金のBCC相を均一に
出現した状態で水素吸放出量が最大となるように、製造
方法としての急冷条件を規定した。すなわち、母合金の
溶解後の冷却速度では、双ロール法、片ロール法または
アトマイズ法において、10 2 K/sec未満の場合
は、BCC相を均一に凍結することが難しくなり、所望
の水素吸放出特性が得られないため、102 K/sec
以上の冷却速度に限定した。また、本発明において冷却
速度の上限を特に限定しないのは、かなりの超急冷にし
たとしても本合金系では、BCC相の均一凍結の効果が
飽和する以外は特に材質的には問題が顕在化しないこと
による。しかし、冷却速度の増大とともに急冷処理コス
トの増大を招くことになり、有利ではない。According to the present invention, the BCC phase of the alloy is made uniform.
Manufacture so that the amount of hydrogen absorbed and released when it appears
The quenching conditions as a method were specified. In other words,
The cooling rate after melting may be twin roll method, single roll method or
In the atomization method, 10 TwoIf less than K / sec
Is difficult to freeze the BCC phase uniformly,
Because hydrogen absorption and desorption characteristics ofTwoK / sec
The cooling rate was limited to the above. Also, in the present invention, cooling
The upper limit of the speed is not particularly limited.
Even with this alloy system, the effect of uniform freezing of the BCC phase
Except for saturation, no problem in material especially
by. However, as the cooling rate increases,
This is not advantageous.
【0016】以上のように、本発明組成では、高温相と
してBCC相であるが、室温ではC14ラーベス相が生
成し易い。しかし、急速冷却することで溶湯から高温相
のBCCが凝固組織として現われ、その後さらにC14
ラーベス相への変態が行われる前に、室温に至る。従っ
て、熱処理工程を経ることなく、室温で非平衡相として
のBCC相が得られる。以下に、本発明について実施例
に基づいてさらに詳述する。As described above, in the composition of the present invention, although the BCC phase is used as the high-temperature phase, the C14 Laves phase easily forms at room temperature. However, by rapid cooling, a high-temperature phase BCC appears from the molten metal as a solidified structure, and then C14 is further added.
Room temperature is reached before transformation to the Laves phase takes place. Therefore, a BCC phase as a non-equilibrium phase can be obtained at room temperature without going through a heat treatment step. Hereinafter, the present invention will be described in more detail based on examples.
【0017】[0017]
【実施例】本発明の実施例では、水素吸蔵合金の組成を
本発明範囲のTi39Cr54Mo7 およびTi41Cr56W3に成分調整
した。本発明例では溶解量を6g/回として、1800
℃で溶解し、冷却ロールはロール径:200mm、回転
数:4000rpm、ロール初期温度を室温に設定する
ことによって、この時の冷却速度が102 K/sec以
上であることを確認した。冷却後に得られた急冷リボン
形状は厚さ:50〜100μm、幅:3〜4mm、長
さ:30〜40mmであった。比較例はアーク溶解で、
直径:2cmで20gのボタンインゴットを作製し、そ
の後10mm角程度に粉砕したものを使用した。EXAMPLES In the examples of the present invention, the composition of the hydrogen storage alloy was adjusted to Ti 39 Cr 54 Mo 7 and Ti 41 Cr 56 W 3 within the range of the present invention. In the example of the present invention, the dissolution amount was set to 6 g / time and 1800
The temperature of the cooling roll was 200 mm, the number of rotations was 4000 rpm, and the initial temperature of the roll was set to room temperature. It was confirmed that the cooling rate at this time was 10 2 K / sec or more. The quenched ribbon obtained after cooling had a thickness of 50 to 100 μm, a width of 3 to 4 mm, and a length of 30 to 40 mm. The comparative example is arc melting,
A button ingot having a diameter of 2 cm and a weight of 20 g was prepared, and then a button ingot crushed into about 10 mm square was used.
【0018】また、合金中の各相の組成は、透過電子顕
微鏡と付属のEDX(エネルギー分散型X線回折)を用
いて行った。また相分率の割合の測定は、透過電子顕微
鏡で得られた情報をもとに結晶構造モデルを作成し、粉
末X線回折データのリートベルト解析を行った。リート
ベルト解析は通常のX線回折法とは異なり、回折強度を
用いて結晶構造パラメータを精密化できるとともに、各
相の重量分率を計算により求めることが可能である。リ
ートベルト解析には、無機材質研究所泉博士の開発した
解析ソフトRIETAN94を用いた。本発明により作
成した本発明例の急冷リボン合金、および同組成の比較
例としたアーク溶解合金のBCC相/ラーベス相分率を
表1に示す。The composition of each phase in the alloy was determined using a transmission electron microscope and an attached EDX (energy dispersive X-ray diffraction). For the measurement of the ratio of the phase fraction, a crystal structure model was created based on information obtained by a transmission electron microscope, and Rietveld analysis of powder X-ray diffraction data was performed. In the Rietveld analysis, unlike the ordinary X-ray diffraction method, the crystal structure parameters can be refined by using the diffraction intensity, and the weight fraction of each phase can be obtained by calculation. For the Rietveld analysis, the analysis software Rietan94 developed by Dr. Izumi, Inorganic Materials Laboratory was used. Table 1 shows the BCC phase / Laves phase fraction of the quenched ribbon alloy of the example of the present invention prepared according to the present invention and the arc-melted alloy of the comparative example having the same composition.
【0019】[0019]
【表1】 [Table 1]
【0020】表1から、比較例のアーク溶解合金のラー
ベス相分率はTi39Cr54Mo7 では80%、Ti41Cr56W3では
ラーベス単相であるのに対し、本発明例のロール急冷合
金のBCC相分率はTi39Cr54Mo7 では92%、Ti41Cr56
W3では89%で顕著にBCC化していることがわかる。
表2に、本実施例の前記組成のTi39Cr54Mo7 およびTi41
Cr56W3の本発明例および比較例の試料について40℃で
の水素吸放出量の測定結果を示す。From Table 1, the Laves phase fraction of the arc-melted alloy of the comparative example is 80% for Ti 39 Cr 54 Mo 7 and a Laves single phase for Ti 41 Cr 56 W 3 , whereas the roll of the present invention example The BCC phase fraction of the quenched alloy is 92% for Ti 39 Cr 54 Mo 7 and Ti 41 Cr 56
W significantly it can be seen that turned into BCC 3 in 89%.
Table 2 shows that Ti 39 Cr 54 Mo 7 and Ti 41 having the above-mentioned composition of the present example.
The measurement results of the amount of hydrogen absorbed and released at 40 ° C. for the samples of the present invention example and the comparative example of Cr 56 W 3 are shown.
【0021】[0021]
【表2】 [Table 2]
【0022】本成分における40℃での水素吸放出特性
は、本発明例のロール急冷合金の水素吸蔵量はTi39Cr54
Mo7 では248cc/g、Ti41Cr56W3では222cc/
g、水素放出量はTi39Cr54Mo7 では209cc/g、Ti
41Cr56W3では181cc/gであるのに対して、比較例
のアーク溶解合金の水素吸蔵量はTi39Cr54Mo7 では96
cc/g、Ti41Cr56W3では75cc/g、水素放出量は
Ti39Cr54Mo7 で10cc/g、Ti41Cr56W3では40cc
/gであり、本発明例では水素吸放出特性が改善されて
いることがわかる。The hydrogen absorption / desorption characteristics of this component at 40 ° C. are as follows. The hydrogen storage capacity of the roll quenched alloy of the present invention is Ti 39 Cr 54
248 cc / g for Mo 7 and 222 cc / g for Ti 41 Cr 56 W 3
g, hydrogen release amount is 209 cc / g for Ti 39 Cr 54 Mo 7 , Ti
Against 41 in the range of Cr 56 W 3 in 181cc / g, the hydrogen storage capacity of arc melting the alloy of the comparative example in Ti 39 Cr 54 Mo 7 96
cc / g, Ti 41 Cr 56 W 3 in 75 cc / g, the amount of desorbed hydrogen
10 cc / g in Ti 39 Cr 54 Mo 7, 40cc the Ti 41 Cr 56 W 3
/ G, which shows that the hydrogen absorption / desorption characteristics are improved in the examples of the present invention.
【0023】[0023]
【発明の効果】以上説明したように、本発明によれば、
ロール冷却のみで従来の熱処理合金と等価な特性を持つ
合金の製造が可能である。さらに、リボン状合金は比表
面積が非常に大きいため、水素化時の水素ガスとの直接
接触面積が大きく、粉砕しなくても活性化される。この
ため、従来の製造工程で必要とされる母合金溶解鋳造、
熱処理、粉砕および活性化の四工程を、合金溶解・ロー
ル急冷および活性化の二工程に短縮することができる。
従って、本発明によれば、高容量なBCC型水素吸蔵合
金を極めて低コストで製造することができ、各種用途へ
の実用化を可能にする。As described above, according to the present invention,
An alloy having characteristics equivalent to those of a conventional heat-treated alloy can be produced only by roll cooling. Furthermore, since the ribbon-shaped alloy has a very large specific surface area, it has a large direct contact area with hydrogen gas during hydrogenation, and can be activated without being pulverized. For this reason, the mother alloy melting casting required in the conventional manufacturing process,
The four steps of heat treatment, grinding and activation can be reduced to two steps of alloy melting / roll quenching and activation.
Therefore, according to the present invention, a high-capacity BCC-type hydrogen storage alloy can be manufactured at extremely low cost, and can be put to practical use in various applications.
【図1】本発明に係るロール急冷装置の概要を示す図で
ある。FIG. 1 is a view showing an outline of a roll quenching apparatus according to the present invention.
【図2】本発明に係るTiCrX(Moおよび/または
W)系の三元状態図による組成を示す図である。FIG. 2 is a diagram showing the composition of a TiCrX (Mo and / or W) -based ternary phase diagram according to the present invention.
【図3】本発明に関連するTi−Cr系二元状態図であ
る。FIG. 3 is a Ti-Cr based binary phase diagram related to the present invention.
1…不活性ガス雰囲気 2…噴射ノズル 3…高周波コイル 4…Cu製ロール 5…高速回転 6…急冷リボン 7…溶湯 8…溶湯流 DESCRIPTION OF SYMBOLS 1 ... Inert gas atmosphere 2 ... Injection nozzle 3 ... High frequency coil 4 ... Cu roll 5 ... High speed rotation 6 ... Quench ribbon 7 ... Molten metal 8 ... Molten metal flow
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 27/06 C22C 27/06 ──────────────────────────────────────────────────続 き Continued on front page (51) Int.Cl. 6 Identification code FI C22C 27/06 C22C 27/06
Claims (2)
a Xb 、但し、XはMo,Wの少なくとも1種で、式中
a,bは原子%表示で、40≦a≦70,0<b≦20
で表される組成の合金溶湯を、不活性ガス雰囲気で急速
冷却し、室温でBCC相の状態となすことを特徴とする
BCC型水素吸蔵合金の製造方法。1. The composition according to claim 1, wherein said composition is of the general formula Ti 100-ab Cr
a Xb , wherein X is at least one of Mo and W, wherein a and b are represented by atomic%, and 40 ≦ a ≦ 70, 0 <b ≦ 20.
A method for producing a BCC-type hydrogen storage alloy, comprising rapidly cooling a molten alloy having a composition represented by the following formula in an inert gas atmosphere to form a BCC phase at room temperature.
法、片ロール法またはアトマイズ法であり、冷却時の冷
却速度が102 K/sec以上であることを特徴とする
BCC型水素吸蔵合金の製造方法。2. The BCC type hydrogen storage alloy according to claim 1, wherein the rapid cooling is a twin roll method, a single roll method or an atomizing method, and the cooling rate at the time of cooling is 10 2 K / sec or more. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32683396A JPH10158755A (en) | 1996-12-06 | 1996-12-06 | Production of bcc type hydrogen storage alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32683396A JPH10158755A (en) | 1996-12-06 | 1996-12-06 | Production of bcc type hydrogen storage alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10158755A true JPH10158755A (en) | 1998-06-16 |
Family
ID=18192227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32683396A Pending JPH10158755A (en) | 1996-12-06 | 1996-12-06 | Production of bcc type hydrogen storage alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10158755A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000158098A (en) * | 1998-12-01 | 2000-06-13 | Shin Etsu Chem Co Ltd | Apparatus for producing hydrogen-storage alloy and production thereof |
EP1158060A1 (en) * | 1999-12-17 | 2001-11-28 | Tohoku Techno Arch Co., Ltd. | Hydrogen storage alloy and method for preparing the same |
JP2002212663A (en) * | 2001-01-17 | 2002-07-31 | Japan Steel Works Ltd:The | High capacity hydrogen occlusion alloy and production method therefor |
JPWO2002028767A1 (en) * | 2000-10-02 | 2004-02-12 | 株式会社東北テクノアーチ | Method for absorbing and releasing hydrogen storage alloy, hydrogen storage alloy, and fuel cell using the method |
US6835490B1 (en) | 1999-03-29 | 2004-12-28 | Tohoku Techno Arch Co., Ltd. | Alloy for hydrogen storage, method for absorption and release of hydrogen using the alloy, and hydrogen fuel cell using the method |
KR100798947B1 (en) | 2006-08-24 | 2008-01-29 | 한국지질자원연구원 | Ti-cr-mo hydrogen storage alloy |
-
1996
- 1996-12-06 JP JP32683396A patent/JPH10158755A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000158098A (en) * | 1998-12-01 | 2000-06-13 | Shin Etsu Chem Co Ltd | Apparatus for producing hydrogen-storage alloy and production thereof |
US7094493B2 (en) | 1999-03-29 | 2006-08-22 | Tohoku Techno Arch Co., Ltd. | Hydrogen storage metal alloy, method for absorption and release of hydrogen using the said alloy and hydrogen fuel battery using the said method |
US6835490B1 (en) | 1999-03-29 | 2004-12-28 | Tohoku Techno Arch Co., Ltd. | Alloy for hydrogen storage, method for absorption and release of hydrogen using the alloy, and hydrogen fuel cell using the method |
EP1249506A1 (en) * | 1999-12-17 | 2002-10-16 | Tohoku Techno Arch Co., Ltd. | Hydrogen storage alloy |
JP4838963B2 (en) * | 1999-12-17 | 2011-12-14 | 株式会社 東北テクノアーチ | Method for producing hydrogen storage alloy |
EP1249507A1 (en) * | 1999-12-17 | 2002-10-16 | Tohoku Techno Arch Co., Ltd. | Method for preparing hydrogen storage alloy |
EP1249508A4 (en) * | 1999-12-17 | 2003-01-29 | Tohoku Techno Arch Co Ltd | Hydrogen storage alloy |
EP1249507A4 (en) * | 1999-12-17 | 2003-04-02 | Tohoku Techno Arch Co Ltd | Method for preparing hydrogen storage alloy |
EP1249506A4 (en) * | 1999-12-17 | 2003-04-02 | Tohoku Techno Arch Co Ltd | Hydrogen storage alloy |
EP1158060A4 (en) * | 1999-12-17 | 2003-04-02 | Tohoku Techno Arch Co Ltd | Hydrogen storage alloy and method for preparing the same |
EP1249508A1 (en) * | 1999-12-17 | 2002-10-16 | Tohoku Techno Arch Co., Ltd. | Hydrogen storage alloy |
JP5134175B2 (en) * | 1999-12-17 | 2013-01-30 | 株式会社 東北テクノアーチ | Hydrogen storage alloy |
EP1158060A1 (en) * | 1999-12-17 | 2001-11-28 | Tohoku Techno Arch Co., Ltd. | Hydrogen storage alloy and method for preparing the same |
JP5134174B2 (en) * | 1999-12-17 | 2013-01-30 | 株式会社 東北テクノアーチ | Hydrogen storage alloy |
JPWO2002028767A1 (en) * | 2000-10-02 | 2004-02-12 | 株式会社東北テクノアーチ | Method for absorbing and releasing hydrogen storage alloy, hydrogen storage alloy, and fuel cell using the method |
JP4716304B2 (en) * | 2000-10-02 | 2011-07-06 | 株式会社 東北テクノアーチ | Hydrogen storage alloy storage and release method, hydrogen storage alloy and fuel cell using the method |
JP2002212663A (en) * | 2001-01-17 | 2002-07-31 | Japan Steel Works Ltd:The | High capacity hydrogen occlusion alloy and production method therefor |
KR100798947B1 (en) | 2006-08-24 | 2008-01-29 | 한국지질자원연구원 | Ti-cr-mo hydrogen storage alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008537763A (en) | Metal composite material and method of forming the same | |
JP2002536539A (en) | Rare earth permanent magnet alloy and its manufacturing method | |
JPS61130451A (en) | Aluminum/iron/vanadium alloy having high strength at high temperature | |
JP3365625B2 (en) | Nanocomposite magnet powder and method for producing magnet | |
JP2002512306A (en) | Improved hydrogen storage alloy and method, and improved nickel metal hydride electrode and battery using same | |
JPH07145442A (en) | Soft magnetic alloy compact and its production | |
KR20230098581A (en) | Alloy powder and its manufacturing method and use | |
WO1996014442A1 (en) | Age-precipitating rare earth metal-nickel alloy, its manufacture, and negative electrode for nickel-hydrogen secondary cell | |
US5725042A (en) | Method for producing hydrogen-absorbing alloy | |
JPS6289803A (en) | Powdery particle for fine granular hard alloy and its production | |
JPH10158755A (en) | Production of bcc type hydrogen storage alloy | |
JP2017008358A (en) | Hydrogen storage alloy and manufacturing method therefor | |
JP3604308B2 (en) | Raw material alloy for nanocomposite magnet, powder and manufacturing method thereof, and nanocomposite magnet powder and magnet manufacturing method | |
JPH03267355A (en) | Aluminum-chromium alloy and its production | |
JP2002356717A (en) | Method for producing alloy for rare earth bond magnet, and rare earth bond magnet composition | |
JP2005226114A (en) | Method of producing hydrogen storage alloy powder, and hydrogen storage alloy powder obtained by the production method | |
JP3775639B2 (en) | Method for producing hydrogen storage alloy | |
CN108070800B (en) | Ti-based amorphous alloy composite material and preparation method thereof | |
JP4374633B2 (en) | Method for producing raw material alloy for nanocomposite magnet, and method for producing nanocomposite magnet powder and magnet | |
JPH06306413A (en) | Production of hydrogen storage alloy powder | |
JP4457453B2 (en) | Fine crystal iron-based alloy magnet and method for producing the same | |
JPS631365B2 (en) | ||
JP2627302B2 (en) | Method for producing hydrogen storage alloy molded product | |
JPH06228613A (en) | Production of granular hydrogen storage alloy | |
JPS631364B2 (en) |