[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10158642A - Hole transport material and its use - Google Patents

Hole transport material and its use

Info

Publication number
JPH10158642A
JPH10158642A JP8321261A JP32126196A JPH10158642A JP H10158642 A JPH10158642 A JP H10158642A JP 8321261 A JP8321261 A JP 8321261A JP 32126196 A JP32126196 A JP 32126196A JP H10158642 A JPH10158642 A JP H10158642A
Authority
JP
Japan
Prior art keywords
group
layer
organic
light emitting
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8321261A
Other languages
Japanese (ja)
Other versions
JP3575198B2 (en
Inventor
Michiko Tamano
美智子 玉野
Satoshi Okutsu
聡 奥津
Toshio Enokida
年男 榎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP32126196A priority Critical patent/JP3575198B2/en
Publication of JPH10158642A publication Critical patent/JPH10158642A/en
Application granted granted Critical
Publication of JP3575198B2 publication Critical patent/JP3575198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a hole transport material which has excellent hole transportation capacity and durability and can be used as a photosensitive material or an organic photoconductive material by using a compound having a triphenylamine structure. SOLUTION: A compound represented by the formula (wherein R<1> to R<6> are each a (substituted) aryl, provided that at least one of them is an aryl the adjoining substituents of which form a cycloalkyl ring); and Ar<1> to Ar<3> are each a (substituted) arylene) is used. In the formula, it is desirable that R<1> , R<3> and R<5> are each an aryl the adjoining substituents of which form a cycloalkyl ring and that the aryl group having the formed cycloalkyl ring is (substituted) tetrahydronaphthalene. This material is obtained by for example reacting tris(p-bromophenyl)amine with a 5-8 molar time amount of a substituted aromatic diamine compound at 200 deg.C for 50hr in the presence of a catalyst such as potassium carbonate or copper.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はトリフェニルアミン構造
を有する正孔輸送材料に関し、該トリフェニルアミン化
合物は、感光材料、有機光導電材料として使用でき、さ
らに具体的には、平面光源や表示に使用される有機エレ
クトロルミネッセンス(EL)素子もしくは電子写真感
光体等の正孔輸送材料として利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hole transporting material having a triphenylamine structure, and the triphenylamine compound can be used as a photosensitive material or an organic photoconductive material. It can be used as a hole transporting material for an organic electroluminescence (EL) element or an electrophotographic photosensitive member used for the above.

【0002】[0002]

【従来の技術】感光材料や正孔輸送材料として開発され
ている有機光導電材料は、低コスト、加工性が多様であ
り、無公害性などの多くの利点があり、多くの化合物が
提案されている。例えば、オキサジアゾール誘導体(米
国特許第3,189,447号)、オキサゾール誘導体
(米国特許第3,257,203号)、ヒドラゾン誘導
体(米国特許第3,717,462号、特開昭54−5
9,143号、米国特許第4,150,978号)、ト
リアリールピラゾリン誘導体(米国特許第3,820,
989号、特開昭51−93,224号、特開昭55−
108,667号)、アリールアミン誘導体(米国特許
第3,180,730号、米国特許第4,232,10
3号、特開昭55−144,250号、特開昭56−1
19,132号)、スチルベン誘導体(特開昭58−1
90,953号、特開昭59−195,658号)など
の有機光導電性材料が開示されている。
2. Description of the Related Art Organic photoconductive materials that have been developed as photosensitive materials and hole transport materials have many advantages such as low cost, various processability, and no pollution, and many compounds have been proposed. ing. For example, oxadiazole derivatives (U.S. Pat. No. 3,189,447), oxazole derivatives (U.S. Pat. No. 3,257,203), hydrazone derivatives (U.S. Pat. 5
9,143, U.S. Pat. No. 4,150,978), triarylpyrazoline derivatives (U.S. Pat.
No. 989, JP-A-51-93,224 and JP-A-55-93.
No. 108,667), arylamine derivatives (US Pat. No. 3,180,730, US Pat. No. 4,232,10).
3, JP-A-55-144250, JP-A-56-1
No. 19,132), stilbene derivatives (JP-A-58-1)
No. 90,953, JP-A-59-195,658) and the like.

【0003】正孔輸送材料を利用した技術の一つとして
は、有機EL素子が挙げられる。有機物質を使用したE
L素子は、固体発光型の安価な大面積フルカラー表示素
子としての用途が有望視され、多くの開発が行われてい
る。一般にELは発光層および該層をはさんだ一対の対
向電極から構成されている。発光は、両電極間に電界が
印加されると、陰極側から電子が注入され、陽極側から
正孔が注入される。さらに、この電子が発光層において
正孔と再結合し、エネルギー準位が伝導帯から価電子帯
に戻る際にエネルギーを光として放出する現象である。
[0003] One of the techniques using a hole transport material is an organic EL device. E using organic substances
The L element is expected to be used as a solid-state light-emitting inexpensive large-area full-color display element, and many developments have been made. In general, an EL is composed of a light emitting layer and a pair of counter electrodes sandwiching the light emitting layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side. Further, the electrons are recombined with holes in the light emitting layer, and energy is emitted as light when the energy level returns from the conduction band to the valence band.

【0004】従来の有機EL素子は、無機EL素子に比
べて駆動電圧が高く、発光輝度や発光効率も低かった。
また、特性劣化も著しく実用化には至っていなかった。
近年、10V以下の低電圧で発光する高い蛍光量子効率
を持った有機化合物を含有した薄膜を積層した有機EL
素子が報告され、関心を集めている(アプライド・フィ
ジクス・レターズ、51巻、913ページ、1987年
参照)。この方法は、金属キレート錯体を蛍光体層、ア
ミン系化合物を正孔注入層に使用して、高輝度の緑色発
光を得ており、6〜7Vの直流電圧で輝度は1000
(cd/m2 )、最大発光効率は1.5(lm/W)を
達成して、実用領域に近い性能を持っている。
[0004] Conventional organic EL devices have a higher driving voltage and lower luminous luminance and luminous efficiency than inorganic EL devices.
In addition, the characteristic deterioration was remarkable, and it had not been put to practical use.
2. Description of the Related Art In recent years, an organic EL in which a thin film containing an organic compound having high fluorescence quantum efficiency that emits light at a low voltage of 10 V or less is laminated.
Devices have been reported and are of interest (see Applied Physics Letters, vol. 51, p. 913, 1987). This method uses a metal chelate complex for a phosphor layer and an amine compound for a hole injection layer to obtain high-luminance green light emission, and has a luminance of 1000 at a DC voltage of 6 to 7 V.
(Cd / m 2 ) and a maximum luminous efficiency of 1.5 (lm / W), which is close to the practical range.

【0005】有機EL素子は、金属陰極層と透明陽極層
との間に、有機蛍光化合物を含有する発光層を備えた素
子である。また、低電圧で高輝度の発光を得るために、
電子注入層や正孔注入層を加えて素子化している。これ
ら有機EL素子は、陰極から注入された電子と陽極から
注入された正孔との再結合により励起子が生じ、この励
起子が放射失活する過程で光を放出している(特開昭5
9−194393号公報、特開昭63−295695号
公報)。しかしながら、直流電圧を印加して長時間にわ
たり発光し続けると、有機化合物の結晶化などが促進さ
れ、素子にリーク電流が流れ易くなり素子が破壊され
る。そのため、正孔注入層に使用する正孔輸送材料とし
て、4,4’,4”−トリス(N,N’−ジフェニルア
ミノ)トリフェニルアミン(TDATA)、4,4’,
4”−トリス[N−(3−メチルフェニル)−N−フェ
ニルアミノ]トリフェニルアミン(MTDATA)等の
化合物を使用して改良している(特開平4−30868
8号公報)。これらの化合物は、分子がねじれて立体形
状をとるために結晶化しにくく、薄膜形成性も優れてい
るが充分なものではない。そのために、長時間発光させ
た場合に、素子が容易に劣化するという問題があった。
An organic EL device is a device having a light emitting layer containing an organic fluorescent compound between a metal cathode layer and a transparent anode layer. Also, in order to obtain high-luminance light emission at low voltage,
An element is formed by adding an electron injection layer and a hole injection layer. In these organic EL elements, excitons are generated by recombination of electrons injected from the cathode and holes injected from the anode, and light is emitted in the process of extinguishing the excitons (Japanese Patent Application Laid-Open No. H10-163,197). 5
9-194393, JP-A-63-295695). However, if light emission is continued for a long time by applying a DC voltage, crystallization of an organic compound or the like is promoted, a leak current easily flows through the element, and the element is destroyed. Therefore, as a hole transporting material used for the hole injection layer, 4,4 ′, 4 ″ -tris (N, N′-diphenylamino) triphenylamine (TDATA), 4,4 ′,
It is improved by using a compound such as 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) (JP-A-4-30868).
No. 8). These compounds are difficult to crystallize because the molecules are twisted to form a three-dimensional shape, and are excellent in thin film forming property, but are not sufficient. Therefore, there is a problem that the element is easily deteriorated when light is emitted for a long time.

【0006】このように、現在までの有機EL素子は、
発光輝度や繰り返し使用時の発光安定性は未だ充分では
なく、より大きな発光輝度を持ち、発光効率が高く繰り
返し使用時での安定性の優れた有機EL素子の開発のた
めに、優れた正孔輸送能力を有し、耐久性のある正孔輸
送材料の開発が望まれている。
As described above, the organic EL devices up to now are:
Luminous luminance and luminous stability during repeated use are not yet sufficient. For the development of organic EL devices having higher luminous luminance, high luminous efficiency and excellent stability during repeated use, excellent holes are required. The development of a durable hole transporting material having a transporting ability is desired.

【0007】さらに、正孔輸送材料を利用した技術とし
ては、電子写真感光体が挙げられる。電子写真方式は、
カールソンにより発明された画像形成法の一つである。
この方式は、コロナ放電により感光体を帯電した後、光
像露光して感光体に静電潜像を得、該静電潜像にトナー
を付着させて現像し、得られたトナー像を紙へ転写する
ことからなる。このような電子写真感光体に要求される
基本的な特性としては、暗所において適当な電位が保持
されること、暗所における電荷の放電が少ないこと、光
照射により速やかに電荷を放電することなどが挙げられ
る。従来までの電子写真感光体は、セレン、セレン合
金、酸化亜鉛、硫化カドミウムおよびテルルなどの無機
光導電体が使用されてきた。これらの無機光導電体は、
耐久性が高く、耐刷枚数が多いなどの利点を有している
が、製造コストが高く、加工性が劣り、毒性を有するな
どの問題点が指摘されている。これらの欠点を克服する
ために有機化合物を使用した感光体の開発が行われてい
るが、従来までの有機光導電材料を正孔輸送材料として
用いた電子写真感光体は、帯電性、感度および残留電位
などの電子写真特性が、必ずしも満足されているとは言
えないのが現状であり、優れた電荷輸送能力を有し、耐
久性のある正孔輸送材料の開発が望まれていた。
Further, as a technique utilizing a hole transport material, an electrophotographic photosensitive member can be mentioned. The electrophotographic method is
This is one of the image forming methods invented by Carlson.
In this method, after a photoconductor is charged by corona discharge, an optical image is exposed to obtain an electrostatic latent image on the photoconductor, toner is attached to the electrostatic latent image and developed, and the obtained toner image is printed on paper. Transfer to The basic characteristics required of such an electrophotographic photoreceptor are that an appropriate potential is maintained in a dark place, that there is little discharge of charges in a dark place, and that charges are quickly discharged by light irradiation. And the like. Conventional electrophotographic photoreceptors have used inorganic photoconductors such as selenium, selenium alloys, zinc oxide, cadmium sulfide, and tellurium. These inorganic photoconductors are
Although it has advantages such as high durability and a large number of printing presses, problems such as high manufacturing cost, poor workability, and toxicity are pointed out. To overcome these drawbacks, photoreceptors using organic compounds have been developed.However, electrophotographic photoreceptors using conventional organic photoconductive materials as hole-transporting materials have had a problem of chargeability, sensitivity and At present, electrophotographic characteristics such as residual potential are not always satisfied, and it has been desired to develop a hole transporting material having excellent charge transporting ability and durability.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、優れ
た正孔輸送能力を有し、耐久性のある正孔輸送材料を提
供することにあり、さらにこの正孔輸送材料を使用する
ことにより、長寿命の有機EL素子、繰り返し使用時で
の安定性の優れた電子写真感光体等を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a durable hole transporting material having excellent hole transporting ability, and further to use this hole transporting material. Accordingly, it is an object of the present invention to provide a long-life organic EL element, an electrophotographic photoreceptor having excellent stability during repeated use, and the like.

【0009】[0009]

【課題を解決するための手段】本発明者らは鋭意検討し
た結果、一般式[1]で示される少なくとも一種の正孔
輸送材料は、正孔輸送能力が大きく、これを用いて作製
した有機EL素子もしくは電子写真感光体等の素子特性
や繰り返し使用時での安定性が優れていることを見いだ
し本発明に至った。すなわち、本発明は下記一般式
[1]で示される正孔輸送材料である。 一般式[1]
Means for Solving the Problems As a result of intensive studies, the present inventors have found that at least one kind of hole transporting material represented by the general formula [1] has a large hole transporting ability, and an organic material prepared by using the same. The inventors have found that the device characteristics such as an EL device or an electrophotographic photosensitive member and the stability upon repeated use are excellent, and have reached the present invention. That is, the present invention is a hole transporting material represented by the following general formula [1]. General formula [1]

【化2】 [式中、R1 〜R6 は、置換基を有して良いアリール基
を表し、ただしR1 〜R 6の少なくとも1つは、隣接す
る置換基同士でシクロアルキル環を形成したアリール基
を表す。Ar1 〜Ar3 は、置換基を有して良いアリー
レン基を表す。]
Embedded image [Wherein, R 1 to R 6 represent an aryl group which may have a substituent, provided that at least one of R 1 to R 6 represents an aryl group in which adjacent substituents form a cycloalkyl ring. Represent. Ar 1 to Ar 3 represent an arylene group which may have a substituent. ]

【0010】更に、本発明は、一般式[1]において、
1 、R3 およびR5 が隣接する置換基同士でシクロア
ルキル環を形成したアリール基である正孔輸送材料であ
る。
Further, the present invention provides a compound represented by the general formula [1]:
A hole transport material in which R 1 , R 3 and R 5 are aryl groups in which adjacent substituents form a cycloalkyl ring.

【0011】更に、本発明は、隣接する置換基同士でシ
クロアルキル環を形成したアリール基が、置換基を有し
て良いテトラヒドロキシナフタレン基である上記正孔輸
送材料である。
Further, the present invention is the above hole transport material, wherein the aryl group in which adjacent substituents form a cycloalkyl ring is a tetrahydroxynaphthalene group which may have a substituent.

【0012】更に、本発明は、一対の電極間に、発光層
または発光層を含む複数層の有機化合物薄膜を形成して
なる有機エレクトロルミネッセンス素子において、少な
くとも一層が上記正孔輸送材料を含有する層である有機
エレクトロルミネッセンス素子である。
Further, the present invention provides an organic electroluminescent device comprising a light-emitting layer or a plurality of organic compound thin films including a light-emitting layer formed between a pair of electrodes, wherein at least one layer contains the above-mentioned hole transport material. The organic electroluminescent device is a layer.

【0013】更に、本発明は、一対の電極間に、正孔輸
送層と発光層とを含む有機化合物薄膜を形成してなる有
機エレクトロルミネッセンス素子において、正孔輸送層
が上記正孔輸送材料を含有する層である有機エレクトロ
ルミネッセンス素子である。
Further, the present invention provides an organic electroluminescent device comprising an organic compound thin film including a hole transport layer and a light emitting layer formed between a pair of electrodes, wherein the hole transport layer comprises the hole transport material. It is an organic electroluminescence element which is a layer containing.

【0014】更に、本発明は、一対の電極間に、発光層
または発光層を含む複数層の有機化合物薄膜を形成して
なる有機エレクトロルミネッセンス素子において、発光
層が上記正孔輸送材料を含有する層である有機エレクト
ロルミネッセンス素子である。
Further, the present invention provides an organic electroluminescence device comprising a light emitting layer or a plurality of organic compound thin films including the light emitting layer formed between a pair of electrodes, wherein the light emitting layer contains the above hole transport material. The organic electroluminescent device is a layer.

【0015】更に、本発明は、導電性支持体上に、電荷
発生材料および正孔輸送材料を使用してなる電子写真感
光体において、上記正孔輸送材料が上記正孔輸送材料で
ある電子写真感光体である。
Further, the present invention relates to an electrophotographic photosensitive member using a charge generation material and a hole transport material on a conductive support, wherein the hole transport material is the above-described hole transport material. It is a photoconductor.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0016】一般式[1]のR1 〜R6 はアリール基で
あり、フェニル基、トリル基、ナフチル基、アントラニ
ル基、フェナントレニル基、フルオレニル基、アセナフ
チル基、アズレニル基、ヘプタレニル基、アセナフチレ
ニル基、ピレニル基、ビフェニル基、4−エチルビフェ
ニル基、ターフェニル基、クオーターフェニル基、ベン
ズ〔a〕アントラニル基、トリフェニレニル基、2,3
−ベンゾフルオレニル基、3,4−ベンゾピレニル基等
がある。Ar1 〜Ar3 はアリーレン基であり、フェニ
レン基、2−メチルフェニレン基、ナフチレン基、アン
トラニレン基、フェナントレニレン基、フルオレニレン
基、アセナフチレン基、ピレニレン基、ビフェニレン
基、2,2’−ジメチルビフェニレン基、3,3’−ジ
クロロビフェニレン基、ターフェニレン基、クオーター
フェニレン基等がある。また、隣接する置換基同士で形
成する脂肪族式環としては、炭素数4〜8の脂肪族式環
であり、シクロブチル環、シクロペンチル環、シクロヘ
キシル環、シクロヘプチル環、シクロオクチル環等があ
る。
R 1 to R 6 in the general formula [1] are aryl groups, and include phenyl, tolyl, naphthyl, anthranyl, phenanthrenyl, fluorenyl, acenaphthyl, azulenyl, heptalenyl, acenaphthenyl, Pyrenyl group, biphenyl group, 4-ethylbiphenyl group, terphenyl group, quarterphenyl group, benz [a] anthranyl group, triphenylenyl group, 2,3
-A benzofluorenyl group and a 3,4-benzopyrenyl group. Ar 1 to Ar 3 are an arylene group, and include a phenylene group, a 2-methylphenylene group, a naphthylene group, an anthranylene group, a phenanthrenylene group, a fluorenylene group, an acenaphthylene group, a pyrenylene group, a biphenylene group, and 2,2′-dimethyl Examples include a biphenylene group, a 3,3′-dichlorobiphenylene group, a terphenylene group, and a quarterphenylene group. The aliphatic ring formed by adjacent substituents is an aliphatic ring having 4 to 8 carbon atoms, such as a cyclobutyl ring, a cyclopentyl ring, a cyclohexyl ring, a cycloheptyl ring, a cyclooctyl ring, and the like.

【0017】本発明における一般式[1]で示されるア
リール基、および、アリーレン基に置換してもよい置換
基の代表例としては、以下に示す置換基がある。ハロゲ
ン原子としては弗素、塩素、臭素、ヨウ素がある。置換
もしくは未置換のアルキル基としては、メチル基、エチ
ル基、プロピル基、ブチル基、sec−ブチル基、te
rt−ブチル基、ペンチル基、ヘキシル基、ヘプチル
基、オクチル基、ステアリル基、トリクロロメチル基、
トリフロロメチル基、シクロプロピル基、シクロヘキシ
ル基、1,3−シクロヘキサジエニル基、2−シクロペ
ンテン−1−イル基、2,4−シクロペンタジエン−1
−イリデニル基等がある。置換もしくは未置換のアルコ
キシ基としては、メトキシ基、エトキシ基、プロポキシ
基、n−ブトキシ基、sec−ブトキシ基、tert−
ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ス
テアリルオキシ基、トリフロロメトキシ基等がある。置
換もしくは未置換のチオアルコキシ基としては、メチル
チオ基、エチルチオ基、プロピルチオ基、ブチルチオ
基、sec−ブチルチオ基、tert−ブチルチオ基、
ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オ
クチルチオ基等がある。
Representative examples of the substituents which may be substituted on the aryl group represented by the general formula [1] and the arylene group in the present invention include the following substituents. Halogen atoms include fluorine, chlorine, bromine and iodine. Examples of the substituted or unsubstituted alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a sec-butyl group, a te
rt-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group,
Trifluoromethyl group, cyclopropyl group, cyclohexyl group, 1,3-cyclohexadienyl group, 2-cyclopenten-1-yl group, 2,4-cyclopentadiene-1
-Iridenyl group and the like. Examples of the substituted or unsubstituted alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, a sec-butoxy group and a tert-
Butoxy, pentyloxy, hexyloxy, stearyloxy, trifluoromethoxy and the like. Examples of the substituted or unsubstituted thioalkoxy group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a sec-butylthio group, a tert-butylthio group,
Examples include a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.

【0018】モノまたはジ置換アミノ基としては、メチ
ルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエ
チルアミノ基、ジプロピルアミノ基、ジブチルアミノ
基、ジフェニルアミノ基、ビス(アセトオキシメチル)
アミノ基、ビス(アセトオキシエチル)アミノ基、ビス
(アセトオキシプロピル)アミノ基、ビス(アセトオキ
シブチル)アミノ基、ジベンジルアミノ基等がある。置
換もしくは未置換のアリールオキシ基としては、フェノ
キシ基、p−tert−ブチルフェノキシ基、3−フル
オロフェノキシ基等がある。置換もしくは未置換のアリ
ールチオ基としては、フェニルチオ基、3−フルオロフ
ェニルチオ基等がある。置換もしくは未置換のアリール
基としては、フェニル基、ビフェニル基、トリフェニル
基、ターフェニル基、3−ニトロフェニル基、4−メチ
ルチオフェニル基、3,5−ジシアノフェニル基、o
−,m−およびp−トリル基、キシリル基、o−,m−
およびp−クメニル基、メシチル基、ペンタレニル基、
インデニル基、ナフチル基、アズレニル基、ヘプタレニ
ル基、アセナフチレニル基、フェナレニル基、フルオレ
ニル基、アントリル基、アントラキノリル基、3−メチ
ルアントリル基、フェナントリル基、トリフェニレニル
基、ピレニル基、クリセニル基、2−エチル−1−クリ
セニル基、ピセニル基、ペリレニル基、6−クロロペリ
レニル基、ペンタフェニル基、ペンタセニル基、テトラ
フェニレニル基、ヘキサフェニル基、ヘキサセニル基、
ルビセニル基、コロネニル基、トリナフチレニル基、ヘ
プタフェニル基、ヘプタセニル基、ピラントレニル基、
オバレニル基等がある。
The mono- or di-substituted amino groups include methylamino, dimethylamino, ethylamino, diethylamino, dipropylamino, dibutylamino, diphenylamino, bis (acetooxymethyl)
There are an amino group, a bis (acetooxyethyl) amino group, a bis (acetooxypropyl) amino group, a bis (acetooxybutyl) amino group, a dibenzylamino group and the like. Examples of the substituted or unsubstituted aryloxy group include a phenoxy group, a p-tert-butylphenoxy group, and a 3-fluorophenoxy group. Examples of the substituted or unsubstituted arylthio group include a phenylthio group and a 3-fluorophenylthio group. Examples of the substituted or unsubstituted aryl group include phenyl, biphenyl, triphenyl, terphenyl, 3-nitrophenyl, 4-methylthiophenyl, 3,5-dicyanophenyl, o
-, M- and p-tolyl groups, xylyl groups, o-, m-
And p-cumenyl group, mesityl group, pentalenyl group,
Indenyl, naphthyl, azulenyl, heptalenyl, acenaphthylenyl, phenalenyl, fluorenyl, anthryl, anthraquinolyl, 3-methylanthryl, phenanthryl, triphenylenyl, pyrenyl, chrysenyl, 2-ethyl- 1-chrysenyl group, picenyl group, perylenyl group, 6-chloroperylenyl group, pentaphenyl group, pentacenyl group, tetraphenylenyl group, hexaphenyl group, hexacenyl group,
Rubicenyl group, coronenyl group, trinaphthylenyl group, heptaphenyl group, heptaenyl group, pyranthenyl group,
Ovalenyl group and the like.

【0019】置換もしくは未置換の複素環基としては、
チオニル基、フリル基、ピロリル基、イミダゾリル基、
ピラゾリル基、ピリジル基、ピラジニル基、ピリミジニ
ル基、ピリダジニル基、インドリル基、キノリル基、イ
ソキノリル基、フタラジニル基、キノキサリニル基、キ
ナゾリニル基、カルバゾリル基、アクリジニル基、フェ
ナジニル基、フルフリル基、イソチアゾリル基、イソキ
サゾリル基、フラザニル基、フェノキサジニル基、ベン
ゾチアゾリル基、ベンゾオキサゾリル基、ベンズイミダ
ゾリル基、2−メチルピリジル基、3−シアノピリジル
基等があるが、上記置換基に具体的に限定されるもので
はない。
The substituted or unsubstituted heterocyclic group includes
Thionyl group, furyl group, pyrrolyl group, imidazolyl group,
Pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolyl, quinolyl, isoquinolyl, phthalazinyl, quinoxalinyl, quinazolinyl, carbazolyl, acridinyl, phenazinyl, furfuryl, isothiazolyl, isoxazolyl , A furazanyl group, a phenoxazinyl group, a benzothiazolyl group, a benzooxazolyl group, a benzimidazolyl group, a 2-methylpyridyl group, a 3-cyanopyridyl group, and the like, but are not specifically limited to the above substituents.

【0020】また、隣接した置換基同士で5ないし7員
環の酸素原子、窒素原子、硫黄原子等が含まれてもよい
シクロアルキル環、アリール環、複素環を形成してもよ
く、これらの環の任意の位置にさらに置換基を有しても
よく、これらの代表例としては、フェニル基、フルオレ
ニル基、アントリル基、アントラキノニル基、3−メチ
ルアントリル基、フェナントリル基、トリフェニレニル
基、ピレニル基、クリセニル基、2−エチル−1−クリ
セニル基、ピセニル基、ペリレニル基、6−クロロペリ
レニル基、ペンタフェニル基、ペンタセニル基、テトラ
フェニレニル基、ヘキサフェニル基、ヘキサセニル基、
ルビセニル基、コロネニル基、トリナフチレニル基、ヘ
プタフェニル基、ヘプタセニル基、ピラントレニル基、
オバレニル基等がある。複素環としては、チオニル基、
フリル基、ピロリル基、イミダゾリル基、ピラゾリル
基、ピリジル基、ピラジニル基、ピリミジニル基、ピリ
ダジニル基、インドリル基、キノリル基、イソキノリル
基、フタラジニル基、キノキサリニル基、キナゾリニル
基、カルバゾリル基、アクリジニル基、フェナジニル
基、フルフリル基、イソチアゾリル基、イソキサゾリル
基、フラザニル基、フェノキサジニル基、ベンゾチアゾ
リル基、ベンゾオキサゾリル基、ベンズイミダゾリル
基、2−メチルピリジル基、3−シアノピリジル基等が
ある。
Adjacent substituents may form a 5- to 7-membered cycloalkyl, aryl, or heterocyclic ring which may contain an oxygen atom, a nitrogen atom, a sulfur atom and the like. A substituent may be further present at any position on the ring, and typical examples thereof include a phenyl group, a fluorenyl group, an anthryl group, an anthraquinonyl group, a 3-methylanthryl group, a phenanthryl group, a triphenylenyl group and a pyrenyl group. , A chrysenyl group, a 2-ethyl-1-chrysenyl group, a picenyl group, a perylenyl group, a 6-chloroperylenyl group, a pentaphenyl group, a pentacenyl group, a tetraphenylenyl group, a hexaphenyl group, a hexacenyl group,
Rubicenyl group, coronenyl group, trinaphthylenyl group, heptaphenyl group, heptaenyl group, pyranthenyl group,
Ovalenyl group and the like. As the heterocycle, a thionyl group,
Furyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolyl, quinolyl, isoquinolyl, phthalazinyl, quinoxalinyl, quinazolinyl, carbazolyl, acridinyl, phenazinyl , Furfuryl, isothiazolyl, isoxazolyl, furazanyl, phenoxazinyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, 2-methylpyridyl, 3-cyanopyridyl and the like.

【0021】本発明の一般式[1]で示される化合物
は、例えば以下の方法により合成することができる。ニ
トロベンゼン溶媒中、トリス(p−ブロモフェニル)ア
ミンに、5〜8倍モルの置換芳香族ジアミン化合物を、
炭酸カリウム、銅等の触媒と共に200℃で50時間反
応させて、一般式[1]で示される芳香族アミン化合物
を合成する。
The compound represented by the general formula [1] of the present invention can be synthesized, for example, by the following method. In a nitrobenzene solvent, a 5- to 8-fold molar substitution of a substituted aromatic diamine compound is added to tris (p-bromophenyl) amine.
By reacting with a catalyst such as potassium carbonate or copper at 200 ° C. for 50 hours, an aromatic amine compound represented by the general formula [1] is synthesized.

【0022】一般式[1]で示される化合物の代表例を
具体的に表1に例示するが、これらに限定されるもので
はない。
Representative examples of the compound represented by the general formula [1] are specifically shown in Table 1, but are not limited thereto.

【0023】[0023]

【表1】 [Table 1]

【0024】 [0024]

【0025】 [0025]

【0026】 [0026]

【0027】 [0027]

【0028】 [0028]

【0029】本発明の正孔輸送材料は、同一層中で他の
正孔もしくは電子輸送性化合物と混合して使用してもさ
しつかえない。本発明の化合物は正孔輸送性に優れてい
るので、正孔輸送性材料として極めて有効に使用するこ
とができる。
The hole transporting material of the present invention may be used in a mixture with other hole or electron transporting compounds in the same layer. Since the compound of the present invention has excellent hole transporting properties, it can be used very effectively as a hole transporting material.

【0030】有機EL素子は、陽極と陰極間に一層もし
くは多層の有機薄膜を形成した素子である。一層型の場
合、陽極と陰極との間に発光層を設けている。発光層
は、発光材料を含有し、それに加えて陽極から注入した
正孔もしくは陰極から注入した電子を発光材料まで輸送
させるために正孔輸送材料もしくは電子輸送材料を含有
しても良い。発光材料が、正孔輸送性もしくは電子輸送
性を有している場合もある。多層型は、(陽極/正孔注
入層/発光層/陰極)、(陽極/発光層/電子注入層/
陰極)、(陽極/正孔注入層/発光層/電子注入層/陰
極)の多層構成で積層した有機EL素子がある。一般式
[1]の化合物は、どの素子構成においても使用するこ
とが出来る。一般式[1]の化合物は、大きな正孔輸送
能力をもっているので、正孔注入層もしくは発光層のい
ずれの層においても、正孔輸送材料として使用できる。
本発明の正孔輸送材料は、陽極からの正孔注入機能、お
よび注入した正孔を輸送する機能を有しているので、正
孔注入層が二層以上の場合でも、いずれの層に使用する
ことが出来る。一般式[1]の化合物により形成される
薄膜は非晶質性があるので、薄膜にした場合の長期間の
保存や素子を駆動させた場合の発光寿命等においても有
利である。また、一般式[1]の化合物は、ITO等の
金属電極に対する密着性も良好であり、膜膜のイオン化
ポテンシャルも低いことから、陽極からの正孔注入に有
利であるので、正孔注入層を二層以上にした場合、一般
式[1]の化合物を金属電極(陽極)側の正孔注入層に
使用した方がさらに有利である。
An organic EL device is a device in which a single or multilayer organic thin film is formed between an anode and a cathode. In the case of a single layer type, a light emitting layer is provided between an anode and a cathode. The light-emitting layer contains a light-emitting material and may further contain a hole-transport material or an electron-transport material for transporting holes injected from an anode or electrons injected from a cathode to the light-emitting material. The light emitting material may have a hole transporting property or an electron transporting property. The multilayer type includes (anode / hole injection layer / light-emitting layer / cathode), (anode / light-emitting layer / electron injection layer /
There is an organic EL device having a multilayer structure of (cathode) and (anode / hole injection layer / emission layer / electron injection layer / cathode). The compound of the general formula [1] can be used in any device configuration. Since the compound of the general formula [1] has a large hole transporting ability, it can be used as a hole transporting material in any of the hole injection layer and the light emitting layer.
Since the hole transport material of the present invention has a function of injecting holes from the anode and a function of transporting injected holes, it can be used for any of the two or more hole injection layers. You can do it. Since the thin film formed of the compound represented by the general formula [1] has an amorphous property, it is advantageous in long-term storage when the thin film is formed, light emission life when the element is driven, and the like. Further, the compound represented by the general formula [1] has good adhesion to a metal electrode such as ITO and has a low ionization potential of the film, which is advantageous for hole injection from the anode. When two or more layers are used, it is more advantageous to use the compound of the general formula [1] for the hole injection layer on the metal electrode (anode) side.

【0031】発光層には、必要があれば、本発明の一般
式[1]の化合物に加えて、発光材料、ドーピング材
料、キャリア輸送を行う正孔輸送材料や電子輸送材料を
使用することもできる。二層構造の場合、発光層と正孔
注入層を分離している。この構造により、正孔注入層か
ら発光層への正孔注入効率が向上して、発光輝度や発光
効率を増加させることができる。この場合、発光のため
には、発光層に使用される発光物質自身が電子輸送性で
あること、または発光層中に電子輸送材料を添加するこ
とが望ましい。もう一つの層構成として、発光層と電子
注入層による二層構造がある。この場合、発光材料自身
が正孔輸送性であること、または発光層中に正孔輸送材
料を添加することが望ましい。
In the light emitting layer, if necessary, a light emitting material, a doping material, a hole transporting material for transporting carriers and an electron transporting material may be used in addition to the compound of the general formula [1] of the present invention. it can. In the case of a two-layer structure, the light emitting layer and the hole injection layer are separated. With this structure, the efficiency of hole injection from the hole injection layer to the light emitting layer is improved, and the light emission luminance and the light emission efficiency can be increased. In this case, in order to emit light, it is desirable that the light emitting substance used in the light emitting layer itself has an electron transporting property, or that an electron transporting material is added to the light emitting layer. Another layer configuration includes a two-layer structure including a light emitting layer and an electron injection layer. In this case, it is desirable that the light emitting material itself has a hole transporting property, or that the hole transporting material is added to the light emitting layer.

【0032】また、三層構造の場合は、発光層、正孔注
入層、電子注入層を有し、発光層での正孔と電子の再結
合の効率を向上させている。このように、有機EL素子
を多層構造にすることにより、クエンチングによる輝度
や寿命の低下を防ぐことができる。このような多層構造
の素子においても、必要があれば、発光材料、ドーピン
グ材料、キャリア輸送を行う正孔輸送材料や電子輸送材
料を組み合わせて使用することが出来る。また、正孔注
入層、発光層、電子注入層は、それぞれ二層以上で形成
されていても良い。
The three-layer structure has a light emitting layer, a hole injection layer, and an electron injection layer to improve the efficiency of recombination of holes and electrons in the light emitting layer. In this manner, by making the organic EL element have a multilayer structure, it is possible to prevent a decrease in luminance and life due to quenching. In such an element having a multilayer structure, a light emitting material, a doping material, a hole transport material for transporting carriers, and an electron transport material can be used in combination, if necessary. In addition, each of the hole injection layer, the light emitting layer, and the electron injection layer may be formed of two or more layers.

【0033】有機EL素子の陽極に使用される導電性材
料としては、4eVより大きな仕事関数を持つものが適
しており、炭素、アルミニウム、バナジウム、鉄、コバ
ルト、ニッケル、タングステン、銀、金、白金、パラジ
ウム等およびそれらの合金、ITO基板、NESA基板
と称される酸化スズ、酸化インジウム等の酸化金属、さ
らにはポリチオフェンやポリピロール等の有機導電性樹
脂が用いられる。陰極に使用される導電性材料として
は、4eVより小さな仕事関数を持つものが好適であ
り、マグネシウム、カルシウム、錫、鉛、チタニウム、
イットリウム、リチウム、ルテニウム、マンガン等およ
びそれらの合金が用いられる。合金としては、マグネシ
ウム/銀、マグネシウム/インジウム、リチウム/アル
ミニウムなどがあるが、これらに限定されるものではな
い。陽極および陰極は必要があれば二層以上で形成され
ていても良い。
As the conductive material used for the anode of the organic EL element, those having a work function of more than 4 eV are suitable, and include carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, and platinum. , Palladium and the like, alloys thereof, metal oxides such as tin oxide and indium oxide called ITO substrates and NESA substrates, and organic conductive resins such as polythiophene and polypyrrole are used. As the conductive material used for the cathode, those having a work function smaller than 4 eV are preferable, and magnesium, calcium, tin, lead, titanium,
Yttrium, lithium, ruthenium, manganese and the like and alloys thereof are used. Alloys include, but are not limited to, magnesium / silver, magnesium / indium, lithium / aluminum, and the like. The anode and the cathode may be formed of two or more layers if necessary.

【0034】有機EL素子では、効率良く発光させるた
めに、少なくとも一方は素子の発光波長領域において充
分透明であることが望ましい。また、基板も透明である
ことが望ましい。透明電極は、上記の導電性材料を使用
して、蒸着やスパッタリング等の方法で所定の透光性を
確保するように設定する。発光面の電極は、光透過率を
10%以上にすることが望ましい。基板は、機械的、熱
的強度を有し、透明であれば限定されるものではない
が、例示すると、ガラス基板、ポリエチレン、ポリエー
テルサルフォン、ポリプロピレン等の透明性樹脂があ
り、板状、フィルム状のいずれでも良い。
In the organic EL device, it is desirable that at least one of them is sufficiently transparent in the emission wavelength region of the device in order to emit light efficiently. Further, it is desirable that the substrate is also transparent. The transparent electrode is set so as to secure a predetermined translucency by a method such as vapor deposition or sputtering using the above conductive material. The electrode on the light emitting surface desirably has a light transmittance of 10% or more. The substrate has mechanical and thermal strength, and is not limited as long as it is transparent.Examples include a glass substrate, a transparent resin such as polyethylene, polyethersulfone, and polypropylene, and a plate-like, Any of a film form may be used.

【0035】本発明に係わる有機EL素子の各層の形成
は、真空蒸着、スパッタリング等の乾式成膜法やスピン
コーティング、ディッピング等の湿式成膜法のいずれの
方法を適用することもできる。膜厚は特に限定されるも
のではないが、各層は適切な膜厚に設定する必要があ
る。膜厚が厚すぎると、一定の光出力を得るために大き
な印加電圧が必要になり効率が悪くなる。膜厚が薄すぎ
るとピンホール等が発生して、電界を印加しても充分な
発光輝度が得られない。通常の膜厚は5nmから10μ
mの範囲が適しているが、10nmから0.2μmの範
囲がさらに好ましい。
Each layer of the organic EL device according to the present invention can be formed by any of a dry film forming method such as vacuum evaporation and sputtering and a wet film forming method such as spin coating and dipping. The thickness is not particularly limited, but each layer needs to be set to an appropriate thickness. If the film thickness is too large, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too small, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. Normal thickness is 5nm to 10μ
The range of m is suitable, but the range of 10 nm to 0.2 μm is more preferable.

【0036】湿式成膜法の場合、各層を形成する材料
を、クロロホルム、テトラヒドロフラン、ジオキサン等
の適切な溶媒に溶解または分散して薄膜を形成するが、
その溶媒はいずれであっても良い。また、いずれの薄膜
においても、成膜性向上、膜のピンホール防止等のため
適切な樹脂や添加剤を使用しても良い。本発明において
使用される樹脂としては、ポリスチレン、ポリカーボネ
ート、ポリアリレート、ポリエステル、ポリアミド、ポ
リウレタン、ポリスルフォン、ポリメチルメタクリレー
ト、ポリメチルアクリレート、セルロース等の絶縁性樹
脂、ポリ−N−ビニルカルバゾール、ポリシラン等の光
導電性樹脂、ポリチオフェン、ポリピロール等の導電性
樹脂を挙げることができる。また、添加剤としては、酸
化防止剤、紫外線吸収剤、可塑剤等を挙げることができ
る。
In the case of the wet film forming method, a material for forming each layer is dissolved or dispersed in an appropriate solvent such as chloroform, tetrahydrofuran, dioxane or the like to form a thin film.
The solvent may be any. In any of the thin films, a suitable resin or additive may be used to improve film forming properties, prevent pinholes in the film, and the like. Examples of the resin used in the present invention include insulating resins such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, and cellulose, poly-N-vinyl carbazole, and polysilane. And a conductive resin such as polythiophene and polypyrrole. Examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.

【0037】本発明の有機EL素子に使用できる発光材
料またはドーピング材料としては、アントラセン、ナフ
タレン、フェナントレン、ピレン、テトラセン、コロネ
ン、クリセン、フルオレセイン、ペリレン、フタロペリ
レン、ナフタロペリレン、ペリノン、フタロペリノン、
ナフタロペリノン、ジフェニルブタジエン、テトラフェ
ニルブタジエン、クマリン、オキサジアゾール、アルダ
ジン、ビスベンゾキサゾリン、ビススチリル、ピラジ
ン、シクロペンタジエン、キノリン金属錯体、アミノキ
ノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジ
フェニルエチレン、ビニルアントラセン、ジアミノカル
バゾール、トリフェニルアミン、ベンジジン型トリフェ
ニルアミン、スチリルアミン型トリフェニルアミン、ジ
アミン型トリフェニルアミンピラン、チオピラン、ポリ
メチン、メロシアニン、イミダゾールキレート化オキシ
ノイド化合物、キナクリドン、ルブレン等およびそれら
の誘導体があるが、これらに限定されるものではない。
The light emitting material or doping material usable in the organic EL device of the present invention includes anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone,
Naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, vinyl anthracene , Diaminocarbazole, triphenylamine, benzidine-type triphenylamine, styrylamine-type triphenylamine, diamine-type triphenylaminepyran, thiopyran, polymethine, merocyanine, imidazole chelated oxinoid compounds, quinacridone, rubrene, and derivatives thereof. However, the present invention is not limited to these.

【0038】一般式[1]の正孔輸送材料と併せて使用
できる正孔輸送材料としては、正孔を輸送する能力を持
ち、発光層または発光材料に対して優れた正孔注入効果
を有し、発光層で生成した励起子の電子注入層または電
子輸送材料への移動を防止し、かつ薄膜形成能の優れた
化合物が挙げられる。具体的には、フタロシアニン系化
合物、ナフタロシアニン系化合物、ポルフィリン系化合
物、オキサジアゾール、トリアゾール、イミダゾール、
イミダゾロン、イミダゾールチオン、ピラゾリン、ピラ
ゾロン、テトラヒドロイミダゾール、オキサゾール、オ
キサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリ
アリールアルカン、スチルベン、ブタジエン、ベンジジ
ン型トリフェニルアミン、スチリルアミン型トリフェニ
ルアミン、ジアミン型トリフェニルアミン等と、それら
の誘導体、およびポリビニルカルバゾール、ポリシラ
ン、導電性高分子等の高分子材料等があるが、これらに
限定されるものではない。
The hole transporting material that can be used in combination with the hole transporting material of the general formula [1] has the ability to transport holes and has an excellent hole injection effect on the light emitting layer or the light emitting material. In addition, a compound that prevents excitons generated in the light emitting layer from moving to the electron injection layer or the electron transport material and has excellent thin film forming ability can be used. Specifically, phthalocyanine compounds, naphthalocyanine compounds, porphyrin compounds, oxadiazole, triazole, imidazole,
Imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, polyarylalkane, stilbene, butadiene, benzidine triphenylamine, styrylamine triphenylamine, diamine triphenylamine, etc. And derivatives thereof, and high molecular materials such as polyvinyl carbazole, polysilane, and conductive polymers, but are not limited thereto.

【0039】電子輸送材料としては、電子を輸送する能
力を持ち、発光層または発光材料に対して優れた電子注
入効果を有し、発光層で生成した励起子の正孔注入層ま
たは正孔輸送材料への移動を防止し、かつ薄膜形成能の
優れた化合物が挙げられる。例えば、フルオレノン、ア
ントラキノジメタン、ジフェノキノン、チオピランジオ
キシド、オキサジアゾール、ペリレンテトラカルボン
酸、フレオレニリデンメタン、アントラキノジメタン、
アントロン等とそれらの誘導体があるが、これらに限定
されるものではない。また、正孔輸送材料に電子受容材
料を、電子輸送材料に電子供与性材料を添加して増感さ
せることもできる。
The electron transporting material has the ability to transport electrons, has an excellent electron injection effect on the light emitting layer or the light emitting material, and has a hole injection layer or a hole transporting function for excitons generated in the light emitting layer. Compounds that prevent transfer to a material and have excellent thin film forming ability are exemplified. For example, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxadiazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane,
Examples include, but are not limited to, anthrones and derivatives thereof. Alternatively, the electron transporting material may be sensitized by adding an electron accepting material to the hole transporting material and the electron donating material to the electron transporting material.

【0040】本発明の一般式[1]の化合物は、いずれ
の層に使用することができ、一般式[1]の化合物の他
に、発光材料、ドーピング材料、正孔輸送材料および電
子輸送材料の少なくとも1種が同一層に含有されてもよ
い。また、本発明により得られた有機EL素子の、温
度、湿度、雰囲気等に対する安定性の向上のために、素
子の表面に保護層を設けたり、シリコンオイル等を封入
して素子全体を保護することも可能である。以上のよう
に、本発明では有機EL素子に一般式[1]の化合物を
用いたため、発光効率と発光輝度を高くできた。また、
この素子は熱や電流に対して安定であり、さらには低い
駆動電圧で実用的に使用可能の発光輝度が得られるた
め、従来まで大きな問題であった連続発光時の輝度劣化
も大幅に改良することができた。本発明の有機EL素子
は、壁掛けテレビ等のフラットパネルディスプレイや、
平面発光体として、複写機やプリンター等の光源、液晶
ディスプレイや計器類等の光源、表示板、標識灯等へ応
用が考えられ、その工業的価値は非常に大きい。
The compound of the general formula [1] of the present invention can be used for any layer. In addition to the compound of the general formula [1], a luminescent material, a doping material, a hole transport material and an electron transport material May be contained in the same layer. In order to improve the stability of the organic EL device obtained according to the present invention with respect to temperature, humidity, atmosphere, etc., a protective layer is provided on the surface of the device, or silicon oil or the like is sealed to protect the entire device. It is also possible. As described above, in the present invention, since the compound of the general formula [1] was used for the organic EL device, the luminous efficiency and the luminous brightness could be increased. Also,
This element is stable against heat and current, and can obtain practically usable emission luminance at a low drive voltage. I was able to. The organic EL element of the present invention can be used for flat panel displays such as wall-mounted televisions,
The flat illuminant can be applied to light sources such as copiers and printers, light sources such as liquid crystal displays and instruments, display boards, and sign lamps, and its industrial value is very large.

【0041】次に、本発明の一般式[1]で示される化
合物を電子写真感光体として用いる場合について説明す
る。本発明の一般式[1]で示される化合物は、電子写
真感光体の何れの層においても使用できるが、高い正孔
輸送特性を有することから正孔輸送材料として使用する
ことが望ましい。該化合物は正孔輸送材料として作用
し、光を吸収することにより発生した電荷を極めて効率
よく輸送でき、高速応答性の感光体を得ることができ
る。また、該化合物は、耐オゾン性、光安定性に優れて
いるので、耐久性に優れた感光体を得ることができる。
Next, the case where the compound represented by the general formula [1] of the present invention is used as an electrophotographic photosensitive member will be described. The compound represented by the general formula [1] of the present invention can be used in any layer of an electrophotographic photoreceptor, but is preferably used as a hole transporting material because of having high hole transporting properties. The compound acts as a hole transporting material, can transport charges generated by absorbing light extremely efficiently, and can provide a photoreceptor with high-speed response. Further, since the compound is excellent in ozone resistance and light stability, a photosensitive member having excellent durability can be obtained.

【0042】電子写真感光体は、導電性基板上に電荷発
生材料と、必要があれば電荷輸送材料を結着樹脂に分散
させてなる感光層を設けた単層型感光体、導電性基板上
に下引き層、電荷発生層、正孔輸送層の順に積層した、
もしくは導電性基板または下引き層上に正孔輸送層、電
荷発生層の順に積層した積層型感光体等がある。ここ
で、下引き層は必要がなければ使用しなくても良い。上
記感光体は、必要があれば活性ガスからの表面保護およ
びトナーによるフィルミング防止等の意味でオーバーコ
ート層を設けることも出来る。
The electrophotographic photoreceptor is a single-layer type photoreceptor having a photosensitive layer in which a charge generation material and, if necessary, a charge transport material are dispersed in a binder resin on a conductive substrate. An undercoat layer, a charge generation layer, and a hole transport layer were laminated in this order,
Alternatively, there is a laminated photoconductor in which a hole transport layer and a charge generation layer are laminated on a conductive substrate or an undercoat layer in this order. Here, the undercoat layer may not be used if unnecessary. The photoreceptor may be provided with an overcoat layer, if necessary, for the purpose of protecting the surface from an active gas and preventing filming with a toner.

【0043】電荷発生材料としては、ビスアゾ、キナク
リドン、ジケトピロロピロール、インジゴ、ペリレン、
ペリノン、多環キノン、スクアリリウム塩、アズレニウ
ム塩、フタロシアニン、ナフタロシアニン等の有機化合
物、もしくは、セレン、セレン−テルル合金、硫化カド
ミウム、酸化亜鉛、アモルファスシリコン等の無機材料
が挙げられる。
Examples of the charge generating material include bisazo, quinacridone, diketopyrrolopyrrole, indigo, perylene,
Organic compounds such as perinone, polycyclic quinone, squarylium salt, azurenium salt, phthalocyanine, and naphthalocyanine; and inorganic materials such as selenium, selenium-tellurium alloy, cadmium sulfide, zinc oxide, and amorphous silicon.

【0044】感光体の各層は蒸着もしくは分散塗工方式
により成膜することが出来る。分散塗工は、スピンコー
ター、アプリケーター、スプレーコーター、浸漬コータ
ー、ローラーコーター、カーテンコーターおよびビード
コーター等を用いて行い、乾燥は室温から200℃、1
0分から6時間の範囲で静止または送風条件下で行う。
乾燥後の感光層の膜厚は単層型感光体の場合、5μmか
ら50μm、積層型感光体の場合、電荷発生層は0.0
1μmから5μm、好ましくは0.1μmから1μmで
あり、正孔輸送層は5μmから50μm、好ましくは1
0μmから20μmが適している。
Each layer of the photoreceptor can be formed by vapor deposition or dispersion coating. The dispersion coating is performed using a spin coater, an applicator, a spray coater, a dip coater, a roller coater, a curtain coater, a bead coater, or the like, and drying is performed from room temperature to 200 ° C.
It is carried out in the range of 0 minutes to 6 hours under static or blowing conditions.
The thickness of the photosensitive layer after drying is 5 μm to 50 μm in the case of a single layer type photoreceptor, and 0.05 μm in the case of a multilayer type photoreceptor.
1 μm to 5 μm, preferably 0.1 μm to 1 μm, and the hole transport layer is 5 μm to 50 μm, preferably 1 μm to 50 μm.
0 μm to 20 μm is suitable.

【0045】単層型感光体の感光層、積層型感光体の電
荷発生層もしくは正孔輸送層を形成する際に使用する樹
脂は広範な絶縁性樹脂から選択出来る。また、ポリ−N
−ビニルカルバゾール、ポリビニルアントラセンやポリ
シラン類などの有機光導電性ポリマーから選択出来る。
好ましくは、ポリビニルブチラール、ポリアリレート、
ポリカーボネート、ポリエステル、フェノキシ、アクリ
ル、ポリアミド、ウレタン、エポキシ、シリコン、ポリ
スチレン、ポリ塩化ビニル、塩酢ビ共重合体、フェノー
ルおよびメラミン樹脂等の絶縁性樹脂を挙げることが出
来る。電荷発生層もしくは正孔輸送層を形成するために
使用される樹脂は、電荷発生材料もしくは正孔輸送材料
に対して、100重量%以下が好ましいがこの限りでは
ない。樹脂は2種類以上組み合わせて使用しても良い。
また、必要があれば樹脂を使用しなくてもよい。また、
電荷発生層を蒸着、スパッタリング等の物理的成膜法に
より形成させることも出来る。蒸着、スパッタリング法
では、好ましくは10-5Toor以下の真空雰囲気下で
成膜することが望ましい。また、窒素、アルゴン、ヘリ
ウム等の不活性ガス中で成膜することも可能である。
The resin used for forming the photosensitive layer of the single layer type photoreceptor or the charge generation layer or the hole transport layer of the laminated type photoreceptor can be selected from a wide range of insulating resins. In addition, poly-N
-Can be selected from organic photoconductive polymers such as vinylcarbazole, polyvinylanthracene and polysilanes;
Preferably, polyvinyl butyral, polyarylate,
Examples thereof include insulating resins such as polycarbonate, polyester, phenoxy, acrylic, polyamide, urethane, epoxy, silicon, polystyrene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, phenol and melamine resin. The resin used for forming the charge generation layer or the hole transport layer is preferably, but not limited to, 100% by weight or less based on the charge generation material or the hole transport material. Two or more resins may be used in combination.
Further, if necessary, the resin may not be used. Also,
The charge generation layer can also be formed by a physical film formation method such as evaporation or sputtering. In the vapor deposition and sputtering methods, it is desirable to form a film in a vacuum atmosphere of preferably 10 -5 Tool or less. It is also possible to form a film in an inert gas such as nitrogen, argon or helium.

【0046】電子写真感光体の各層を形成する際に使用
する溶剤は、下引き層や他の感光層に影響を与えないも
のから選択することが好ましい。具体的には、ベンゼ
ン、キシレン等の芳香族炭化水素、アセトン、メチルエ
チルケトン、シクロヘキサノン等のケトン類、メタノー
ル、エタノール等のアルコール類、酢酸エチル、メチル
セロソルブ等のエステル類、四塩化炭素、クロロホル
ム、ジクロロメタン、ジクロロエタン、トリクロロエチ
レン等の脂肪族ハロゲン化炭化水素類、クロルベンゼ
ン、ジクロルベンゼン等の芳香族ハロゲン化炭化水素
類、テトラヒドロフラン、ジオキサン等のエーテル類等
が用いられるがこれらに限られるものではない。
The solvent used for forming each layer of the electrophotographic photosensitive member is preferably selected from those which do not affect the undercoat layer and other photosensitive layers. Specifically, aromatic hydrocarbons such as benzene and xylene, ketones such as acetone, methyl ethyl ketone and cyclohexanone, alcohols such as methanol and ethanol, esters such as ethyl acetate and methyl cellosolve, carbon tetrachloride, chloroform and dichloromethane But aliphatic halogenated hydrocarbons such as dichloroethane and trichloroethylene, aromatic halogenated hydrocarbons such as chlorobenzene and dichlorobenzene, and ethers such as tetrahydrofuran and dioxane are used, but are not limited thereto.

【0047】正孔輸送層は正孔輸送材料のみ、もしくは
正孔輸送材料を絶縁性樹脂に溶解させた塗液を塗布する
方法、もしくは蒸着等の乾式成膜法により形成される。
本感光体に使用される正孔輸送材料は、一般式[1]の
化合物に加えて他の正孔輸送材料を組み合わせて使用す
ることもできる。更に、耐熱性、耐磨耗性を向上させる
ために絶縁性樹脂を併用した場合においても、他の樹脂
との相溶性が良く、形成された薄膜が結晶として析出し
にくいので、感度、耐久性の向上のために有利である。
The hole transporting layer is formed by a method of applying only the hole transporting material, a coating solution in which the hole transporting material is dissolved in an insulating resin, or a dry film forming method such as vapor deposition.
The hole transporting material used in the present photoreceptor can be used in combination with another hole transporting material in addition to the compound represented by the general formula [1]. Furthermore, even when an insulating resin is used in combination to improve heat resistance and abrasion resistance, the compatibility with other resins is good, and the formed thin film is unlikely to precipitate as crystals, so sensitivity and durability are improved. This is advantageous for the improvement of

【0048】電子写真特性、画像特性等の向上のため
に、必要があれば基板と有機層の間に下引き層を設ける
ことができ、下引き層としてはポリアミド類、カゼイ
ン、ポリビニルアルコール、ゼラチン、ポリビニルブチ
ラール等の樹脂類、酸化アルミニウム等の金属酸化物な
どが用いられる。本発明の材料は、有機EL素子もしく
は電子写真感光体等の正孔輸送材料としのみでなく、光
電変換素子、太陽電池、イメージセンサー等有機光導電
材料のいずれの分野においても使用できる。
If necessary, an undercoat layer may be provided between the substrate and the organic layer to improve electrophotographic properties, image properties, and the like. Examples of the undercoat layer include polyamides, casein, polyvinyl alcohol, and gelatin. And resins such as polyvinyl butyral and metal oxides such as aluminum oxide. The material of the present invention can be used not only as a hole transport material such as an organic EL device or an electrophotographic photosensitive member, but also in any field of an organic photoconductive material such as a photoelectric conversion device, a solar cell, and an image sensor.

【0049】[0049]

【実施例】以下、本発明を実施例に基づき、さらに詳細
に説明する。DSC分析によれば、本発明の一般式
[1]で示される化合物は、ガラス転移点温度100
℃、融点250℃以上、分解点300℃以上であり、非
結晶性正孔輸送材料として従来まで使用されている4,
4’,4”−トリス[N−(3−メチルフェニル)−N
−フェニルアミノ]トリフェニルアミンに比べて、ガラ
ス転移点温度、融点、分解点が高く、有機EL素子の正
孔輸送材料として、高耐熱性であることがわかる。ま
た、この一般式[1]で示される全ての化合物は、結晶
性が低く、非結晶性化合物であるので、陽極基板や有機
薄膜層との密着性も良好であり、有機薄膜としての環境
に対する耐性や、有機EL素子にした時の径時寿命、発
光寿命に関しても大きな優位性がある。
The present invention will be described below in more detail with reference to examples. According to the DSC analysis, the compound represented by the general formula [1] of the present invention has a glass transition temperature of 100.
° C, melting point 250 ° C or higher, decomposition point 300 ° C or higher, and conventionally used as an amorphous hole transporting material 4,
4 ', 4 "-tris [N- (3-methylphenyl) -N
[Phenylamino] triphenylamine has a higher glass transition temperature, melting point, and decomposition point, indicating that the organic EL device has high heat resistance as a hole transporting material. In addition, all the compounds represented by the general formula [1] have low crystallinity and are non-crystalline compounds, so that they have good adhesion to the anode substrate and the organic thin film layer, and can be used in an environment as an organic thin film. There is also a great advantage in terms of durability, life time when used as an organic EL element, and light emission life.

【0050】実施例1 洗浄したITO電極付きガラス板上に、化合物(1)を
真空蒸着して、膜厚30nmの正孔注入層を得た。次い
で、トリス(8−ヒドロキシキノリン)アルミニウム錯
体を真空蒸着して膜厚50nmの発光層を作成し、その
上に、マグネシウムと銀を10:1で混合した合金で膜
厚150nmの電極を形成して、有機EL素子を得た。
正孔注入層および発光層は10-6Torrの真空中で、
基板温度室温の条件下で蒸着した。この素子は、直流電
圧5Vで発光輝度120(cd/m2 )、発光効率1.
2(lm/W)が得られた。
Example 1 Compound (1) was vacuum-deposited on a washed glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 30 nm. Next, a tris (8-hydroxyquinoline) aluminum complex was vacuum-deposited to form a 50-nm-thick light-emitting layer, on which a 150-nm-thick electrode was formed using an alloy of magnesium and silver mixed at a ratio of 10: 1. Thus, an organic EL device was obtained.
The hole injection layer and the light emitting layer are formed in a vacuum of 10 -6 Torr,
The deposition was performed at a substrate temperature of room temperature. This device has a luminous luminance of 120 (cd / m 2 ) at a DC voltage of 5 V and a luminous efficiency of 1.
2 (lm / W) was obtained.

【0051】実施例2 正孔注入層を、クロロホルムに溶解した化合物(2)を
スピンコート法で形成する以外は、実施例1と同様の方
法で有機EL素子を作製した。この素子は、直流電圧5
Vで発光輝度130(cd/m2 )、発光効率1.9
(lm/W)が得られた。
Example 2 An organic EL device was manufactured in the same manner as in Example 1, except that the hole injection layer was formed by spin coating the compound (2) dissolved in chloroform. This element has a DC voltage of 5
Luminance luminance 130 (cd / m 2 ) at V, luminous efficiency 1.9
(Lm / W) was obtained.

【0052】実施例3 洗浄したITO電極付きガラス板上に、化合物(3)を
真空蒸着して、膜厚30nmの正孔注入層を得た。次い
で、4,4’−ビス[N−(1−ナフチル)−N−フェ
ニルアミノ]ビフェニル(α−NPD)を真空蒸着し
て、膜厚10nmの正孔輸送層を得た。さらに、下記構
造で示される化合物(19)を真空蒸着して膜厚50n
mの電子注入型発光層を作成し、その上に、マグネシウ
ムと銀を10:1で混合した合金で膜厚150nmの電
極を形成して、有機EL素子を得た。正孔注入層および
発光層は10-6Torrの真空中で、基板温度室温の条
件下で蒸着した。この素子は、直流電圧5Vで発光輝度
270(cd/m2 )、発光効率2.1(lm/W)が
得られた。
Example 3 A compound (3) was vacuum-deposited on a washed glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 30 nm. Next, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD) was vacuum-deposited to obtain a 10-nm-thick hole transport layer. Further, a compound (19) represented by the following structure is vacuum-deposited to a thickness of 50 nm.
Then, a 150 nm-thick electrode was formed using an alloy in which magnesium and silver were mixed at a ratio of 10: 1 to obtain an organic EL device. The hole injection layer and the light emitting layer were deposited in a vacuum of 10 -6 Torr at a substrate temperature of room temperature. This device had a light emission luminance of 270 (cd / m 2 ) and a light emission efficiency of 2.1 (lm / W) at a DC voltage of 5 V.

【化3】 化合物(19)Embedded image Compound (19)

【0053】実施例4〜21 洗浄したITO電極付きガラス板上に、表1に示した化
合物をクロロホルムに溶解させ、スピンコーティング法
により膜厚50nmの正孔注入層を得た。次いで、化合
物(16)を真空蒸着して膜厚50nmの発光層を作成
し、その上に、マグネシウムと銀を10:1で混合した
合金で膜厚100nmの電極を形成して有機EL素子を
得た。発光層は10-6Torrの真空中で、基板温度室
温の条件下で蒸着した。この素子は、直流電圧5Vで表
2に示した発光特性を得た。
Examples 4 to 21 Compounds shown in Table 1 were dissolved in chloroform on a washed glass plate with an ITO electrode, and a hole injection layer having a thickness of 50 nm was obtained by spin coating. Next, the compound (16) was vacuum-deposited to form a 50 nm-thick light-emitting layer, on which a 100-nm-thick electrode was formed using an alloy in which magnesium and silver were mixed at a ratio of 10: 1 to form an organic EL device. Obtained. The light emitting layer was deposited in a vacuum of 10 -6 Torr at a substrate temperature of room temperature. This device obtained the emission characteristics shown in Table 2 at a DC voltage of 5 V.

【0054】[0054]

【表2】 [Table 2]

【0055】実施例22 洗浄したITO電極付きガラス板上に、化合物(3)を
真空蒸着して、膜厚40nmの正孔注入層を得た。次い
で、4,4’−ビス[N−(1−ナフチル)−N−フェ
ニルアミノ]ビフェニル(α−NPD)を真空蒸着し
て、膜厚10nmの正孔輸送層を得た。さらに、トリス
(8−ヒドロキシキノリン)アルミニウム錯体を真空蒸
着して膜厚50nmの発光層を作成し、さらに化合物
(16)を真空蒸着して膜厚50nmの電子注入層を作
成し、その上に、アルミニウムとリチウムを25:1で
混合した合金で膜厚150nmの電極を形成して、有機
EL素子を得た。正孔注入層および発光層は10-6To
rrの真空中で、基板温度室温の条件下で蒸着した。こ
の素子は、直流電圧5Vで発光輝度500(cd/
2)、発光効率2.7(lm/W)が得られた。
Example 22 Compound (3) was vacuum-deposited on a washed glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 40 nm. Next, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD) was vacuum-deposited to obtain a 10-nm-thick hole transport layer. Further, a tris (8-hydroxyquinoline) aluminum complex is vacuum-deposited to form a 50-nm-thick light-emitting layer, and a compound (16) is further vacuum-deposited to form a 50-nm-thick electron-injection layer. An electrode having a thickness of 150 nm was formed from an alloy in which aluminum and lithium were mixed at a ratio of 25: 1 to obtain an organic EL device. The hole injection layer and the light emitting layer are 10 -6 To
Vapor deposition was performed at a substrate temperature of room temperature in a vacuum of rr. This element has a light emission luminance of 500 (cd /
m 2 ) and a luminous efficiency of 2.7 (lm / W).

【0056】実施例23 洗浄したITO電極付きガラス板上に、化合物(6)を
真空蒸着して、膜厚40nmの正孔注入層を得た。次い
で、4,4’−ビス[N−(1−ナフチル)−N−フェ
ニルアミノ]ビフェニル(α−NPD)を真空蒸着し
て、膜厚10nmの正孔輸送層を得た。さらに、下記化
合物(20)を真空蒸着して膜厚50nmの発光層を作
成し、さらにトリス(8−ヒドロキシキノリン)アルミ
ニウム錯体を真空蒸着して膜厚50nmの電子注入層を
作成し、その上に、マグネシウムと銀を10:1で混合
した合金で膜厚150nmの電極を形成して、有機EL
素子を得た。正孔注入層および発光層は10-6Torr
の真空中で、基板温度室温の条件下で蒸着した。この素
子は、直流電圧5Vで発光輝度400(cd/m2 )、
発光効率2.4(lm/W)が得られた。
Example 23 Compound (6) was vacuum-deposited on a washed glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 40 nm. Next, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD) was vacuum-deposited to obtain a 10-nm-thick hole transport layer. Further, the following compound (20) was vacuum-deposited to form a 50-nm-thick light-emitting layer, and a tris (8-hydroxyquinoline) aluminum complex was further vacuum-deposited to form a 50-nm-thick electron injection layer. Then, an electrode having a thickness of 150 nm is formed of an alloy in which magnesium and silver are mixed at a ratio of 10: 1, and the organic EL is formed.
An element was obtained. The hole injection layer and the light emitting layer are 10 -6 Torr
Vacuum was deposited in a vacuum at a substrate temperature of room temperature. This device has a light emission luminance of 400 (cd / m 2 ) at a DC voltage of 5 V,
A luminous efficiency of 2.4 (lm / W) was obtained.

【化4】 化合物(20)Embedded image Compound (20)

【0057】実施例24 洗浄したITO電極付きガラス板上に、化合物(3)お
よびルブレンを重量比20:1で真空蒸着して膜厚60
nmの正孔注入型発光層を得た。さらに、トリス(8−
ヒドロキシキノリン)アルミニウム錯体を真空蒸着して
膜厚20nmの電子注入層を作成し、その上に、マグネ
シウムと銀を10:1で混合した合金で膜厚150nm
の電極を形成して、有機EL素子を得た。正孔注入層お
よび発光層は10-6Torrの真空中で、基板温度室温
の条件下で蒸着した。この素子は、直流電圧5Vで発光
輝度660(cd/m2 )、発光効率3.4(lm/
W)が得られた。
Example 24 Compound (3) and rubrene were vacuum-deposited at a weight ratio of 20: 1 on a washed glass plate with an ITO electrode to form a film having a thickness of 60%.
As a result, a hole injection type light emitting layer having a thickness of nm was obtained. Furthermore, Tris (8-
(Hydroxyquinoline) aluminum complex is vacuum-deposited to form an electron injection layer having a thickness of 20 nm, on which an alloy of magnesium and silver mixed at a ratio of 10: 1 to a thickness of 150 nm.
Was formed to obtain an organic EL device. The hole injection layer and the light emitting layer were deposited in a vacuum of 10 -6 Torr at a substrate temperature of room temperature. This device has a light emission luminance of 660 (cd / m 2 ) at a DC voltage of 5 V and a light emission efficiency of 3.4 (lm / m 2 ).
W) was obtained.

【0058】比較例1 正孔注入層の化合物(1)に代えて、4,4’,4”−
トリス[N−(3−メチルフェニル)−N−フェニルア
ミノ]トリフェニルアミンを使用する以外は、実施例1
と同様の方法で有機EL素子を作成した。この素子は、
直流電圧5Vで発光輝度約160(cd/m2 )、発光
効率1.2(lm/W)が得られた。
Comparative Example 1 In place of the compound (1) in the hole injection layer, 4,4 ′, 4 ″-
Example 1 except that tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine was used.
An organic EL device was prepared in the same manner as described above. This element
At a DC voltage of 5 V, a light emission luminance of about 160 (cd / m 2 ) and a light emission efficiency of 1.2 (lm / W) were obtained.

【0059】比較例2 正孔注入層の化合物(3)に代えて、4,4’,4”−
トリス[N−(3−メチルフェニル)−N−フェニルア
ミノ]トリフェニルアミンを使用する以外は、実施例2
2と同様の方法で有機EL素子を作成した。この素子
は、直流電圧5Vで発光輝度約220(cd/m2 )、
発光効率1.5(lm/W)が得られた。
Comparative Example 2 Instead of compound (3) in the hole injection layer, 4,4 ′, 4 ″-
Example 2 except that tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine was used.
An organic EL device was prepared in the same manner as in Example 2. This device has a light emission luminance of about 220 (cd / m 2 ) at a DC voltage of 5 V,
A luminous efficiency of 1.5 (lm / W) was obtained.

【0060】本実施例で示された全ての有機EL素子に
ついて、3(mA/cm2 )で連続発光させたところ、
1000時間以上初期輝度の50%以上の輝度を観測出
来たが、比較例1および比較例2の素子を同様の条件で
連続発光させたところ、共に200時間で初期輝度の5
0%以下になり、ダークスポットの数も増加した。以上
の結果の理由としては、本発明の化合物は非平面性化合
物であるので、薄膜形成の際には、非結晶性薄膜を形成
することが可能であること、化合物中に多くの縮合芳香
族環を有しているために、正孔輸送性が向上し、有機E
L素子の正孔注入性および正孔輸送性が良好になること
が挙げられる。さらには、正孔輸送材料の耐熱性も向上
しているので、連続発光時の発熱に対しても耐性が向上
している。一般式[1]の化合物は、アリール基の隣接
する置換基同士でシクロアルキル環を形成しているの
で、非結晶性が高くなり、基板からの正孔注入との基板
との密着性も向上することになる。本発明の有機EL素
子は、発光効率、発光輝度の向上と長寿命化を達成する
ものであり、併せて使用される発光材料、ドーピング材
料、正孔輸送材料、電子輸送材料、増感剤、樹脂、電極
材料等および素子作製方法を限定するものではない。
For all the organic EL devices shown in this example, continuous emission was performed at 3 (mA / cm 2 ).
Although the luminance of 50% or more of the initial luminance could be observed for 1000 hours or more, the devices of Comparative Example 1 and Comparative Example 2 were continuously illuminated under the same conditions.
0% or less, and the number of dark spots also increased. The reason for the above results is that since the compound of the present invention is a non-planar compound, it is possible to form a non-crystalline thin film when forming a thin film, and that many condensed aromatic compounds are contained in the compound. Since it has a ring, the hole transporting property is improved, and the organic E
The hole injection property and the hole transport property of the L element are improved. Further, the heat resistance of the hole transport material is also improved, so that the resistance to heat generation during continuous light emission is also improved. Since the compound of the general formula [1] forms a cycloalkyl ring between adjacent substituents of the aryl group, the non-crystallinity is increased, and the adhesion between the hole injection from the substrate and the substrate is also improved. Will do. The organic EL device of the present invention achieves improvement in luminous efficiency, luminous luminance and long life, and is used together with a luminescent material, a doping material, a hole transport material, an electron transport material, a sensitizer, It does not limit the resin, the electrode material and the like, and the element manufacturing method.

【0061】次に、本発明の正孔輸送材料を電子写真感
光体に使用した場合の実施例を以下に示す。
Next, examples in which the hole transport material of the present invention is used for an electrophotographic photosensitive member will be described below.

【0062】実施例25 ε型銅フタロシアニン4g、化合物(3)2g、ポリエ
ステル樹脂(東洋紡:バイロン200)14gをテトラ
ヒドロフラン80gと共にボールミルで5時間分散し
た。この分散液をアルミニウム基板上に塗工、乾燥し
て、膜厚20μmの単層型電子写真感光体を作製した。
Example 25 4 g of ε-type copper phthalocyanine, 2 g of compound (3) and 14 g of a polyester resin (Toyobo: Byron 200) were dispersed together with 80 g of tetrahydrofuran in a ball mill for 5 hours. This dispersion was coated on an aluminum substrate and dried to produce a 20 μm-thick single-layer electrophotographic photosensitive member.

【0063】実施例26 ジブロモアントアントロン6g、化合物(6)2g、ポ
リエステル樹脂(東洋紡:バイロン200)12gをテ
トラヒドロフラン80gと共にボールミルで5時間分散
した。この分散液をアルミニウム基板上に塗工、乾燥し
て、膜厚20μmの単層型電子写真感光体を作製した。
Example 26 6 g of dibromoanthanthrone, 2 g of compound (6) and 12 g of polyester resin (Toyobo: Byron 200) were dispersed together with 80 g of tetrahydrofuran in a ball mill for 5 hours. This dispersion was coated on an aluminum substrate and dried to produce a 20 μm-thick single-layer electrophotographic photosensitive member.

【0064】実施例27 N,N’−ビス(2,6−ジクロロフェニル)−3,
4,9,10−ペリレンジカルボキシイミド2g、ポリ
ビニルブチラール樹脂(積水化学:BH−3)2gをテ
トラヒドロフラン96gと共にボールミルで2時間分散
した。この分散液をアルミニウム基板上に塗工、乾燥し
て、膜厚0.3μmの電荷発生層を作製した。次に化合
物(10)10g、ポリカーボネート樹脂(帝人化成:
パンライトL−1250)10gをジクロロメタン80
gに溶解した。この塗液を電荷発生層上に塗工、乾燥し
て、膜厚20μmの正孔輸送層を形成し、積層型電子写
真感光体を作製した。
Example 27 N, N'-bis (2,6-dichlorophenyl) -3,
2 g of 4,9,10-perylenedicarboximide and 2 g of polyvinyl butyral resin (Sekisui Chemical: BH-3) were dispersed together with 96 g of tetrahydrofuran in a ball mill for 2 hours. This dispersion was coated on an aluminum substrate and dried to form a charge generation layer having a thickness of 0.3 μm. Next, 10 g of compound (10) and a polycarbonate resin (Teijin Chemical:
Panlite L-1250) 10 g with dichloromethane 80
g. This coating solution was applied on the charge generation layer and dried to form a 20 μm-thick hole transport layer, thereby producing a laminated electrophotographic photoreceptor.

【0065】実施例28〜45 τ型無金属フタロシアニン2g、ポリビニルブチラール
樹脂(積水化学:BH−3)2gをテトラヒドロフラン
96gと共にボールミルで2時間分散した。この分散液
をアルミニウム基板上に塗工、乾燥して、膜厚0.3μ
mの電荷発生層を作製した。次に表3に示した化合物1
0g、ポリカーボネート樹脂(帝人化成:パンライトL
−1250)10gをジクロロメタン80gに溶解し
た。この塗液を電荷発生層の上に塗工、乾燥して、膜厚
20μmの正孔輸送層を形成し、積層型電子写真感光体
を作製した。
Examples 28 to 45 2 g of τ-type metal-free phthalocyanine and 2 g of polyvinyl butyral resin (Sekisui Chemical: BH-3) were dispersed together with 96 g of tetrahydrofuran in a ball mill for 2 hours. This dispersion is coated on an aluminum substrate and dried to a thickness of 0.3 μm.
m of charge generation layers were produced. Next, Compound 1 shown in Table 3
0 g, polycarbonate resin (Teijin Chemical: Panlite L)
-1250) in 80 g of dichloromethane. This coating solution was applied on the charge generation layer and dried to form a hole transport layer having a thickness of 20 μm, thereby producing a laminated electrophotographic photosensitive member.

【0066】電子写真感光体の電子写真特性は以下の方
法で測定した。静電複写紙試験装置(川口電機製作所:
EPA−8100)により、スタティックモード2、コ
ロナ帯電は−5.2(kV)、5(lux)の白色光を
照射して、初期表面電位(V0 )、V0 と2秒間暗所に
放置した時の表面電位(V2 )の比(暗減衰率:DDR
2=V2 /V0 )、光露光後に帯電量が初期の1/2ま
で減少する時間から半減露量感度(E1/2 )および光露
光3秒後の表面電位(VR3 )を調べた。本実施例の電
子写真感光体の電子写真特性を表3に示す。
The electrophotographic characteristics of the electrophotographic photosensitive member were measured by the following methods. Electrostatic copying paper test equipment (Kawaguchi Electric Works:
EPA-8100), static mode 2, corona charging -5.2 (kV), 5 (lux) white light irradiation, initial surface potential (V0), V0 when left in a dark place for 2 seconds Surface potential (V2) ratio (dark decay rate: DDR)
2 = V2 / V0), the half-dew sensitivity (E1 / 2) and the surface potential (VR3) three seconds after light exposure were examined from the time when the charge amount decreased to half of the initial value after light exposure. Table 3 shows the electrophotographic characteristics of the electrophotographic photosensitive member of this example.

【0067】[0067]

【表3】 [Table 3]

【0068】本実施例で示された全ての電子写真感光体
は、1万回以上繰り返して使用した前後での表面電位、
感度等の電子写真特性や画像濃度の変化率が2%以内で
あることから、安定な電子写真特性を有し高品質の画像
が保持できる電子写真感光体であることがわかる。
All the electrophotographic photoreceptors shown in this embodiment have surface potentials before and after repeated use of 10,000 times or more.
The electrophotographic characteristics such as sensitivity and the rate of change in image density are within 2%, indicating that the electrophotographic photosensitive member has stable electrophotographic characteristics and can hold high quality images.

【0069】比較例3 正孔輸送層に、4,4’,4”−トリス[N−(3−メ
チルフェニル)−N−フェニルアミノ]トリフェニルア
ミンを使用する以外は、実施例27〜44と同様の方法
で電子写真感光体を作製した。この電子写真感光体の電
子写真特性は、初期電位(V0 )=−75(V)、2秒
後の電位保持率(DDR2 )=90(%)、半減露光量
感度(E1/2 )=1.0(lux・s)、3秒後の残留
電位(VR3 )=−25(V)であり、本発明の正孔輸
送材料に比べて劣っていた。また、この電子写真感光体
を1万回以上繰り返して使用した前後での表面電位、感
度等の電子写真特性や画像濃度は10%以上の変化率を
示し、高品質の画像を安定して得ることができなかっ
た。
Comparative Example 3 Examples 27-44 except that 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine was used for the hole transport layer. An electrophotographic photosensitive member was prepared in the same manner as in Example 1. The electrophotographic characteristics of the electrophotographic photosensitive member were as follows: initial potential (V0) =-75 (V), potential holding ratio after two seconds (DDR2) = 90 (%) ), Half-exposure dose sensitivity (E1 / 2) = 1.0 (lux.s), residual potential (VR3) after 3 seconds = -25 (V), which is inferior to the hole transport material of the present invention. In addition, the electrophotographic characteristics such as surface potential and sensitivity and the image density before and after repeated use of the electrophotographic photoreceptor more than 10,000 times show a change rate of 10% or more, and stable high-quality images are obtained. And couldn't get it.

【0070】[0070]

【発明の効果】本発明により、優れた正孔輸送能力を有
する化合物を得ることができた。本発明が提供した化合
物により、従来に比べて高発光効率、高輝度であり、長
寿命の有機EL素子、および感度、正孔輸送特性、初期
表面電位、暗減衰率等の電子写真特性に優れ、繰り返し
使用に対する疲労も少ない電子写真感光体を得ることが
できた。
According to the present invention, a compound having an excellent hole transporting ability can be obtained. The compound provided by the present invention has higher luminous efficiency, higher brightness and longer life than conventional EL devices, and excellent electrophotographic characteristics such as sensitivity, hole transport characteristics, initial surface potential, and dark decay rate. Thus, an electrophotographic photoreceptor having less fatigue due to repeated use could be obtained.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式[1]で示される正孔輸送材
料。 一般式[1] 【化1】 [式中、R1 〜R6 は、置換基を有して良いアリール基
を表し、ただしR1 〜R 6の少なくとも1つは、隣接す
る置換基同士でシクロアルキル環を形成したアリール基
を表す。Ar1 〜Ar3 は、置換基を有して良いアリー
レン基を表す。]
1. A hole transporting material represented by the following general formula [1]. General formula [1] [Wherein, R 1 to R 6 represent an aryl group which may have a substituent, provided that at least one of R 1 to R 6 represents an aryl group in which adjacent substituents form a cycloalkyl ring. Represent. Ar 1 to Ar 3 represent an arylene group which may have a substituent. ]
【請求項2】 一般式[1]において、R1 、R3 およ
びR5 が隣接する置換基同士でシクロアルキル環を形成
したアリール基である請求項1記載の正孔輸送材料。
2. The hole transport material according to claim 1 , wherein, in the general formula [1], R 1 , R 3 and R 5 are an aryl group in which adjacent substituents form a cycloalkyl ring.
【請求項3】 隣接する置換基同士でシクロアルキル環
を形成したアリール基が、置換基を有して良いテトラヒ
ドロキシナフタレン基である請求項1または2記載の正
孔輸送材料。
3. The hole transport material according to claim 1, wherein the aryl group in which adjacent substituents form a cycloalkyl ring is a tetrahydroxynaphthalene group which may have a substituent.
【請求項4】 一対の電極間に、発光層または発光層を
含む複数層の有機化合物薄膜を形成してなる有機エレク
トロルミネッセンス素子において、少なくとも一層が請
求項1ないし3いずれか記載の正孔輸送材料を含有する
層である有機エレクトロルミネッセンス素子。
4. An organic electroluminescent device comprising a light emitting layer or a plurality of organic compound thin films including a light emitting layer formed between a pair of electrodes, wherein at least one layer is a hole transporter according to claim 1. An organic electroluminescent element which is a layer containing a material.
【請求項5】 一対の電極間に、少なくとも正孔注入層
と発光層とを含む有機化合物薄膜を形成してなる有機エ
レクトロルミネッセンス素子において、上記正孔注入層
が請求項1ないし3いずれか記載の正孔輸送材料を含有
する層である有機エレクトロルミネッセンス素子。
5. An organic electroluminescence device in which an organic compound thin film including at least a hole injection layer and a light emitting layer is formed between a pair of electrodes, wherein the hole injection layer is any one of claims 1 to 3. An organic electroluminescence device, which is a layer containing the hole transporting material.
【請求項6】 一対の電極間に、発光層または発光層を
含む複数層の有機化合物薄膜を形成してなる有機エレク
トロルミネッセンス素子において、発光層が請求項1な
いし3いずれか記載の正孔輸送材料を含有する層である
有機エレクトロルミネッセンス素子。
6. An organic electroluminescence device in which a light emitting layer or a plurality of organic compound thin films including the light emitting layer is formed between a pair of electrodes, wherein the light emitting layer is a hole transporting material according to claim 1. An organic electroluminescent element which is a layer containing a material.
【請求項7】 導電性支持体上に、電荷発生材料および
正孔輸送材料を使用してなる電子写真感光体において、
正孔輸送材料が請求項1ないし3いずれか記載の正孔輸
送材料である電子写真感光体。
7. An electrophotographic photoreceptor comprising a charge generation material and a hole transport material on a conductive support,
An electrophotographic photosensitive member, wherein the hole transport material is the hole transport material according to any one of claims 1 to 3.
JP32126196A 1996-12-02 1996-12-02 Hole transport material and its use Expired - Fee Related JP3575198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32126196A JP3575198B2 (en) 1996-12-02 1996-12-02 Hole transport material and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32126196A JP3575198B2 (en) 1996-12-02 1996-12-02 Hole transport material and its use

Publications (2)

Publication Number Publication Date
JPH10158642A true JPH10158642A (en) 1998-06-16
JP3575198B2 JP3575198B2 (en) 2004-10-13

Family

ID=18130609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32126196A Expired - Fee Related JP3575198B2 (en) 1996-12-02 1996-12-02 Hole transport material and its use

Country Status (1)

Country Link
JP (1) JP3575198B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306738A (en) * 2004-04-16 2005-11-04 Ricoh Co Ltd Tetraamine compound, tris(3-bromophenyl)amine and their manufacturing methods
JP2012505168A (en) * 2008-10-08 2012-03-01 メルク パテント ゲーエムベーハー Materials for organic electroluminescent devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308688A (en) * 1991-04-08 1992-10-30 Pioneer Electron Corp Organic electroluminescence element
JPH061972A (en) * 1991-06-05 1994-01-11 Sumitomo Chem Co Ltd Organic electroluminescent element
JPH07331238A (en) * 1994-06-15 1995-12-19 Matsushita Electric Ind Co Ltd Electroluminescent element
JPH08152724A (en) * 1994-11-30 1996-06-11 Hodogaya Chem Co Ltd Electrophotographic photoreceptor
JPH08179526A (en) * 1994-12-22 1996-07-12 Toyo Ink Mfg Co Ltd Positive hole transfer material and its use
JPH08193191A (en) * 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd Organic electroluminescent element and organic thin film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308688A (en) * 1991-04-08 1992-10-30 Pioneer Electron Corp Organic electroluminescence element
JPH061972A (en) * 1991-06-05 1994-01-11 Sumitomo Chem Co Ltd Organic electroluminescent element
JPH07331238A (en) * 1994-06-15 1995-12-19 Matsushita Electric Ind Co Ltd Electroluminescent element
JPH08152724A (en) * 1994-11-30 1996-06-11 Hodogaya Chem Co Ltd Electrophotographic photoreceptor
JPH08179526A (en) * 1994-12-22 1996-07-12 Toyo Ink Mfg Co Ltd Positive hole transfer material and its use
JPH08193191A (en) * 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd Organic electroluminescent element and organic thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306738A (en) * 2004-04-16 2005-11-04 Ricoh Co Ltd Tetraamine compound, tris(3-bromophenyl)amine and their manufacturing methods
JP2012505168A (en) * 2008-10-08 2012-03-01 メルク パテント ゲーエムベーハー Materials for organic electroluminescent devices

Also Published As

Publication number Publication date
JP3575198B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
JP2686418B2 (en) Diarylamine derivative, production method and use thereof
JP3593717B2 (en) Novel triphenylamine derivative, its production method and use
JP3593719B2 (en) Novel triphenylamine derivative, its production method and use
JP3463358B2 (en) Hole transport material and its use
EP0699654B1 (en) Hole-transporting material and use thereof
JPH0887122A (en) Positive hole transferring material and its use
JP3640090B2 (en) Hole transport material and use thereof
US5968675A (en) Hole-transporting material and use thereof
US5698740A (en) Hole-transport material
JP3463402B2 (en) Hole transport material and its use
JP3269300B2 (en) Hole transport material and its use
JPH07145372A (en) Hole-transport mateiral and its use
JP3296147B2 (en) Triphenylamine polymer, its production method and use
JP3709637B2 (en) Hole transport material and use thereof
JP3593718B2 (en) Novel triphenylamine derivative, its production method and use
EP0779765B1 (en) Hole-transporting material and use thereof
JP3261930B2 (en) Hole transport material and its use
EP0687133B1 (en) Hole-transporting material and its use
JP3079903B2 (en) Hole transport material and its use
JP3575104B2 (en) Hole transport material and its use
JP3575198B2 (en) Hole transport material and its use
JP3261882B2 (en) Hole transport material and its use
JPH07331237A (en) Hole transport material and its use
JP4511782B2 (en) Heterocyclic compound having a perfluorinated aromatic group, and electrophotographic photosensitive member, electrophotographic apparatus and organic electroluminescent element using the compound
JP3261881B2 (en) Hole transport material and its use

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees