[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3593719B2 - Novel triphenylamine derivative, its production method and use - Google Patents

Novel triphenylamine derivative, its production method and use Download PDF

Info

Publication number
JP3593719B2
JP3593719B2 JP18320194A JP18320194A JP3593719B2 JP 3593719 B2 JP3593719 B2 JP 3593719B2 JP 18320194 A JP18320194 A JP 18320194A JP 18320194 A JP18320194 A JP 18320194A JP 3593719 B2 JP3593719 B2 JP 3593719B2
Authority
JP
Japan
Prior art keywords
layer
general formula
compound
organic
hole transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18320194A
Other languages
Japanese (ja)
Other versions
JPH0840997A (en
Inventor
美智子 玉野
俊一 鬼久保
敏文 上村
但 小川
年男 榎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP18320194A priority Critical patent/JP3593719B2/en
Publication of JPH0840997A publication Critical patent/JPH0840997A/en
Application granted granted Critical
Publication of JP3593719B2 publication Critical patent/JP3593719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、新規なトリフェニルアミン誘導体、その製造方法及びその用途に関するものであり、本誘導体は感光材料、有機光導電材料等に使用でき、さらに具体的には、平面光源や表示に使用される有機エレクトロルミネッセンス(EL)素子あるいは電子写真感光体の正孔輸送材料として有用な材料である。
【0002】
【従来の技術】
感光材料や正孔輸送材料として開発されている有機光導電材料は、低コスト、加工性が多様であり、無公害性などの多くの利点があり、多くの化合物が提案されている。例えば、オキサジアゾール誘導体(米国特許第3,189,447号)、オキサゾール誘導体(米国特許第3,257,203号)、ヒドラゾン誘導体(米国特許第3,717,462号、特開昭54−59,143号、米国特許第4,150,978号)、トリアリールピラゾリン誘導体(米国特許第3,820,989号、特開昭51−93,224号、特開昭55−108,667号)、アリールアミン誘導体(米国特許第3,180,730号、米国特許第4,232,103号、特開昭55−144,250号、特開昭56−119,132号)、スチルベン誘導体(特開昭58−190,953号、特開昭59−195,658号)などの有機光導電性材料が開示されている。
【0003】
正孔輸送材料を利用した技術の一つとしては、有機EL素子が挙げられる。有機物質を使用したEL素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般にELは発光層および該層をはさんだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入される。さらに、この電子が発光層において正孔と再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出する現象である。
【0004】
従来の有機EL素子は、無機EL素子に比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。
近年、10V以下の低電圧で発光する高い蛍光量子効率を持った有機化合物を含有した薄膜を積層した有機EL素子が報告され、関心を集めている(アプライド・フィジクス・レターズ、51巻、913ページ、1987年参照)。
この方法は、金属キレート錯体を蛍光体層、アミン系化合物を正孔注入層に使用して、高輝度の緑色発光を得ており、6〜7Vの直流電圧で輝度は数100cd/m、最大発光効率は1.5lm/Wを達成して、実用領域に近い性能を持っている。
【0005】
しかしながら、現在までの有機EL素子は、構成の改善により発光強度は改良されているが、未だ充分な発光輝度は有していない。また、繰り返し使用時の安定性に劣るという大きな問題を持っている。従って、より大きな発光輝度を持ち、繰り返し使用時での安定性の優れた有機EL素子の開発のために、優れた正孔輸送能力を有し、耐久性のある正孔輸送材料の開発が望まれている。
【0006】
さらに、正孔輸送材料を利用した技術としては、電子写真感光体が挙げられる。電子写真方式は、カールソンにより発明された画像形成法の一つである。この方式は、コロナ放電により感光体を帯電した後、光像露光して感光体に静電潜像を得、該静電潜像にトナーを付着させて現像し、得られたトナー像を紙へ転写することからなる。このような電子写真方式における感光体に要求される基本的な特性としては、暗所において適当な電位が保持されること、暗所における電荷の放電が少ないこと、光照射により速やかに電荷を放電することなどが挙げられる。従来までの電子写真感光体は、セレン、セレン合金、酸化亜鉛、硫化カドミウムおよびテルルなどの無機光導電体が使用されてきた。これらの無機光導電体は、耐久性が高く、耐刷枚数が多いなどの利点を有しているが、製造コストが高く、加工性が劣り、毒性を有するなどの問題点が指摘されている。これらの欠点を克服するために有機感光体の開発が行われているが、従来までの有機光導電材料を正孔輸送材料として用いた電子写真感光体は、帯電性、感度および残留電位などの電子写真特性が、必ずしも満足されているものとは言えないのが現状であり、優れた電荷輸送能力を有し、耐久性のある正孔輸送材料の開発が望まれていた。
【0007】
【発明が解決しようとする課題】
本発明の目的は、耐久性のある正孔輸送材料として有用な、新規トリフェニルアミン誘導体、その製造方法及びその用途を提供することにある。
【0008】
【課題を解決するための手段】
即ち、第一の発明は、一般式[1]で示されるトリフェニルアミン誘導体である。
一般式[1]
【化4】

Figure 0003593719
[式中、A1は一般式[2]で示されるトリフェニルアミン化合物残基を示し、A2は水素原子もしくは一般式[2]で示されるトリフェニルアミン化合物残基を示す。]
一般式[2]
【化5】
Figure 0003593719
[式中、R1〜R4は、それぞれ独立に、水素原子、置換のアルキル基を示す。]
【0009】
第二の発明は、1,2−シクロヘキサジオンと、下記一般式[3]で示されるトリフェニルアミン化合物とを反応させることを特徴とする請求項1記載のトリフェニルアミン誘導体の製造方法である。
一般式[3]
【化6】
Figure 0003593719
[式中、R〜Rは、上記と同じ意味を表す。]
【0010】
第三の発明は、請求項1記載のトリフェニルアミン誘導体からなる正孔輸送材料である。
【0011】
第四の発明は、一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を備えた有機エレクトロルミネッセンス素子において、少なくとも一層が請求項3記載の正孔輸送材料を含有する有機エレクトロルミネッセンス素子である。
【0012】
第五の発明は、導電性支持体上に、電荷発生材料および正孔輸送材料を使用してなる電子写真感光体において、正孔輸送材料が、請求項3記載の正孔輸送材料である電子写真感光体である。
【0013】
本発明における一般式[1]で示される化合物の、A1は一般式[2]で示されるトリフェニルアミン化合物残基を示し、A2は、それぞれ独立に水素原子もしくは、一般式[2]で示されるトリフェニルアミン化合物残基を示す。
式中、R1〜R4は、それぞれ独立に、水素原子、置換のアルキル基である。
1〜R4の具体例は、置換のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基がある。
【0014】
本発明において、一般式[1]で示される化合物は、新規物質であり、例えば以下の方法により製造することができる。
1,2−シクロヘキサジオンに、4〜5倍モルの下記一般式[3]で示される置換基を有するトリフェニルアミン化合物を酢酸溶媒中、メタンスルホン酸等の酸触媒を用いて脱水反応させることにより、一般式[1]で示されるトリフェニルアミン誘導体を製造することができる。また、本発明で用いられる酸触媒としては、メタンスルホン酸の代わりに、トリフルオロ酢酸、p−トルエンスルホン酸の様な有機酸、または、硫酸、塩酸、ルイス酸等も可能である。また、有機溶剤としては、酢酸の他に、1,4−ジオキサン、エーテル、石油エーテル等も可能である。ここで、1,2−シクロヘキサジオン及び一般式[3]の混合比を1:4以下にするとトリフェニルアミン化合物の導入個数が4個より少なくなり、反応時間を20時間以上にすることにより、トリフェニルアミン誘導体の収率が50%以上に向上する。
【0015】
以下に、本発明の化合物の代表例を、表1に具体的に例示するが、本発明は以下の代表例に限定されるものではない。
【0016】
【表1】
Figure 0003593719
【0017】
Figure 0003593719
【0018】
Figure 0003593719
【0019】
Figure 0003593719
【0020】
Figure 0003593719
【0021】
本発明のトリフェニルアミン誘導体は、他の正孔もしくは電子輸送性化合物と混合して使用してもさしつかえない。本発明の化合物は正孔輸送性に優れているので、正孔輸送性材料として極めて有効に使用することができる。
【0022】
また、請求項2の製造方法は、ジカルボニル化合物と前記一般式[3]で示されるトリフェニルアミン化合物との脱水反応を利用する方法であり、工業的に極めて有用な製造方法である。
【0023】
まず、一般式[1]で示される化合物を有機EL素子の正孔輸送材料として用いる場合について説明する。図1〜3に、本発明で使用される有機EL素子構造の模式図の一例を示した。図中、一般的に電極Aである2は陽極であり、電極Bである6は陰極である。また、(電極A/発光層/電子注入層/電極B)の層構成で積層した有機EL素子もあり、一般式[1]の化合物は、どの素子構成においても好適に使用することが出来る。
一般式[1]の化合物は、大きな正孔輸送能力をもっているので、正孔注入層
3もしくは発光層4のいずれの層においても、正孔輸送材料として使用できる。
【0024】
図1の発光層4には、必要があれば、本発明の一般式[1]の化合物に加えて、発光物質、発光補助材料、キャリア輸送を行う正孔輸送材料や電子輸送材料を使用することもできる。
図2の構造は、発光層4と正孔注入層3を分離している。この構造により、正孔注入層3から発光層4への正孔注入効率が向上して、発光輝度や発光効率を増加させることができる。この場合、発光効率のためには、発光層に使用される発光物質自身が電子輸送性であること、または発光層中に電子輸送輸送材料を添加して発光層を電子輸送性にすることが望ましい。
【0025】
図3の構造は、正孔注入層3に加えて電子注入層5を有し、発光層4での正孔と電子の再結合の効率を向上させている。このように、有機EL素子を多層構造にすることにより、クエンチングによる輝度や寿命の低下を防ぐことができる。図2および図3の素子においても、必要があれば、発光物質、発光補助材料、キャリア輸送を行う正孔輸送材料や電子輸送材料を組み合わせて使用することが出来る。また、正孔注入層、発光層、電子注入層は、それぞれ二層以上の層構成により形成されても良い。
【0026】
有機EL素子の陽極に使用される導電性物質としては、4eVより大きな仕事関数を持つものが好適であり、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等およびそれらの合金、ITO基板、NESA基板と称される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。
陰極に使用される導電性物質としては、4eVより小さな仕事関数を持つものが好適であり、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン等およびそれらの合金が用いられるが、これらに限定されるものではない。陽極および陰極は、必要があれば二層以上の層構成により形成されていても良い。
【0027】
有機EL素子では、効率良く発光させるために、2で示される電極Aまたは6で示される電極Bのうち、少なくとも一方は素子の発光波長領域において充分透明にすることが望ましい。また、基板1も透明であることが望ましい。透明電極は、上記した導電性物質を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように設定する。発光面の電極は、光透過率が10%以上であることが望ましい。
【0028】
基板1は、機械的、熱的強度を有し、透明なものであれば限定されるものではないが、例示すると、ガラス基板、ポリエチレン板、ポリエーテルサルフォン板、ポリプロピレン板等の透明樹脂があげられる。
【0029】
本発明に係わる有機EL素子の各層の形成は、真空蒸着、スパッタリング等の乾式成膜法やスピンコーティング、ディッピング等の湿式成膜法のいずれの方法を適用することができる。膜厚は特に限定されるものではないが、各層は適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nmから10μmの範囲が好適であるが、10nmから0.2μmの範囲がさらに好ましい。
【0030】
湿式成膜法の場合、各層を形成する材料を、クロロフォルム、テトラヒドロフラン、ジオキサン等の適切な溶媒に溶解または分散させた薄膜を形成する。また、いずれの薄膜においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用しても良い。
このような樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂、ポリ−N−ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げることができる。
【0031】
本有機EL素子は、発光層、正孔注入層、電子注入層において、必要があれば、一般式[1]の化合物に加えて、公知の発光物質、発光補助材料、正孔輸送材料、電子輸送材料を使用することもできる。
【0032】
公知の発光物質または発光物質の補助材料としては、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、オキシン、アミノキノリン、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキレート化オキシノイド化合物、キナクリドン、ルブレン等およびそれらの誘導体があるが、これらに限定されるものではない。
【0033】
一般式[1]の正孔輸送材料と併せて使用できる正孔輸送材料としては、正孔を輸送する能力を持ち、発光層または発光物質に対して優れた正孔注入効果を有し、発光層で生成した励起子の電子注入層または電子輸送材料への移動を防止し、かつ薄膜形成能の優れた化合物が挙げられる。具体的には、フタロシアニン系化合物、ナフタロシアニン系化合物、ポルフィリン系化合物、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等と、それらの誘導体、およびポリビニルカルバゾール、ポリシラン、導電性高分子等の高分子材料等があるが、これらに限定されるものではない。
【0034】
電子輸送材料としては、電子を輸送する能力を持ち、発光層または発光物質に対して優れた電子注入効果を有し、発光層で生成した励起子の正孔注入層または正孔輸送材料への移動を防止し、かつ薄膜形成能の優れた化合物が挙げられる。例えば、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサジアゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等とそれらの誘導体があるが、これらに限定されるものではない。
また、正孔輸送材料に電子受容物質を、電子輸送材料に電子供与性物質を添加することにより増感させることもできる。
【0035】
図1,2および3に示される有機EL素子において、本発明の一般式[1]の化合物は、いずれの層に使用することもでき、一般式[1]の化合物の他に、発光物質、発光補助材料、正孔輸送材料および電子輸送材料の少なくとも1種が同一層に含有されてもよい。
また、本発明により得られた有機EL素子の、温度、湿度、雰囲気等に対する安定性の向上のために、素子の表面に保護層を設けたり、シリコンオイル等を封入して素子全体を保護することも可能である。
以上のように、本発明では有機EL素子に一般式[1]の化合物を用いたため、発光効率と発光輝度を高くできた。また、この素子は熱や電流に対して非常に安定であり、さらには低い駆動電圧で実用的に使用可能の発光輝度が得られるため、従来まで大きな問題であった劣化も大幅に低下させることができた。
【0036】
本発明の有機EL素子は、壁掛けテレビ等のフラットパネルディスプレイや、平面発光体として、複写機やプリンター等の光源、液晶ディスプレイや計器類等
の光源、表示板、標識灯等へ応用が考えられ、その工業的価値は非常に大きい。
【0037】
次に、本発明の一般式[1]で示される化合物を電子写真感光体として用いる場合について説明する。本発明の一般式[1]で示される化合物は、電子写真感光体の何れの層においても使用できるが、高い正孔輸送特性を有することから正孔輸送材料として使用することが望ましい。該化合物は正孔輸送物質として作用し、光吸収により発生した、もしくは電極より注入した電荷を極めて効率よく輸送できるので、高速応答性に優れた感光体を得ることが可能である。また、該化合物は、耐オゾン性、光安定性に優れているので、耐久性に優れた感光体を得ることができる。
【0038】
電子写真感光体は、導電性基板上に電荷発生材料と、必要があれば電荷輸送材料を結着樹脂に分散させてなる感光層を設けた単層型感光体、導電性基板上に下引き層、電荷発生層、正孔輸送層の順に積層した、もしくは導電性基板または下引き層上に正孔輸送層、電荷発生層の順に積層した積層型感光体等がある。ここで、下引き層は必要がなければ使用しなくても良い。該感光体は、必要があれば活性ガスからの表面保護およびトナーによるフィルミング防止等の意味でオーバーコート層を設けることも出来る。
【0039】
電荷発生材料としては、ビスアゾ、キナクリドン、ジケトピロロピロール、インジゴ、ペリレン、ペリノン、多環キノン、スクアリリウム塩、アズレニウム塩、フタロシアニン、ナフタロシアニン等の有機化合物、もしくは、セレン、セレン−テルル合金、硫化カドミウム、酸化亜鉛、アモルファスシリコン等の無機物質が挙げられる。
【0040】
感光体の各層は蒸着もしくは分散塗工方式により成膜することが出来る。分散塗工は、スピンコーター、アプリケーター、スプレーコーター、浸漬コーター、ローラーコーター、カーテンコーターおよびビードコーター等を用いて行い、乾燥は室温から200℃、10分から6時間の範囲で静止または送風条件下で行う。乾燥後の感光層の膜厚は単層型感光体の場合、5ミクロンから50ミクロン、積層型感光体の場合、電荷発生層は0.01から5ミクロン、好ましくは0.1から1ミクロンであり、正孔輸送層は5から50ミクロン、好ましくは10から20ミクロンが好適である。
【0041】
単層型感光体の感光層、積層型感光体の電荷発生層もしくは正孔輸送層を形成する際に使用する樹脂は広範な絶縁性樹脂から選択出来る。また、ポリ−N−ビニルカルバゾール、ポリビニルアントラセンやポリシラン類などの有機光導電性ポリマーから選択出来る。好ましくは、ポリビニルブチラール、ポリアリレート、ポリカーボネート、ポリエステル、フェノキシ、アクリル、ポリアミド、ウレタン、エポキシ、シリコン、ポリスチレン、ポリ塩化ビニル、塩酢ビ共重合体、フェノールおよびメラミン樹脂等の絶縁性樹脂を挙げることが出来る。電荷発生層もしくは正孔輸送層を形成するために使用される樹脂は、電荷発生材料もしくは正孔輸送材料に対して、100重量%以下が好ましいがこの限りではない。樹脂は2種類以上組み合わせて使用しても良い。また、必要があれば樹脂を使用しなくてもよい。また、電荷発生層を蒸着、スパッタリング等の物理的成膜法により形成させることも出来る。蒸着、スパッタリング法では、好ましくは10−5Toor以下の真空雰囲気下で成膜することが望ましい。また、窒素、アルゴン、ヘリウム等の不活性ガス中で成膜することも可能である。
【0042】
電子写真感光体の各層を形成する際に使用する溶剤は、下引き層や他の感光層に影響を与えないものから選択することが好ましい。具体的には、ベンゼン、キシレン等の芳香族炭化水素、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、メタノール、エタノール等のアルコール類、酢酸エチル、メチルセロソルブ等のエステル類、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエチレン等の脂肪族ハロゲン化炭化水素類、クロルベンゼン、ジクロルベンゼン等の芳香族ハロゲン化炭化水素類、テトラヒドロフラン
、ジオキサン等のエーテル類等が用いられるがこれらに限られるものではない。
【0043】
正孔輸送層は正孔輸送材料のみ、もしくは正孔輸送材料を樹脂に溶解させた塗液を塗布することにより形成される。本感光体に使用される正孔輸送材料は、一般式[1]の化合物に加えて他の正孔輸送材料を組み合わせて使用することもできる。一般式[1]の化合物は、樹脂との相溶性が良く、結晶が析出しにくいので、感度、耐久性の向上のために有利である。
【0044】
電子写真特性、画像特性等の向上のために、必要があれば基板と有機層の間に下引き層を設けることができ、下引き層としてはポリアミド類、カゼイン、ポリビニルアルコール、ゼラチン、ポリビニルブチラール等の樹脂類、酸化アルミニウム等の金属酸化物などが用いられる。
【0045】
本発明の材料は、有機EL素子もしくは電子写真感光体の正孔輸送材料としてのみでなく、光電変換素子、太陽電池、イメージセンサー等の分野においても好適に使用できる。
【0046】
【実施例】
以下、本発明を実施例に基づきさらに詳細に説明する。
化合物(1)の合成方法
酢酸18部中に、1,2−シクロヘキサジオン5部、トリフェニルアミン15部、およびメタンスルホン酸1.5部を入れ、100℃にて20時間加熱撹拌した。その後、500部の水で希釈し、希水酸化ナトリウム水溶液で中和した。この後、酢酸エチルで抽出を行い、濃縮し、シリカゲルを用いたカラムクロマトグラフィーにより精製して白色の蛍光を有する粉末6部を得た。分子量分析の結果、化合物(1)であることを確認した。
以下に生成物の元素分析結果を示す。
元素分析結果
7864として
計算値(%):C:88.64 H:6.06 N:5.30
実測値(%):C:88.39 H:6.22 N:5.39
この化合物の赤外吸収スペクトル(KBr錠剤法)を図6に示す。
【0047】
化合物(3)の合成方法
酢酸30部中に、1,2−シクロヘキサジオン7部、4,4−ジメチルトリフェニルアミン23部、およびメタンスルホン酸2部を入れ、105℃にて30時間加熱撹拌した。その後、500部の水で希釈し、希水酸化ナトリウム水溶液で中和した。この後、酢酸エチルで抽出を行い、濃縮し、シリカゲルを用いたカラムクロマトグラフィーにより精製して黄色の蛍光を有する粉末10部を得た。分子量分析の結果、化合物(3)であることを確認した。
以下に生成物の元素分析結果を示す。
元素分析結果
8676として
計算値(%):C:88.66 H:6.53 N:4.81
実測値(%):C:88.45 H:6.81 N:4.74
この化合物の赤外吸収スペクトル(KBr錠剤法)を図7に示す。
【0048】
実施例1
洗浄したITO電極付きガラス板上に、化合物(2)、トリス(8−ヒドロキシキノリン)アルミニウム錯体、ポリカーボネート樹脂(PC−A)を3:2:5の比率でテトラヒドロフランに溶解させ、スピンコーティング法により膜厚100nmの発光層を得た。その上に、マグネシウムと銀を10:1で混合した合金で膜厚150nmの電極を形成して図1に示す有機EL素子を得た。この素子は、直流電圧5Vで150cd/mの発光が得られた。
【0049】
実施例2
洗浄したITO電極付きガラス板上に、化合物(3)をテトラヒドロフランに溶解させ、スピンコーティング法により膜厚50nmの正孔注入層を得た。次いで、トリス(8−ヒドロキシキノリン)アルミニウム錯体を真空蒸着して膜厚30nmの発光層を作成し、その上に、マグネシウムと銀を10:1で混合した合金で膜厚100nmの電極を形成して図2に示す有機EL素子を得た。正孔注入層および発光層は10−6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は、直流電圧5Vで約270cd/mの発光が得られた。
【0050】
実施例3
洗浄したITO電極付きガラス板上に、化合物(5)をテトラヒドロフランに溶解させ、スピンコーティング法により膜厚50nmの正孔注入層を得た。次いで、トリス(8−ヒドロキシキノリン)アルミニウム錯体を真空蒸着して膜厚30nmの発光層を作成し、その上に、マグネシウムと銀を10:1で混合した合金で膜厚100nmの電極を形成して図2に示す有機EL素子を得た。発光層は10−6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は、直流電圧5Vで約450cd/mの発光が得られた。
【0051】
実施例4
洗浄したITO電極付きガラス板上に、化合物(6)を真空蒸着して、膜厚20nmの正孔注入層を得た。さらに、N,N’―ジフェニル―N,N’―(3―メチルフェニル)―1,1’―ビフェニル―4,4’―ジアミンを真空蒸着して、膜厚30nmの正孔輸送層を得た。次いで、トリス(8−ヒドロキシキノリン)アルミニウム錯体を真空蒸着して膜厚30nmの発光層を作成し、その上に、マグネシウムと銀を10:1で混合した合金で膜厚100nmの電極を形成して有機EL素子を得た。正孔注入層および発光層は10−6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は、直流電圧5Vで約330cd/mの発光が得られた。
【0052】
実施例5
洗浄したITO電極付きガラス板上に、N,N’―ジフェニル―N,N’―(3―メチルフェニル)―1,1’―ビフェニル―4,4’―ジアミンを真空蒸着して、膜厚50nmの正孔注入層を得た。次いで、トリス(8−ヒドロキシキノリン)アルミニウム錯体と化合物(10)を3:1の割合で真空蒸着して膜厚50nmの発光層を作成し、その上に、マグネシウムと銀を10:1で混合した合金で膜厚150nmの膜厚の電極を形成して図2に示す有機EL素子を得た。正孔注入層および発光層は10−6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は、直流電圧5Vで約370cd/mの発光が得られた。
【0053】
実施例6
洗浄したITO電極付きガラス板上に、化合物(4)をクロロフォルムに溶解させ、スピンコーティング法により膜厚50nmの正孔注入層を得た。次いで、真空蒸着法によりトリス(8−ヒドロキシキノリン)アルミニウム錯体の膜厚50nmの発光層を作成し、さらに真空蒸着法により[2−(4−tert−ブチルフェニル)−5−(ビフェニル)−1,3,4−オキサジアゾール]の膜厚20nmの電子注入層を得た。その上に、マグネシウムと銀を10:1で混合した合金で膜厚150nmの電極を形成して図3に示す有機EL素子を得た。この素子は、直流電圧5Vで約550cd/mの発光が得られた。
【0054】
本実施例で示された全ての有機EL素子について、1mA/cmで連続発光させたところ、1000時間以上安定な発光を観測することができた。
本発明の有機EL素子は発光効率、発光輝度の向上と長寿命化を達成するものであり、併せて使用される発光物質、発光補助材料、正孔輸送材料、電子輸送材料、増感剤、樹脂、電極材料等および素子作製方法を限定するものではない。
【0055】
実施例7
ε型銅フタロシアニン4g、化合物(1)2g、ポリエステル樹脂(バイロン200:東洋防(株)製)14gをテトラヒドロフラン80gと共にボールミルで5時間分散した。この分散液をアルミニウム基板上に塗工、乾燥して、図4に示す膜厚20ミクロンの単層型電子写真感光体を作製した。
【0056】
実施例8
ジブロモアントアントロン6g、化合物(3)2g、ポリエステル樹脂(バイロン200:東洋防(株)製)12gをテトラヒドロフラン80gと共にボールミルで5時間分散した。この分散液をアルミニウム基板上に塗工、乾燥して、図4に示す膜厚20ミクロンの単層型電子写真感光体を作製した。
【0057】
実施例9
τ型無金属フタロシアニン2g、ポリビニルブチラール樹脂(BH−3:積水化学(株)製)2gをテトラヒドロフラン96gと共にボールミルで2時間分散した。この分散液をアルミニウム基板上に塗工、乾燥して、膜厚0.3ミクロンの電荷発生層を作製した。次に化合物(4)10g、ポリカーボネート樹脂(L−1250;帝人化成(株)製)10gをジクロロメタン80gに溶解した。この塗液を電荷発生層上に塗工、乾燥して、膜厚20ミクロンの電荷輸送層を形成し、図5に示す積層型電子写真感光体を作製した。
【0058】
実施例10
N,N’−ビス(2,6−ジクロロフェニル)−3,4,9,10−ペリレンジカルボキシイミド2g、ポリビニルブチラール樹脂(BH−3:積水化学(株)製)2gをテトラヒドロフラン96gと共にボールミルで2時間分散した。この分散液をアルミニウム基板上に塗工、乾燥して、膜厚0.3ミクロンの電荷発生層を作製した。次に化合物(6)10g、ポリカーボネート樹脂(L−1250;帝人化成(株)製)10gをジクロロメタン80gに溶解した。この塗液を電荷発生層上に塗工、乾燥して、膜厚20ミクロンの電荷輸送層を形成し、図5に示す積層型電子写真感光体を作製した。
【0059】
電子写真感光体の電子写真特性は以下の方法で測定した。静電複写紙試験装置(EPA−8100;川口電機製作所(株)製)により、スタティックモード2、コロナ帯電は−5.2(kV)、5(lux)の白色光を照射して、初期表面電位(V)、Vと2秒間暗所に放置した時の表面電位(V)の比(暗減衰率:DDR=V/V)、光露光後に帯電量が初期の1/2まで減少する時間から半減露光量感度(E1/2)および光露光3秒後の表面電位(VR)を調べた。実施例7〜10の電子写真感光体の電子写真特性を表2に示す。
【0060】
【表2】
Figure 0003593719
【0061】
1万回以上繰り返して電子写真特性を測定したところ、本実施例で示された全ての電子写真感光体について、安定な表面電位、感度を得ることができた。
【0062】
【発明の効果】
本発明により、優れた正孔輸送能力を有する化合物を得ることができた。本発明が提供した化合物は、従来に比べて高発光効率、高輝度であり、長寿命の有機EL素子および感度、正孔輸送特性、初期表面電位、暗減衰率等の初期電子写真特性に優れ、繰り返し使用に対する疲労も少ない電子写真感光体を得ることができた。
【図面の簡単な説明】
【図1】実施例で使用した有機EL素子の概略構造を表す断面図
【図2】実施例で使用した有機EL素子の概略構造を表す断面図
【図3】実施例で使用した有機EL素子の概略構造を表す断面図
【図4】実施例で使用した電子写真感光体の概略構造を表す断面図
【図5】実施例で使用した電子写真感光体の概略構造を表す断面図
【図6】化合物1の赤外吸収スペクトル図
【図7】化合物3の赤外吸収スペクトル図
【符号の説明】
1.基板
2.電極A
3.正孔注入層
4.発光層
5.電子注入層
6.電極B
7.Al基板
8.感光層
9.電荷発生層
10.正孔輸送層[0001]
[Industrial applications]
The present invention relates to a novel triphenylamine derivative, a method for producing the same, and its use. The derivative can be used for a photosensitive material, an organic photoconductive material, and the like, and more specifically, is used for a planar light source or display. This material is useful as a hole transport material for organic electroluminescent (EL) devices or electrophotographic photoreceptors.
[0002]
[Prior art]
Organic photoconductive materials that have been developed as photosensitive materials and hole transport materials have many advantages such as low cost, various processability, and no pollution, and many compounds have been proposed. For example, oxadiazole derivatives (U.S. Pat. No. 3,189,447), oxazole derivatives (U.S. Pat. No. 3,257,203), hydrazone derivatives (U.S. Pat. 59,143, U.S. Pat. No. 4,150,978), triarylpyrazoline derivatives (U.S. Pat. No. 3,820,989, JP-A-51-93,224, JP-A-55-108,667). ), Arylamine derivatives (U.S. Pat. No. 3,180,730, U.S. Pat. No. 4,232,103, JP-A-55-144250, JP-A-56-119,132), stilbene derivatives (Japanese Patent Application Laid-Open Nos. 58-190,953 and 59-195,658) discloses organic photoconductive materials.
[0003]
One of the techniques using a hole transport material is an organic EL device. 2. Description of the Related Art An EL element using an organic substance is expected to be used as a solid-state light-emitting inexpensive large-area full-color display element, and many developments have been made. Generally, an EL is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side, and holes are injected from the anode side. In addition, the electrons recombine with holes in the light emitting layer, and emit energy as light when the energy level returns from the conduction band to the valence band.
[0004]
The conventional organic EL element has a higher driving voltage and lower light emission luminance and light emission efficiency than the inorganic EL element. In addition, the characteristics deteriorated remarkably, and practical use has not been achieved.
In recent years, an organic EL device formed by laminating a thin film containing an organic compound having a high fluorescence quantum efficiency and emitting light at a low voltage of 10 V or less has been reported and attracted attention (Applied Physics Letters, vol. 51, p. 913). 1987).
This method uses a metal chelate complex for a phosphor layer and an amine compound for a hole injection layer to obtain high-luminance green light emission. The luminance is several hundred cd / m 2 at a DC voltage of 6 to 7 V. The maximum luminous efficiency achieves 1.5 lm / W, which is a performance close to the practical range.
[0005]
However, organic EL devices up to now have improved light emission intensity due to the improved structure, but do not yet have sufficient light emission luminance. In addition, there is a major problem that the stability upon repeated use is poor. Therefore, in order to develop an organic EL device having higher emission luminance and excellent stability in repeated use, it is desired to develop a hole transporting material having excellent hole transporting ability and durability. It is rare.
[0006]
Further, as a technique using a hole transport material, an electrophotographic photoreceptor can be mentioned. The electrophotographic method is one of image forming methods invented by Carlson. In this method, after a photoconductor is charged by corona discharge, an optical image is exposed to obtain an electrostatic latent image on the photoconductor, toner is attached to the electrostatic latent image and developed, and the obtained toner image is printed on paper. Transfer to The basic characteristics required of the photoreceptor in such an electrophotographic method include that an appropriate potential is maintained in a dark place, that the electric charge is less discharged in the dark place, and that the electric charge is quickly discharged by light irradiation. And so on. Conventional electrophotographic photoreceptors have used inorganic photoconductors such as selenium, selenium alloys, zinc oxide, cadmium sulfide, and tellurium. These inorganic photoconductors have advantages such as high durability and a large number of printing presses, but problems such as high production cost, poor workability, and toxicity have been pointed out. . Organic photoreceptors have been developed to overcome these drawbacks.However, conventional electrophotographic photoreceptors using organic photoconductive materials as hole transporting materials have had problems in chargeability, sensitivity and residual potential. At present, it cannot be said that the electrophotographic properties are always satisfactory, and it has been desired to develop a hole transporting material having excellent charge transporting ability and durability.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel triphenylamine derivative useful as a durable hole transport material, a method for producing the same, and a use thereof.
[0008]
[Means for Solving the Problems]
That is, the first invention is a triphenylamine derivative represented by the general formula [1].
General formula [1]
Embedded image
Figure 0003593719
[In the formula, A 1 represents a triphenylamine compound residue represented by the general formula [2], and A 2 represents a hydrogen atom or a triphenylamine compound residue represented by the general formula [2]. ]
General formula [2]
Embedded image
Figure 0003593719
[Wherein, R 1 to R 4 each independently represent a hydrogen atom or an unsubstituted alkyl group. ]
[0009]
The second invention is a method for producing a triphenylamine derivative according to claim 1, wherein 1,2-cyclohexadione is reacted with a triphenylamine compound represented by the following general formula [3]. is there.
General formula [3]
Embedded image
Figure 0003593719
[Wherein, R 1 to R 4 represent the same meaning as described above. ]
[0010]
A third invention is a hole transport material comprising the triphenylamine derivative according to claim 1.
[0011]
According to a fourth aspect of the present invention, there is provided an organic electroluminescent device comprising a light emitting layer or a plurality of organic compound thin films including a light emitting layer between a pair of electrodes, wherein at least one layer comprises the hole transport material according to claim 3. It is a luminescence element.
[0012]
According to a fifth aspect of the present invention, there is provided an electrophotographic photosensitive member using a charge generating material and a hole transporting material on a conductive support, wherein the hole transporting material is the hole transporting material according to claim 3. It is a photoreceptor.
[0013]
In the compound represented by the general formula [1] in the present invention, A 1 represents a triphenylamine compound residue represented by the general formula [2], and A 2 each independently represents a hydrogen atom or the general formula [2] Represents a triphenylamine compound residue represented by
In the formula, R 1 to R 4 are each independently a hydrogen atom or an unsubstituted alkyl group.
Specific examples of R 1 to R 4 include, as an unsubstituted alkyl group, a methyl group, an ethyl group, a propyl group, a butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group group, there is a stearyl group, and the like.
[0014]
In the present invention, the compound represented by the general formula [1] is a novel substance and can be produced, for example, by the following method.
The 1,2-cyclohexadione is dehydrated with 4 to 5 times the molar amount of a triphenylamine compound having a substituent represented by the following general formula [3] in an acetic acid solvent using an acid catalyst such as methanesulfonic acid. Thereby, the triphenylamine derivative represented by the general formula [1] can be produced. Further, as the acid catalyst used in the present invention, organic acids such as trifluoroacetic acid and p-toluenesulfonic acid, or sulfuric acid, hydrochloric acid, Lewis acid and the like can be used instead of methanesulfonic acid. Further, as the organic solvent, in addition to acetic acid, 1,4-dioxane, ether, petroleum ether and the like are also possible. Here, when the mixing ratio of 1,2-cyclohexadione and the general formula [3] is 1: 4 or less, the number of triphenylamine compounds introduced becomes less than 4, and the reaction time is increased to 20 hours or more. , The yield of the triphenylamine derivative is improved to 50% or more.
[0015]
Hereinafter, typical examples of the compound of the present invention are specifically illustrated in Table 1, but the present invention is not limited to the following typical examples.
[0016]
[Table 1]
Figure 0003593719
[0017]
Figure 0003593719
[0018]
Figure 0003593719
[0019]
Figure 0003593719
[0020]
Figure 0003593719
[0021]
The triphenylamine derivative of the present invention may be used in a mixture with another hole or electron transporting compound. Since the compound of the present invention has excellent hole transporting properties, it can be used very effectively as a hole transporting material.
[0022]
The production method according to claim 2 is a method utilizing a dehydration reaction between a dicarbonyl compound and the triphenylamine compound represented by the general formula [3], and is an industrially extremely useful production method.
[0023]
First, a case where the compound represented by the general formula [1] is used as a hole transport material of an organic EL device will be described. FIGS. 1 to 3 show an example of a schematic view of an organic EL device structure used in the present invention. In the figure, generally, electrode 2, 2 is an anode, and electrode B, 6 is a cathode. There is also an organic EL device having a layered structure of (electrode A / light emitting layer / electron injection layer / electrode B), and the compound of the general formula [1] can be suitably used in any device configuration.
Since the compound of the general formula [1] has a large hole transporting ability, it can be used as a hole transporting material in any of the hole injection layer 3 and the light emitting layer 4.
[0024]
In the light emitting layer 4 of FIG. 1, if necessary, a light emitting substance, a light emitting auxiliary material, a hole transport material for transporting carriers, and an electron transport material are used in addition to the compound of the general formula [1] of the present invention. You can also.
In the structure of FIG. 2, the light emitting layer 4 and the hole injection layer 3 are separated. With this structure, the efficiency of hole injection from the hole injection layer 3 to the light emitting layer 4 is improved, and the light emission luminance and the light emission efficiency can be increased. In this case, for luminous efficiency, it is necessary that the luminescent material used in the luminescent layer itself has an electron transporting property, or that the luminescent layer has an electron transporting property by adding an electron transporting material into the luminescent layer. desirable.
[0025]
The structure in FIG. 3 has an electron injection layer 5 in addition to the hole injection layer 3, and improves the efficiency of recombination of holes and electrons in the light emitting layer 4. In this manner, by making the organic EL element have a multilayer structure, it is possible to prevent a decrease in luminance and life due to quenching. In the elements shown in FIGS. 2 and 3, if necessary, a luminescent substance, a luminescent auxiliary material, a hole transport material for transporting carriers, and an electron transport material can be used in combination. Further, each of the hole injection layer, the light emitting layer, and the electron injection layer may be formed with two or more layers.
[0026]
As the conductive substance used for the anode of the organic EL element, those having a work function larger than 4 eV are preferable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, etc. And alloys thereof, metal oxides such as tin oxide and indium oxide, which are called ITO substrates and NESA substrates, and organic conductive resins such as polythiophene and polypyrrole.
As the conductive material used for the cathode, those having a work function smaller than 4 eV are preferable, and magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, and the like and alloys thereof are used. However, the present invention is not limited to these. The anode and the cathode may be formed of two or more layers if necessary.
[0027]
In the organic EL device, in order to efficiently emit light, it is desirable that at least one of the electrode A indicated by 2 and the electrode B indicated by 6 be sufficiently transparent in the emission wavelength region of the device. Further, it is desirable that the substrate 1 is also transparent. The transparent electrode is set so as to secure a predetermined light transmittance by a method such as vapor deposition or sputtering using the above-described conductive substance. The electrode on the light emitting surface preferably has a light transmittance of 10% or more.
[0028]
The substrate 1 is not limited as long as it has mechanical and thermal strengths and is transparent, but for example, a transparent resin such as a glass substrate, a polyethylene plate, a polyether sulfone plate, and a polypropylene plate may be used. can give.
[0029]
Each layer of the organic EL device according to the present invention can be formed by any of dry film forming methods such as vacuum evaporation and sputtering and wet film forming methods such as spin coating and dipping. The thickness is not particularly limited, but each layer needs to be set to an appropriate thickness. When the film thickness is too large, a large applied voltage is required to obtain a constant light output, and the efficiency is deteriorated. If the film thickness is too small, pinholes or the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal thickness is preferably in the range of 5 nm to 10 μm, but more preferably in the range of 10 nm to 0.2 μm.
[0030]
In the case of a wet film formation method, a thin film is formed by dissolving or dispersing a material forming each layer in an appropriate solvent such as chloroform, tetrahydrofuran, dioxane, or the like. In any of the thin films, a suitable resin or additive may be used to improve film forming properties, prevent pinholes in the film, and the like.
Examples of such a resin include insulating resins such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, and cellulose; and photoconductive materials such as poly-N-vinyl carbazole and polysilane. And conductive resins such as polythiophene and polypyrrole.
[0031]
The present organic EL device may include, if necessary, a known light-emitting substance, a light-emitting auxiliary material, a hole-transporting material, an electron-emitting layer, a hole-injecting layer, and an electron-injecting layer in addition to the compound of the general formula [1]. Transport materials can also be used.
[0032]
Known light-emitting substances or auxiliary materials for light-emitting substances include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, phthaloperylene, naphthalopylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, coumarin, Oxadiazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, oxine, aminoquinoline, imine, diphenylethylene, vinylanthracene, diaminocarbazole, pyran, thiopyran, polymethine, merocyanine, imidazole chelated oxinoid compound, quinacridone, Examples include, but are not limited to, rubrene and the like and derivatives thereof.
[0033]
The hole transporting material that can be used in combination with the hole transporting material of the general formula [1] has the ability to transport holes, has an excellent hole injecting effect on a light emitting layer or a light emitting substance, and emits light. Compounds that prevent excitons generated in the layer from migrating to the electron injection layer or the electron transporting material and have excellent thin film forming ability are exemplified. Specifically, phthalocyanine compounds, naphthalocyanine compounds, porphyrin compounds, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, poly There are arylalkanes, stilbenes, butadienes, benzidine-type triphenylamines, styrylamine-type triphenylamines, diamine-type triphenylamines, and derivatives thereof, and polymer materials such as polyvinylcarbazole, polysilane, and conductive polymers. However, the present invention is not limited to these.
[0034]
As an electron transport material, it has the ability to transport electrons, has an excellent electron injection effect on a light emitting layer or a light emitting substance, and transfers excitons generated in the light emitting layer to a hole injection layer or a hole transport material. Compounds that prevent migration and have excellent thin film forming ability can be used. Examples include, but are not limited to, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxadiazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, anthrone, and derivatives thereof. Not something.
In addition, sensitization can be performed by adding an electron accepting substance to the hole transporting material and adding an electron donating substance to the electron transporting material.
[0035]
In the organic EL devices shown in FIGS. 1, 2 and 3, the compound of the general formula [1] of the present invention can be used for any layer, and in addition to the compound of the general formula [1], a luminescent material, At least one of a light emission auxiliary material, a hole transport material, and an electron transport material may be contained in the same layer.
In order to improve the stability of the organic EL device obtained according to the present invention with respect to temperature, humidity, atmosphere, etc., a protective layer is provided on the surface of the device, or silicon oil or the like is sealed to protect the entire device. It is also possible.
As described above, in the present invention, since the compound of the general formula [1] was used for the organic EL device, the luminous efficiency and the luminous brightness could be increased. In addition, this device is extremely stable against heat and current, and furthermore, it can emit light that can be used practically at a low driving voltage, so that the deterioration, which has been a major problem until now, can be significantly reduced. Was completed.
[0036]
The organic EL device of the present invention can be applied to a flat panel display such as a wall-mounted television, a light source such as a copying machine or a printer, a light source such as a liquid crystal display or an instrument, a display board, or a sign lamp as a plane light emitter. , Its industrial value is very large.
[0037]
Next, the case where the compound represented by the general formula [1] of the present invention is used as an electrophotographic photosensitive member will be described. The compound represented by the general formula [1] of the present invention can be used in any layer of an electrophotographic photoreceptor, but is preferably used as a hole transporting material because of having high hole transporting properties. Since the compound acts as a hole transporting substance and can transport the charge generated by light absorption or the charge injected from the electrode very efficiently, it is possible to obtain a photoconductor excellent in high-speed response. Further, since the compound is excellent in ozone resistance and light stability, a photosensitive member having excellent durability can be obtained.
[0038]
An electrophotographic photoreceptor is a single-layer type photoreceptor having a photosensitive layer formed by dispersing a charge generating material on a conductive substrate and, if necessary, a charge transporting material in a binder resin, and subbing on a conductive substrate. There is a laminated photoreceptor in which a layer, a charge generation layer, and a hole transport layer are laminated in this order, or a hole transport layer and a charge generation layer are laminated in this order on a conductive substrate or an undercoat layer. Here, the undercoat layer may not be used if unnecessary. If necessary, the photoreceptor may be provided with an overcoat layer for the purpose of protecting the surface from active gas and preventing filming with toner.
[0039]
As the charge generating material, organic compounds such as bisazo, quinacridone, diketopyrrolopyrrole, indigo, perylene, perinone, polycyclic quinone, squarylium salt, azurenium salt, phthalocyanine, and naphthalocyanine, or selenium, selenium-tellurium alloy, sulfide Examples include inorganic substances such as cadmium, zinc oxide, and amorphous silicon.
[0040]
Each layer of the photoreceptor can be formed by vapor deposition or dispersion coating. The dispersion coating is performed using a spin coater, an applicator, a spray coater, a dipping coater, a roller coater, a curtain coater, a bead coater, etc., and drying is performed at room temperature to 200 ° C. for 10 minutes to 6 hours under static or blowing conditions. Do. The thickness of the photosensitive layer after drying is 5 μm to 50 μm for a single-layer type photoreceptor, and 0.01 to 5 μm, preferably 0.1 to 1 μm for a multi-layer type photoreceptor. Yes, the hole transport layer is suitably 5 to 50 microns, preferably 10 to 20 microns.
[0041]
The resin used for forming the photosensitive layer of the single-layer type photoreceptor or the charge generation layer or the hole transport layer of the laminated type photoreceptor can be selected from a wide range of insulating resins. Further, it can be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene and polysilanes. Preferably, insulating resins such as polyvinyl butyral, polyarylate, polycarbonate, polyester, phenoxy, acrylic, polyamide, urethane, epoxy, silicone, polystyrene, polyvinyl chloride, polyvinyl chloride copolymer, phenol and melamine resin are mentioned. Can be done. The resin used for forming the charge generation layer or the hole transport layer is preferably 100% by weight or less based on the charge generation material or the hole transport material, but is not limited thereto. Two or more resins may be used in combination. Further, if necessary, the resin may not be used. Further, the charge generation layer can be formed by a physical film forming method such as vapor deposition and sputtering. In the evaporation and sputtering methods, it is preferable to form a film in a vacuum atmosphere of preferably 10 −5 Toor or less. It is also possible to form a film in an inert gas such as nitrogen, argon, and helium.
[0042]
The solvent used when forming each layer of the electrophotographic photoreceptor is preferably selected from those which do not affect the undercoat layer or other photosensitive layers. Specifically, aromatic hydrocarbons such as benzene and xylene, ketones such as acetone, methyl ethyl ketone and cyclohexanone, alcohols such as methanol and ethanol, esters such as ethyl acetate and methyl cellosolve, carbon tetrachloride, chloroform and dichloromethane But aliphatic halogenated hydrocarbons such as dichloroethane and trichloroethylene, aromatic halogenated hydrocarbons such as chlorobenzene and dichlorobenzene, and ethers such as tetrahydrofuran and dioxane are used, but are not limited thereto.
[0043]
The hole transport layer is formed by applying only the hole transport material or a coating solution obtained by dissolving the hole transport material in a resin. The hole transport material used in the present photoreceptor can be used in combination with another hole transport material in addition to the compound represented by the general formula [1]. The compound of the general formula [1] is advantageous for improving sensitivity and durability since it has good compatibility with the resin and does not easily precipitate crystals.
[0044]
If necessary, an undercoat layer can be provided between the substrate and the organic layer to improve electrophotographic properties, image properties, and the like. Examples of the undercoat layer include polyamides, casein, polyvinyl alcohol, gelatin, and polyvinyl butyral. And the like, and metal oxides such as aluminum oxide.
[0045]
The material of the present invention can be suitably used not only as a hole transport material of an organic EL device or an electrophotographic photosensitive member, but also in the fields of photoelectric conversion devices, solar cells, image sensors, and the like.
[0046]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
Method for synthesizing compound (1) In 18 parts of acetic acid, 5 parts of 1,2-cyclohexadione, 15 parts of triphenylamine and 1.5 parts of methanesulfonic acid were added, and the mixture was heated at 100 ° C for 20 hours. The mixture was heated and stirred. Thereafter, the mixture was diluted with 500 parts of water and neutralized with a dilute aqueous sodium hydroxide solution. Thereafter, extraction was performed with ethyl acetate, concentrated, and purified by column chromatography using silica gel to obtain 6 parts of a powder having white fluorescence. As a result of molecular weight analysis, it was confirmed that the product was Compound (1).
The results of elemental analysis of the product are shown below.
Elemental analysis result: calculated as C 78 H 64 N 4 (%): C: 88.64 H: 6.06 N: 5.30
Obtained value (%): C: 88.39 H: 6.22 N: 5.39
FIG. 6 shows the infrared absorption spectrum (KBr tablet method) of this compound.
[0047]
Synthesis method of compound (3) In 30 parts of acetic acid, 7 parts of 1,2-cyclohexadione, 23 parts of 4,4-dimethyltriphenylamine, and 2 parts of methanesulfonic acid were added, and the mixture was heated to 105 ° C. For 30 hours. Thereafter, the mixture was diluted with 500 parts of water and neutralized with a dilute aqueous sodium hydroxide solution. After that, extraction was performed with ethyl acetate, concentrated, and purified by column chromatography using silica gel to obtain 10 parts of a powder having yellow fluorescence. As a result of molecular weight analysis, it was confirmed to be Compound (3).
The results of elemental analysis of the product are shown below.
Elemental analysis: calculated value as C 86 H 76 N 4 (%): C: 88.66 H: 6.53 N: 4.81
Obtained value (%): C: 88.45 H: 6.81 N: 4.74
FIG. 7 shows the infrared absorption spectrum (KBr tablet method) of this compound.
[0048]
Example 1
Compound (2), tris (8-hydroxyquinoline) aluminum complex, and polycarbonate resin (PC-A) were dissolved in tetrahydrofuran in a ratio of 3: 2: 5 on a washed glass plate with an ITO electrode, and spin-coating was performed. A light emitting layer having a thickness of 100 nm was obtained. An electrode having a thickness of 150 nm was formed thereon using an alloy in which magnesium and silver were mixed at a ratio of 10: 1 to obtain the organic EL device shown in FIG. This device emitted light of 150 cd / m 2 at a DC voltage of 5 V.
[0049]
Example 2
Compound (3) was dissolved in tetrahydrofuran on a washed glass plate with an ITO electrode, and a hole injection layer having a thickness of 50 nm was obtained by spin coating. Next, a tris (8-hydroxyquinoline) aluminum complex was vacuum-deposited to form a light-emitting layer having a thickness of 30 nm, and an electrode having a thickness of 100 nm was formed thereon using an alloy in which magnesium and silver were mixed at a ratio of 10: 1. Thus, an organic EL device shown in FIG. 2 was obtained. The hole injection layer and the light emitting layer were deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. This device emitted light of about 270 cd / m 2 at a DC voltage of 5 V.
[0050]
Example 3
Compound (5) was dissolved in tetrahydrofuran on a washed glass plate with an ITO electrode, and a hole injection layer having a thickness of 50 nm was obtained by spin coating. Next, a tris (8-hydroxyquinoline) aluminum complex was vacuum-deposited to form a light-emitting layer having a thickness of 30 nm, and an electrode having a thickness of 100 nm was formed thereon using an alloy in which magnesium and silver were mixed at a ratio of 10: 1. Thus, an organic EL device shown in FIG. 2 was obtained. The light emitting layer was deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. This device emitted light of about 450 cd / m 2 at a DC voltage of 5 V.
[0051]
Example 4
The compound (6) was vacuum-deposited on the washed glass plate with an ITO electrode to obtain a 20-nm-thick hole injection layer. Further, N, N'-diphenyl-N, N '-(3-methylphenyl) -1,1'-biphenyl-4,4'-diamine was vacuum-deposited to obtain a hole transport layer having a thickness of 30 nm. Was. Next, a tris (8-hydroxyquinoline) aluminum complex was vacuum-deposited to form a light-emitting layer having a thickness of 30 nm, and an electrode having a thickness of 100 nm was formed thereon using an alloy in which magnesium and silver were mixed at a ratio of 10: 1. Thus, an organic EL device was obtained. The hole injection layer and the light emitting layer were deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. This device emitted light of about 330 cd / m 2 at a DC voltage of 5 V.
[0052]
Example 5
N, N'-diphenyl-N, N '-(3-methylphenyl) -1,1'-biphenyl-4,4'-diamine is vacuum-deposited on the washed glass plate with the ITO electrode to form a film. A 50-nm hole injection layer was obtained. Next, a tris (8-hydroxyquinoline) aluminum complex and the compound (10) were vacuum-deposited at a ratio of 3: 1 to form a 50 nm-thick light-emitting layer, on which magnesium and silver were mixed at a ratio of 10: 1. An electrode having a thickness of 150 nm was formed from the alloy thus obtained to obtain an organic EL device shown in FIG. The hole injection layer and the light emitting layer were deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. This device emitted light of about 370 cd / m 2 at a DC voltage of 5 V.
[0053]
Example 6
Compound (4) was dissolved in chloroform on the washed glass plate with an ITO electrode, and a hole injection layer having a thickness of 50 nm was obtained by spin coating. Next, a 50 nm-thick luminescent layer of a tris (8-hydroxyquinoline) aluminum complex was formed by a vacuum evaporation method, and [2- (4-tert-butylphenyl) -5- (biphenyl) -1 was further formed by a vacuum evaporation method. , 3,4-oxadiazole] with a thickness of 20 nm. An electrode having a thickness of 150 nm was formed thereon using an alloy in which magnesium and silver were mixed at a ratio of 10: 1 to obtain the organic EL device shown in FIG. This device emitted light of about 550 cd / m 2 at a DC voltage of 5 V.
[0054]
When continuous light emission was performed at 1 mA / cm 2 for all of the organic EL elements shown in this example, stable light emission could be observed for 1000 hours or more.
The organic EL device of the present invention achieves improvement in luminous efficiency, luminous luminance and long life, and is used together with a luminescent substance, a luminescent auxiliary material, a hole transport material, an electron transport material, a sensitizer, It does not limit the resin, the electrode material and the like, and the element manufacturing method.
[0055]
Example 7
4 g of ε-type copper phthalocyanine, 2 g of the compound (1), and 14 g of a polyester resin (Vylon 200: manufactured by Toyo Defense Co., Ltd.) were dispersed together with 80 g of tetrahydrofuran in a ball mill for 5 hours. This dispersion was applied on an aluminum substrate and dried to produce a single-layer electrophotographic photosensitive member having a thickness of 20 μm as shown in FIG.
[0056]
Example 8
6 g of dibromoanthanthrone, 2 g of the compound (3), and 12 g of a polyester resin (Vylon 200: manufactured by Toyo Defense Co., Ltd.) were dispersed together with 80 g of tetrahydrofuran in a ball mill for 5 hours. This dispersion was applied on an aluminum substrate and dried to produce a single-layer electrophotographic photosensitive member having a thickness of 20 μm as shown in FIG.
[0057]
Example 9
2 g of τ-type metal-free phthalocyanine and 2 g of polyvinyl butyral resin (BH-3: manufactured by Sekisui Chemical Co., Ltd.) were dispersed together with 96 g of tetrahydrofuran in a ball mill for 2 hours. This dispersion was applied on an aluminum substrate and dried to form a charge generation layer having a thickness of 0.3 μm. Next, 10 g of the compound (4) and 10 g of a polycarbonate resin (L-1250; manufactured by Teijin Chemicals Ltd.) were dissolved in 80 g of dichloromethane. This coating liquid was applied on the charge generating layer and dried to form a charge transporting layer having a thickness of 20 μm, thereby producing a laminated electrophotographic photosensitive member shown in FIG.
[0058]
Example 10
2 g of N, N'-bis (2,6-dichlorophenyl) -3,4,9,10-perylenedicarboximide and 2 g of polyvinyl butyral resin (BH-3: manufactured by Sekisui Chemical Co., Ltd.) together with 96 g of tetrahydrofuran in a ball mill. Dispersed for 2 hours. This dispersion was applied on an aluminum substrate and dried to form a charge generation layer having a thickness of 0.3 μm. Next, 10 g of the compound (6) and 10 g of a polycarbonate resin (L-1250; manufactured by Teijin Chemicals Ltd.) were dissolved in 80 g of dichloromethane. This coating liquid was applied on the charge generating layer and dried to form a charge transporting layer having a thickness of 20 μm, thereby producing a laminated electrophotographic photosensitive member shown in FIG.
[0059]
The electrophotographic characteristics of the electrophotographic photosensitive member were measured by the following method. Static mode 2, corona charging is -5.2 (kV), white light of 5 (lux) is irradiated by an electrostatic copying paper tester (EPA-8100; manufactured by Kawaguchi Electric Works, Ltd.), and the initial surface Potential (V 0 ), the ratio of V 0 to the surface potential (V 2 ) when left in a dark place for 2 seconds (dark decay rate: DDR 2 = V 2 / V 0 ), and the initial charge after light exposure is 1 The half-exposure dose sensitivity (E 1/2 ) and the surface potential (VR 3 ) after 3 seconds of light exposure were examined from the time of decreasing to / 2. Table 2 shows the electrophotographic characteristics of the electrophotographic photosensitive members of Examples 7 to 10.
[0060]
[Table 2]
Figure 0003593719
[0061]
When the electrophotographic characteristics were measured repeatedly 10,000 times or more, stable surface potential and sensitivity could be obtained for all the electrophotographic photosensitive members shown in this example.
[0062]
【The invention's effect】
According to the present invention, a compound having excellent hole transporting ability can be obtained. The compound provided by the present invention has higher luminous efficiency and higher brightness than conventional ones, and has excellent long-lifetime organic EL devices and excellent initial electrophotographic properties such as sensitivity, hole transport properties, initial surface potential, and dark decay rate. Thus, an electrophotographic photoreceptor having less fatigue due to repeated use could be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a schematic structure of an organic EL element used in an example. FIG. 2 is a cross-sectional view illustrating a schematic structure of an organic EL element used in an example. FIG. 3 is an organic EL element used in an example. FIG. 4 is a cross-sectional view illustrating a schematic structure of an electrophotographic photoreceptor used in Examples. FIG. 5 is a cross-sectional view illustrating a schematic structure of an electrophotographic photoreceptor used in Examples. Infrared absorption spectrum of Compound 1 [Figure 7] Infrared absorption spectrum of Compound 3 [Explanation of symbols]
1. Substrate 2. Electrode A
3. 3. hole injection layer Light emitting layer5. 5. electron injection layer Electrode B
7. 7. Al substrate Photosensitive layer9. Charge generation layer 10. Hole transport layer

Claims (5)

下記一般式[1]で示されるトリフェニルアミン誘導体。
一般式[1]
Figure 0003593719
[式中、A1は下記一般式[2]で示されるトリフェニルアミン化合物残基を示し、A2は水素原子もしくは一般式[2]で示されるトリフェニルアミン化合物残基を示す。]
一般式[2]
Figure 0003593719
[式中、R1〜R4は、それぞれ独立に、水素原子、置換のアルキル基を示す。]
A triphenylamine derivative represented by the following general formula [1].
General formula [1]
Figure 0003593719
[In the formula, A 1 represents a triphenylamine compound residue represented by the following general formula [2], and A 2 represents a hydrogen atom or a triphenylamine compound residue represented by the general formula [2]. ]
General formula [2]
Figure 0003593719
[Wherein, R 1 to R 4 each independently represent a hydrogen atom or an unsubstituted alkyl group. ]
1,2−シクロヘキサジオンと、下記一般式[3]で示されるトリフェニルアミン化合物とを反応させることを特徴とする請求項1記載のトリアリールアミン誘導体の製造方法。
一般式[3]
Figure 0003593719
[式中、R1〜R4は、それぞれ独立に、水素原子、置換のアルキル基を示す。]
The method for producing a triarylamine derivative according to claim 1, wherein 1,2-cyclohexadione is reacted with a triphenylamine compound represented by the following general formula [3].
General formula [3]
Figure 0003593719
[Wherein, R 1 to R 4 each independently represent a hydrogen atom or an unsubstituted alkyl group. ]
請求項1記載のトリフェニルアミン誘導体からなる正孔輸送材料。A hole transport material comprising the triphenylamine derivative according to claim 1. 一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を備えた有機エレクトロルミネッセンス素子において、少なくとも一層が請求項3記載の正孔輸送材料を含有することを特徴とする有機エレクトロルミネッセンス素子。An organic electroluminescent device comprising a light emitting layer or a plurality of organic compound thin films including a light emitting layer between a pair of electrodes, wherein at least one layer contains the hole transport material according to claim 3. element. 導電性支持体上に、電荷発生材料および正孔輸送材料を使用してなる電子写真感光体において、正孔輸送材料が、請求項3記載の正孔輸送材料であることを特徴とする電子写真感光体。4. An electrophotographic photosensitive member comprising a charge generation material and a hole transport material on a conductive support, wherein the hole transport material is the hole transport material according to claim 3. Photoconductor.
JP18320194A 1994-08-04 1994-08-04 Novel triphenylamine derivative, its production method and use Expired - Fee Related JP3593719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18320194A JP3593719B2 (en) 1994-08-04 1994-08-04 Novel triphenylamine derivative, its production method and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18320194A JP3593719B2 (en) 1994-08-04 1994-08-04 Novel triphenylamine derivative, its production method and use

Publications (2)

Publication Number Publication Date
JPH0840997A JPH0840997A (en) 1996-02-13
JP3593719B2 true JP3593719B2 (en) 2004-11-24

Family

ID=16131546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18320194A Expired - Fee Related JP3593719B2 (en) 1994-08-04 1994-08-04 Novel triphenylamine derivative, its production method and use

Country Status (1)

Country Link
JP (1) JP3593719B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW542851B (en) 1996-05-15 2003-07-21 Chemipro Kasei Kaisha Ltd Multicolor organic electroluminescence element, its manufacturing method, and a display using the same
JPH10270171A (en) * 1997-01-27 1998-10-09 Junji Kido Organic electroluminescent element
JP2998707B2 (en) 1997-07-09 2000-01-11 日本電気株式会社 Organic electroluminescence device
US6582837B1 (en) 1997-07-14 2003-06-24 Nec Corporation Organic electroluminescence device
US6329083B1 (en) 1997-11-05 2001-12-11 Nec Corporation Organic electroluminescent device containing a benzoperylene compound
US6492041B2 (en) 1997-12-25 2002-12-10 Nec Corporation Organic electroluminescent device having high efficient luminance
JP4514841B2 (en) 1998-02-17 2010-07-28 淳二 城戸 Organic electroluminescent device
JPH11251067A (en) 1998-03-02 1999-09-17 Junji Kido Organic electroluminescence element
JP2956691B1 (en) 1998-05-22 1999-10-04 日本電気株式会社 Organic electroluminescence device
US6468675B1 (en) 1998-05-29 2002-10-22 Nec Corporation Organic electroluminescent device having high luminance efficiency
US6465116B1 (en) 1998-06-08 2002-10-15 Nec Corporation Organic electroluminescent device
US6699594B1 (en) 1998-06-08 2004-03-02 Nec Corporation Organic electroluminescent device
JP3548839B2 (en) 1998-10-23 2004-07-28 三星エスディアイ株式会社 Organic electroluminescent device using hole transporting luminescent material
JP4505067B2 (en) 1998-12-16 2010-07-14 淳二 城戸 Organic electroluminescent device
US6759144B2 (en) 1998-12-16 2004-07-06 Samsung Sdi Co., Ltd. Organic electroluminescence device
US6180267B1 (en) 1999-01-08 2001-01-30 Nec Corporation Organic electroluminescent device containing a 1,3-dibenzylideneindane compound
KR20010050711A (en) 1999-09-29 2001-06-15 준지 키도 Organic electroluminescent device, group of organic electroluminescent devices and controlling method of emission spectrum in such devices
JP2001167886A (en) 1999-12-13 2001-06-22 Nec Corp Organic electroluminescent element
US6821644B2 (en) 1999-12-15 2004-11-23 Samsung Sdi Co., Ltd. Organic electroluminescent device
US6899961B2 (en) 1999-12-15 2005-05-31 Samsung Sdi Co., Ltd. Organic electroluminescence device
JP3836300B2 (en) 2000-05-25 2006-10-25 三星エスディアイ株式会社 Organic electroluminescence device
US6746784B2 (en) 2000-11-07 2004-06-08 Samsung Electronics Co., Ltd. Organic electroluminescent device
EP1365633B1 (en) 2000-12-25 2011-07-06 Samsung Mobile Display Co., Ltd. Organic electroluminescence element
JP4030722B2 (en) 2001-02-15 2008-01-09 三星エスディアイ株式会社 Organic electroluminescence device and method of manufacturing the same
US6602619B2 (en) 2001-10-19 2003-08-05 Lightronik Technology Inc. Organic EL device
US6706423B2 (en) 2001-12-27 2004-03-16 Lightronik Technology Inc. Organic EL device
JP4381298B2 (en) 2002-05-01 2009-12-09 日産化学工業株式会社 Organic electroluminescence device and material thereof
JP4683829B2 (en) 2003-10-17 2011-05-18 淳二 城戸 Organic electroluminescent device and manufacturing method thereof
JP4476594B2 (en) 2003-10-17 2010-06-09 淳二 城戸 Organic electroluminescent device
TW200517469A (en) 2003-10-30 2005-06-01 Nissan Chemical Ind Ltd Charge-transporting compound, charge-transporting material, charge-transporting varnish, charge-transporting thin film, and organic electroluminescent device
JP4175273B2 (en) 2004-03-03 2008-11-05 セイコーエプソン株式会社 Method for manufacturing stacked organic electroluminescence element and display device
JP4939284B2 (en) 2007-04-05 2012-05-23 財団法人山形県産業技術振興機構 Organic electroluminescent device
JP2009161516A (en) * 2007-12-11 2009-07-23 Konica Minolta Business Technologies Inc Amine compound, electrophotographic photoreceptor and image forming device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2840372B2 (en) * 1990-04-11 1998-12-24 出光興産株式会社 Method for producing hydroxyarylamine compound
JP3150330B2 (en) * 1990-09-19 2001-03-26 株式会社東芝 Organic thin film element
JPH04178487A (en) * 1990-11-13 1992-06-25 Nec Corp Organic thin film el element
JP3476855B2 (en) * 1992-01-07 2003-12-10 株式会社東芝 Organic EL device
JP3296147B2 (en) * 1994-08-04 2002-06-24 東洋インキ製造株式会社 Triphenylamine polymer, its production method and use

Also Published As

Publication number Publication date
JPH0840997A (en) 1996-02-13

Similar Documents

Publication Publication Date Title
JP3593719B2 (en) Novel triphenylamine derivative, its production method and use
JP3593717B2 (en) Novel triphenylamine derivative, its production method and use
JP2686418B2 (en) Diarylamine derivative, production method and use thereof
JP3463358B2 (en) Hole transport material and its use
EP0699654B1 (en) Hole-transporting material and use thereof
JPH0887122A (en) Positive hole transferring material and its use
JP3640090B2 (en) Hole transport material and use thereof
JPH10310574A (en) Novel amino compound, its production and use
JP3463402B2 (en) Hole transport material and its use
US5968675A (en) Hole-transporting material and use thereof
JP3780619B2 (en) Novel styryl polymer compound, production method and use thereof
JP3269300B2 (en) Hole transport material and its use
JP3296147B2 (en) Triphenylamine polymer, its production method and use
JP3593718B2 (en) Novel triphenylamine derivative, its production method and use
JPH07145372A (en) Hole-transport mateiral and its use
JP2000095766A (en) Novel benzommidazole compound, its production and use
JP3709637B2 (en) Hole transport material and use thereof
JP3261930B2 (en) Hole transport material and its use
JP3079903B2 (en) Hole transport material and its use
EP0779765B1 (en) Hole-transporting material and use thereof
JP3575104B2 (en) Hole transport material and its use
JP3800720B2 (en) Novel styryl polymer compound, production method and use thereof
JPH07331237A (en) Hole transport material and its use
JP3261882B2 (en) Hole transport material and its use
JP3261881B2 (en) Hole transport material and its use

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees