JPH10134828A - Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell - Google Patents
Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cellInfo
- Publication number
- JPH10134828A JPH10134828A JP8287798A JP28779896A JPH10134828A JP H10134828 A JPH10134828 A JP H10134828A JP 8287798 A JP8287798 A JP 8287798A JP 28779896 A JP28779896 A JP 28779896A JP H10134828 A JPH10134828 A JP H10134828A
- Authority
- JP
- Japan
- Prior art keywords
- separator
- solid electrolyte
- layer
- fuel electrode
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は平板型固体電解質燃
料電池の燃料極とセパレータ間の集電方法に関する。The present invention relates to a method for collecting current between a fuel electrode and a separator in a flat solid electrolyte fuel cell.
【0002】[0002]
【従来の技術】最近、例えば空気と水素をそれぞれ、酸
化剤ガスおよび燃料ガスとして、燃料が本来持っている
化学エネルギーを直接電気エネルギーに変換する燃料電
池が、省資源、環境保護の観点から注目されており、特
に固体電解質燃料電池は発電効率が高く、排熱を有効に
利用できるなど多くの利点を有するため研究、開発が進
んでいる。2. Description of the Related Art Recently, fuel cells which directly convert chemical energy inherent in fuel into electric energy by using, for example, air and hydrogen as oxidizing gas and fuel gas, respectively, have attracted attention from the viewpoint of resource saving and environmental protection. Research and development of solid electrolyte fuel cells have been progressing because they have many advantages such as high power generation efficiency and effective use of waste heat.
【0003】図2は従来の内部マニホールド方式の平板
型固体電解質燃料電池の概略構成を説明する断面図であ
る。FIG. 2 is a cross-sectional view for explaining a schematic structure of a conventional flat plate type solid electrolyte fuel cell of an internal manifold type.
【0004】固体電解質燃料電池に燃料ガスと酸化剤ガ
スとを供給するため、固体電解質燃料電池のセパレータ
3および固体電解質層1にそれぞれのガスの給排気孔を
設け、この孔から各単電池の各電極面に各ガスを給排気
するようにしたものを内部マニホールド形式と称してい
る。内部マニホールド形式の平板型固体電解質燃料電池
は、イットリアなどをドープしたジルコニア焼結体(Y
SZ)からなる平板型固体電解質層1の両面に、それぞ
れ(La、Sr)MnO3 の空気極(図示せず)と、N
i/YSZサーメットの燃料極2とを配置してなる平板
状単電池と、隣接する単電池同士を電気的に直列に接続
し、かつ各単電池に燃料ガスと酸化剤ガスとを分配する
ため、セパレータ本体部3Aおよびセパレータ補強材3
Bからなるセパレータ3とを交互に積層し、燃料極2と
セパレータ補強材3Bの燃料ガス流通路側との間にニッ
ケル製のメッシュやフェルトからなる集電層4を介在
し、単電池の固体電解質層1とセパレータ3の間にそれ
ぞれシール剤またはスペーサを介在してスタックに積層
したものであり、各単電池の各電極面にそれぞれ燃料ガ
スと酸化剤ガスとを接触させることにより起電力を発生
するようになっている。In order to supply the fuel gas and the oxidizing gas to the solid electrolyte fuel cell, gas supply / exhaust holes for the respective gas are provided in the separator 3 and the solid electrolyte layer 1 of the solid electrolyte fuel cell. A structure in which each gas is supplied to and exhausted from each electrode surface is referred to as an internal manifold type. A flat solid electrolyte fuel cell of the internal manifold type is made of a zirconia sintered body (Y
An air electrode (not shown) of (La, Sr) MnO 3 and an N electrode are provided on both surfaces of the flat solid electrolyte layer 1 made of SZ).
i / YSZ cermet, in order to electrically connect a flat cell having the fuel electrode 2 disposed thereto and adjacent cells in series and to distribute fuel gas and oxidizing gas to each cell. , Separator body 3A and separator reinforcing material 3
B are alternately stacked, and a current collecting layer 4 made of a mesh or felt made of nickel is interposed between the fuel electrode 2 and the fuel gas flow path side of the separator reinforcing material 3B. A stack is formed by stacking a sealant or a spacer between the layer 1 and the separator 3, and an electromotive force is generated by bringing a fuel gas and an oxidizing gas into contact with each electrode surface of each unit cell. It is supposed to.
【0005】[0005]
【発明が解決しようとする課題】従来、燃料極2とセパ
レータ本体部3Aとの集電は、燃料極2とこれに対面す
るセパレータ補強材3Bとの間に集電層4としてニッケ
ルフェルトやニッケルメッシュを詰め込み、セパレータ
補強材3Bに開けられた導電孔を介して行っている。な
お、セパレータ補強材3Bは通常アルミナで作られてい
る。Conventionally, the current collection between the fuel electrode 2 and the separator main body 3A is performed by using nickel felt or nickel as a current collecting layer 4 between the fuel electrode 2 and the separator reinforcing material 3B facing the fuel electrode 2. The mesh is packed and the operation is performed through conductive holes formed in the separator reinforcing material 3B. The separator reinforcing material 3B is usually made of alumina.
【0006】しかしながら、固体電解質燃料電池の運転
時に、ニッケルフェルトやニッケルメッシュの集電層4
が高温になりセパレータ補強材3Bに接着する。そのた
め、セパレータ3と固体電解質層1との熱膨張係数の相
違により発生するセパレータ3の熱応力が集電層4を経
て固体電解質層1に伝わり、固体電解質層1に割れを発
生する。However, during operation of the solid oxide fuel cell, the current collecting layer 4 made of nickel felt or nickel mesh is used.
Becomes high temperature and adheres to the separator reinforcing material 3B. Therefore, the thermal stress of the separator 3 generated due to the difference in the thermal expansion coefficient between the separator 3 and the solid electrolyte layer 1 is transmitted to the solid electrolyte layer 1 via the current collecting layer 4 and the solid electrolyte layer 1 is cracked.
【0007】本発明は上述の点にかんがみてなされたも
ので、平板型固体電解質燃料電池のセパレータの熱応力
が単電池の固体電解質層に伝わらないようにし、もって
セパレータと固体電解質層との間の熱膨張係数の違いに
起因する該固体電解質層の割れの発生を防止することが
できる燃料極とセパレータ間の集電方法を提供すること
を目的とする。The present invention has been made in view of the above points, and has been made to prevent the thermal stress of a separator of a flat solid electrolyte fuel cell from being transmitted to a solid electrolyte layer of a unit cell, and thereby to provide a space between the separator and the solid electrolyte layer. It is an object of the present invention to provide a method for collecting electricity between a fuel electrode and a separator, which can prevent the solid electrolyte layer from cracking due to a difference in thermal expansion coefficient of the solid electrolyte layer.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、本発明は平板型固体電解質層の両面にそれぞれ空気
極と燃料極とを配置してなる平板状単電池と、前記電解
質層の熱膨張係数と異なる熱膨張係数を有するセパレー
タとを交互に積層した内部マニホールド方式の平板型固
体電解質燃料電池における燃料極、セパレータ間の集電
方法において、前記セパレータが空気極側のセパレータ
本体部および燃料極側のセパレータ補強材からなる複合
セパレータであり、前記燃料極の上面に集電層を重ね、
該集電層に対面させて前記セパレータ補強材の表面上に
単電池の固体電解質層と同じ成分の接合防止層を形成し
たことを特徴とする。In order to achieve the above object, the present invention provides a flat cell having an air electrode and a fuel electrode disposed on both sides of a flat solid electrolyte layer, respectively, and a heat treatment for the electrolyte layer. A fuel electrode in a flat solid electrolyte fuel cell of an internal manifold system in which separators having different coefficients of thermal expansion and thermal expansion coefficients are alternately laminated, a method of collecting power between the separators, wherein the separator has an air electrode side separator body and fuel A composite separator comprising a separator reinforcing material on the electrode side, a current collecting layer is stacked on the upper surface of the fuel electrode,
A bonding prevention layer having the same component as the solid electrolyte layer of the unit cell is formed on the surface of the separator reinforcing member so as to face the current collecting layer.
【0009】また、本発明は前記セパレータ補強材上の
接合防止層が、該接合防止層成分のスラリーを塗布して
後、相対密度ρが30%≦ρ≦90%になるように焼成
して形成されたことを特徴とする。In the present invention, the bonding prevention layer on the separator reinforcing material is applied with a slurry of the bonding prevention layer component and then fired so that the relative density ρ is 30% ≦ ρ ≦ 90%. It is characterized by being formed.
【0010】また、本発明は前記接合防止層成分のスラ
リー中にジルコニウムまたはイットリウムの金属有機化
合物を含むことを特徴とする。[0010] The present invention is also characterized in that the slurry of the bonding preventing layer component contains a metal organic compound of zirconium or yttrium.
【0011】また、本発明は前記接合防止層成分のスラ
リーがスクリーン印刷法により塗布されたことを特徴と
する。Further, the present invention is characterized in that the slurry of the bonding preventing layer component is applied by a screen printing method.
【0012】また、本発明は前記接合防止層成分のスラ
リーがスプレーコーティング法により塗布されたことを
特徴とする。Further, the present invention is characterized in that the slurry of the bonding preventing layer component is applied by a spray coating method.
【0013】また、本発明は前記接合防止層成分のスラ
リーが刷毛塗りにより塗布されたことを特徴とする。Further, the present invention is characterized in that the slurry of the bonding preventing layer component is applied by brush coating.
【0014】また、本発明は前記セパレータの材質が
(La1-x Ax )(Cr1-y By )O3 層であり、ここ
で、AはSr、Ca、Baのうちのいずれか一つまたは
二つ以上の組合わせ、BはMn、Ni、Mg、Co、Z
r、Ce、Fe、Alのうちのいずれか一つまたは二つ
以上の組合わせであり、 0≦x≦0.50、 0≦y
≦0.50 であることを特徴とする。Further, in the present invention, the material of the separator is a (La 1 -xA x ) (Cr 1 -y By ) O 3 layer, wherein A is any one of Sr, Ca and Ba. One or a combination of two or more, B is Mn, Ni, Mg, Co, Z
any one or a combination of two or more of r, Ce, Fe, and Al, 0 ≦ x ≦ 0.50, 0 ≦ y
≦ 0.50.
【0015】また、本発明は前記セパレータ補強材がセ
ラミックスで製作されたことを特徴とする。Further, the present invention is characterized in that the separator reinforcing material is made of ceramics.
【0016】また、本発明は前記セパレータが耐熱性金
属で製作されたことを特徴とする。Further, the present invention is characterized in that the separator is made of a heat-resistant metal.
【0017】また、本発明は前記電解質層がドープした
ZrO2 、CeO2 、LaGaO3であることを特徴と
する。Further, the present invention is characterized in that the electrolyte layer is doped ZrO 2 , CeO 2 , LaGaO 3 .
【0018】[0018]
【発明の実施の形態】以下に本発明を図面に基づいて説
明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
【0019】図1は本発明による内部マニホールド方式
の平板型固体電解質燃料電池の概略構成を説明する断面
図である。FIG. 1 is a cross-sectional view illustrating a schematic configuration of a flat solid electrolyte fuel cell of the internal manifold type according to the present invention.
【0020】図1の平板型固体電解質燃料電池は上記の
従来の平板型固体電解質燃料電池と同様に、イットリア
などをドープしたジルコニア焼結体(YSZ)からなる
平板型固体電解質層1の両面に、それぞれ(La、S
r)MnO3 の空気極(図示せず)と、Ni/YSZサ
ーメットの燃料極2とを配置してなる平板状単電池と、
隣接する単電池同士を電気的に直列に接続し、かつ各単
電池に燃料ガスと酸化剤ガスとを分配するためのセパレ
ータ3とを交互に積層し(セパレータ3はセパレータ本
体部3Aとセパレータ補強材3Bとを重ね合わせたもの
である)たものであり、燃料極2とセパレータ補強材3
Bの燃料ガス流通路側との間にニッケル製のメッシュや
フェルトからなる集電層4を介在している。The flat solid electrolyte fuel cell shown in FIG. 1 is formed on both sides of a flat solid electrolyte layer 1 made of a zirconia sintered body (YSZ) doped with yttria or the like, similarly to the above-mentioned conventional flat solid electrolyte fuel cell. , Respectively (La, S
r) a flat cell in which an air electrode (not shown) of MnO 3 and a fuel electrode 2 of Ni / YSZ cermet are arranged;
Adjacent cells are electrically connected in series, and separators 3 for distributing fuel gas and oxidizing gas are alternately laminated on each cell (the separator 3 is reinforced with the separator body 3A and the separator reinforcement). A fuel electrode 2 and a separator reinforcing material 3
A current collecting layer 4 made of nickel mesh or felt is interposed between B and the fuel gas flow path side.
【0021】しかしながら、本発明では 図1に示すよ
うにセパレータ補強材3Bの燃料ガス流通路側(図1に
おいてセパレータ補強材3Bの下面)と集電層4との間
に接合防止層5が挟まれている。接合防止層5は単電池
の固体電解質層と同じ成分で作られている。その結果、
固体電解質燃料電池の作動時に発生する高温により、接
合防止層と集電層とが接合しても、集電層の表面の粉が
母体(集電層本体)から剥れて滑ることにより、セパレ
ータの熱応力が単電池の固体電解質層に伝わらないの
で、固体電解質層とセパレータとの間の熱膨張係数の違
いによる固体電解質層の割れが発生しない。However, in the present invention, as shown in FIG. 1, the joining prevention layer 5 is sandwiched between the fuel gas flow path side of the separator reinforcing member 3B (the lower surface of the separator reinforcing member 3B in FIG. 1) and the current collecting layer 4. ing. The bonding prevention layer 5 is made of the same components as the solid electrolyte layer of the unit cell. as a result,
Due to the high temperature generated during operation of the solid oxide fuel cell, even if the joining prevention layer and the current collecting layer are joined, the powder on the surface of the current collecting layer is separated from the base (current collecting layer main body) and slips. Is not transmitted to the solid electrolyte layer of the unit cell, so that the solid electrolyte layer does not crack due to a difference in thermal expansion coefficient between the solid electrolyte layer and the separator.
【0022】上記接合防止層は、該接合防止層成分のス
ラリーを塗布して後、相対密度ρが30%≦ρ≦90%
になるように焼成して形成される。また、接合防止層成
分のスラリー中にジルコニウムまたはイットリウムの金
属有機化合物を含む。この接合防止層成分のスラリーは
スクリーン印刷法やスプレーコーティング法や刷毛塗り
により塗布される。After the application of the slurry of the anti-bonding layer component, the anti-bonding layer has a relative density ρ of 30% ≦ ρ ≦ 90%
And formed by firing. Further, the slurry of the component of the bonding preventing layer contains a metal organic compound of zirconium or yttrium. The slurry of the bonding preventing layer component is applied by a screen printing method, a spray coating method, or a brush coating.
【0023】また、前記セパレータ(補強材3B)の材
質は(La1-x Ax )(Cr1-y By )O3 層であり、
ここで、AはSr、Ca、Baのうちのいずれか一つま
たは二つ以上の組合わせ、BはMn、Ni、Mg、C
o、Zr、Ce、Fe、Alのうちのいずれか一つまた
は二つ以上の組合わせであり、 0≦x≦0.50、0
≦y≦0.50 である。The material of the separator (reinforcing member 3B) is a (La 1-x A x ) (Cr 1- y By ) O 3 layer,
Here, A is any one or a combination of two or more of Sr, Ca, and Ba, and B is Mn, Ni, Mg, C
o, Zr, Ce, Fe, or any one or a combination of two or more of 0, 0 ≦ x ≦ 0.50, 0
.Ltoreq.y.ltoreq.0.50.
【0024】また、前記セパレータ補強材はセラミック
ス、耐熱性金属やドープしたZrO2 、CeO2 、La
GaO3 で製作される。Further, the separator reinforcing material is made of ceramics, heat-resistant metal, doped ZrO 2 , CeO 2 , La.
Made of GaO 3 .
【0025】[0025]
【実施例】LaCrO3 セパレータと熱膨張係数が7.
8×10-6cm/cmKのアルミナ製セパレータ補強材
からなる、複合マニホールドにおいて、マニホールド補
強材のニッケルメッシュ集電層(熱膨張係数は14×1
0-6cm/cmK)と対面する燃料流路凸部に、スクリ
ーン印刷法によりイットリアを3モル%ドープした平均
粒径1.5μmのジルコニア粉末を塗布し、1000℃
で2時間仮焼し、接合防止層を形成した。接合防止層の
表面は、粒状であり、その粒子は手で容易にはぎとれる
ほど付着力が弱いものである。EXAMPLE A LaCrO 3 separator and a thermal expansion coefficient of 7.
In a composite manifold comprising an alumina separator reinforcing material of 8 × 10 −6 cm / cmK, a nickel mesh current collecting layer of the manifold reinforcing material (thermal expansion coefficient is 14 × 1
0 -6 cm / cmK) and fuel channel protrusions facing, zirconia powder having an average particle diameter of 1.5μm was 3 mol% doping yttria was applied by screen printing, 1000 ° C.
For 2 hours to form a bonding prevention layer. The surface of the anti-joining layer is granular, and the particles have such a weak adhesion that they can be easily removed by hand.
【0026】厚さ100μmのイットリアを3モル%ド
ープしたジルコニアシート(熱膨張係数は10.8×1
0-6cm/cmK)の片面に、燃料極としてニッケルと
ジルコニアのサーメットを30μm、反対面に空気極と
して、ランタンマンガネートを150μmそれぞれ形成
した電池を用い、 a)上記接合防止層を形成したマニホールド b)接合防止層を形成しないマニホールド をそれぞれ使用して、燃料として水素、酸化剤として空
気を流し、1000℃において発電試験を行った。A zirconia sheet doped with 3 mol% of yttria having a thickness of 100 μm (having a thermal expansion coefficient of 10.8 × 1
On one side of the 0 -6 cm / cmK), 30μm nickel and zirconia cermet fuel electrode, as the cathode on the opposite face, with a cell formed of lanthanum manganate 150μm respectively, a) the formation of the anti-bonding layer Manifold b) A power generation test was performed at 1000 ° C. by using each of the manifolds on which a bonding prevention layer was not formed, by flowing hydrogen as fuel and air as oxidant.
【0027】b)の場合においては、発電試験後、室温
において解体し調べたところ、アルミナ製セパレータ補
強材、ニッケルメッシュ集電体、電池はそれぞれ接合し
ており、電池はアルミナによる引張応力により割れが生
じていた。In the case of b), after the power generation test, when disassembled at room temperature and examined, the alumina separator reinforcing material, the nickel mesh current collector, and the battery were respectively joined, and the battery was cracked by tensile stress due to alumina. Had occurred.
【0028】a)の場合はニッケルメッシュ集電体、電
池は接合していたが、アルミナ製セパレータ補強材、ニ
ッケルメッシュ集電体は接合防止層のために、接合して
おらず、アルミナの応力が電池に及ばないので、電池に
割れは生じていなかった。In the case of a), the nickel mesh current collector and the battery were joined, but the alumina separator reinforcing material and the nickel mesh current collector were not joined because of the joining prevention layer, and the stress of alumina Did not reach the battery, so that the battery did not crack.
【0029】[0029]
【発明の効果】以上説明したように、本発明によれば内
部マニホールド方式の平板型固体電解質燃料電池におけ
る燃料極、セパレータ間の集電方法において、セパレー
タが空気極側のセパレータ本体部および燃料極側のセパ
レータ補強材からなる複合セパレータであり、燃料極の
上面に集電層を重ね、該集電層に対面させて前記セパレ
ータ補強材の表面上に単電池の固体電解質層と同じ成分
の接合防止層を形成したので、次のような極めて優れた
効果が得られる。 (1)接合防止層と集電層とが接合した際、集電層の表
面の粉が母体(集電層本体)から剥れて滑ることによ
り、セパレータの熱応力が単電池の固体電解質層に伝わ
らないようになる。 (2)単電池の固体電解質層とセパレータとの間の熱膨
張係数の違いによる固体電解質層の割れを防止すること
ができる。 (3)単電池の固体電解質層とセパレータ間の材料選択
の幅が拡大する。As described above, according to the present invention, in a method for collecting fuel between a fuel electrode and a separator in a flat solid electrolyte fuel cell of an internal manifold system, the separator is composed of a separator body portion on the air electrode side and a fuel electrode. A composite separator comprising a separator reinforcing material on the side, a current collecting layer is superimposed on the upper surface of the fuel electrode, and the same components as the solid electrolyte layer of the unit cell are joined on the surface of the separator reinforcing material facing the current collecting layer. Since the prevention layer is formed, the following excellent effects can be obtained. (1) When the joining prevention layer and the current collecting layer are joined, the powder on the surface of the current collecting layer is separated from the base (the current collecting layer main body) and slips, so that the thermal stress of the separator decreases the solid electrolyte layer of the unit cell. Will not be transmitted to. (2) The solid electrolyte layer can be prevented from cracking due to a difference in thermal expansion coefficient between the solid electrolyte layer and the separator of the unit cell. (3) The range of material selection between the solid electrolyte layer and the separator of the unit cell is expanded.
【図1】本発明による内部マニホールド方式の平板型固
体電解質燃料電池の概略構成を説明する断面図である。FIG. 1 is a sectional view illustrating a schematic configuration of a flat solid electrolyte fuel cell of an internal manifold type according to the present invention.
【図2】従来の内部マニホールド方式の平板型固体電解
質燃料電池の概略構成を説明する断面図である。FIG. 2 is a cross-sectional view illustrating a schematic configuration of a conventional internal manifold type flat solid electrolyte fuel cell.
1 固体電解質層 2 燃料極 3 セパレータ 3A セパレータ本体部 3B セパレータ補強材 4 集電層 5 接合防止層 DESCRIPTION OF SYMBOLS 1 Solid electrolyte layer 2 Fuel electrode 3 Separator 3A Separator main body 3B Separator reinforcing material 4 Current collection layer 5 Join prevention layer
Claims (10)
気極と燃料極とを配置してなる平板状単電池と、前記電
解質層の熱膨張係数と異なる熱膨張係数を有するセパレ
ータとを交互に積層した内部マニホールド方式の平板型
固体電解質燃料電池における燃料極、セパレータ間の集
電方法において、前記セパレータが空気極側のセパレー
タ本体部および燃料極側のセパレータ補強材からなる複
合セパレータであり、前記燃料極の上面に集電層を重
ね、該集電層に対面させて前記セパレータ補強材の表面
上に前記固体電解質層と同じ成分の接合防止層を形成し
たことを特徴とする平板型固体電解質燃料電池の燃料極
とセパレータ間の集電方法。1. A flat cell having an air electrode and a fuel electrode disposed on both sides of a flat solid electrolyte layer, and separators having a thermal expansion coefficient different from that of the electrolyte layer, alternately. The fuel electrode in the laminated internal manifold type flat solid electrolyte fuel cell, a method of collecting power between the separators, wherein the separator is a composite separator comprising a separator body on the air electrode side and a separator reinforcing material on the fuel electrode side, A flat solid electrolyte, wherein a current collecting layer is stacked on the upper surface of the fuel electrode, and a bonding prevention layer of the same component as the solid electrolyte layer is formed on the surface of the separator reinforcing material so as to face the current collecting layer. A method for collecting current between a fuel electrode and a separator of a fuel cell.
が、該接合防止層成分のスラリーを塗布して後、相対密
度ρが30%≦ρ≦90%になるように焼成して形成さ
れたことを特徴とする請求項1に記載の平板型固体電解
質燃料電池の燃料極とセパレータ間の集電方法。2. An anti-joining layer on the separator reinforcing material is formed by applying a slurry of the anti-joining layer component and then baking so that the relative density ρ is 30% ≦ ρ ≦ 90%. The method of claim 1, wherein the current is collected between the fuel electrode and the separator of the flat solid electrolyte fuel cell.
コニウムまたはイットリウムの金属有機化合物を含むこ
とを特徴とする請求項1に記載の平板型固体電解質燃料
電池の燃料極とセパレータ間の集電方法。3. The method for collecting electricity between a fuel electrode and a separator of a flat solid electrolyte fuel cell according to claim 1, wherein the slurry of the anti-joining layer component contains a metal organic compound of zirconium or yttrium. .
ーン印刷法により塗布されたことを特徴とする請求項2
に記載の平板型固体電解質燃料電池の燃料極とセパレー
タ間の集電方法。4. The method according to claim 2, wherein the slurry of the bonding preventing layer component is applied by a screen printing method.
4. The method for collecting current between a fuel electrode and a separator of a flat solid electrolyte fuel cell according to item 1.
ーコーティング法により塗布されたことを特徴とする請
求項2に記載の平板型固体電解質燃料電池の燃料極とセ
パレータ間の集電方法。5. The method according to claim 2, wherein the slurry of the anti-joining layer component is applied by a spray coating method.
りにより塗布されたことを特徴とする請求項2に記載の
平板型固体電解質燃料電池の燃料極とセパレータ間の集
電方法。6. The method according to claim 2, wherein the slurry of the anti-joining layer component is applied by brush coating.
x )(Cr1-y By )O3 層であり、ここで、AはS
r、Ca、Baのうちのいずれか一つまたは二つ以上の
組合わせ、BはMn、Ni、Mg、Co、Zr、Ce、
Fe、Alのうちのいずれか一つまたは二つ以上の組合
わせであり、 0≦x≦0.50、 0≦y≦0.50
であることを特徴とする請求項1に記載の平板型固体
電解質燃料電池の燃料極とセパレータ間の集電方法。7. The material of the separator is (La 1-x A
x) (Cr 1-y B y) is O 3 layer, wherein, A is S
any one or a combination of two or more of r, Ca, and Ba; B is Mn, Ni, Mg, Co, Zr, Ce,
0 ≦ x ≦ 0.50, 0 ≦ y ≦ 0.50, any one or a combination of two or more of Fe and Al
2. The method for collecting current between a fuel electrode and a separator of a flat solid electrolyte fuel cell according to claim 1, wherein:
製作されたことを特徴とする請求項1に記載の平板型固
体電解質燃料電池の燃料極とセパレータ間の集電方法。8. The method according to claim 1, wherein the separator reinforcing member is made of ceramics.
たことを特徴とする請求項1に記載の平板型固体電解質
燃料電池の燃料極とセパレータ間の集電方法。9. The method according to claim 1, wherein the separator is made of a heat-resistant metal.
CeO2 、LaGaO3 であることを特徴とする請求項
1に記載の平板型固体電解質燃料電池の燃料極とセパレ
ータ間の集電方法。10. The method according to claim 1, wherein the electrolyte layer is doped with ZrO 2 ,
2. The method for collecting electricity between a fuel electrode and a separator of a flat solid electrolyte fuel cell according to claim 1, wherein CeO 2 and LaGaO 3 are used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8287798A JPH10134828A (en) | 1996-10-30 | 1996-10-30 | Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8287798A JPH10134828A (en) | 1996-10-30 | 1996-10-30 | Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10134828A true JPH10134828A (en) | 1998-05-22 |
Family
ID=17721893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8287798A Withdrawn JPH10134828A (en) | 1996-10-30 | 1996-10-30 | Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10134828A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005310692A (en) * | 2004-04-26 | 2005-11-04 | Mitsubishi Materials Corp | Solid oxide fuel cell |
JP2006155919A (en) * | 2004-11-25 | 2006-06-15 | Kyocera Corp | Fuel battery cell and fuel battery |
JP2007157352A (en) * | 2005-11-30 | 2007-06-21 | Kyocera Corp | Fuel cell cell stack and fuel cell |
KR100747865B1 (en) * | 2006-08-16 | 2007-08-08 | 현대자동차주식회사 | Fuel cell stack |
JP2008251379A (en) * | 2007-03-30 | 2008-10-16 | Ngk Insulators Ltd | Electrochemical device |
WO2010007722A1 (en) * | 2008-07-14 | 2010-01-21 | 株式会社村田製作所 | Interconnector material, intercellular separation structure, and solid electrolyte fuel cell |
JP2012043808A (en) * | 2011-10-24 | 2012-03-01 | Kyocera Corp | Fuel battery cell stack, and fuel battery |
-
1996
- 1996-10-30 JP JP8287798A patent/JPH10134828A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005310692A (en) * | 2004-04-26 | 2005-11-04 | Mitsubishi Materials Corp | Solid oxide fuel cell |
JP4513396B2 (en) * | 2004-04-26 | 2010-07-28 | 三菱マテリアル株式会社 | Solid oxide fuel cell |
JP2006155919A (en) * | 2004-11-25 | 2006-06-15 | Kyocera Corp | Fuel battery cell and fuel battery |
JP2007157352A (en) * | 2005-11-30 | 2007-06-21 | Kyocera Corp | Fuel cell cell stack and fuel cell |
KR100747865B1 (en) * | 2006-08-16 | 2007-08-08 | 현대자동차주식회사 | Fuel cell stack |
JP2008251379A (en) * | 2007-03-30 | 2008-10-16 | Ngk Insulators Ltd | Electrochemical device |
WO2010007722A1 (en) * | 2008-07-14 | 2010-01-21 | 株式会社村田製作所 | Interconnector material, intercellular separation structure, and solid electrolyte fuel cell |
JP5251982B2 (en) * | 2008-07-14 | 2013-07-31 | 株式会社村田製作所 | Interconnector material, cell separation structure, and solid oxide fuel cell |
US8841043B2 (en) | 2008-07-14 | 2014-09-23 | Murata Manufacturing Co., Ltd. | Interconnector material, intercellular separation structure, and solid electrolyte fuel cell |
US9941524B2 (en) | 2008-07-14 | 2018-04-10 | Murata Manufacturing Co., Ltd. | Interconnector material, intercellular separation structure, and solid electrolyte fuel cell |
JP2012043808A (en) * | 2011-10-24 | 2012-03-01 | Kyocera Corp | Fuel battery cell stack, and fuel battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1105929B1 (en) | Planar solid oxide fuel cell stack with metallic foil interconnect | |
JP4960593B2 (en) | Electrochemical battery stack assembly | |
US20070220721A1 (en) | Method for creating solid oxide fuel cell anodes and electrodes for other electrochemical devices | |
JP2008538449A5 (en) | ||
JP2009520315A (en) | Electrochemical battery holder and stack | |
JP3456378B2 (en) | Solid oxide fuel cell | |
JP2000048831A (en) | Solid electrolyte fuel cell | |
JP5061408B2 (en) | STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL | |
JPH10134828A (en) | Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell | |
JPH08180885A (en) | Solid electrolytic fuel cell improved in current collecting efficiency of air electrode | |
JPH09129252A (en) | Highly durable solid electrlyte fuel cell and manufacture thereof | |
JPH1116585A (en) | Flat solid electrolyte fuel cell and its layering method | |
JPH09231987A (en) | Seal structure of solid electrolyte fuel cell and its manufacture | |
JPH1079258A (en) | Current collecting method for flat type solid electrolyte fuel cell | |
JPH07320756A (en) | Solid electrolytic fuel cell | |
JPH0714591A (en) | Gas seal structure of solid electrolytic fuel cell | |
JPH0845516A (en) | Plate type solid electrolyte fuel cell using mesh with different wire diameters | |
JPH09147884A (en) | Flat solid electrolyte fuel cell | |
JPH0462757A (en) | Solid electrolyte type fuel cell | |
JP2654502B2 (en) | Solid electrolyte fuel cell with mechanical seal structure | |
JPH09115530A (en) | Solid electrolytic fuel cell having mechanical seal structure | |
JPH07282835A (en) | Sealing material for solid electrolyte fuel cell, sealing method for solid electrolyte fuel cell using this material, and solid electrolyte fuel cell | |
JPH0850911A (en) | Platelike solid electrolytic fuel cell | |
JPH0722058A (en) | Flat solid electrolyte fuel cell | |
JPH06342668A (en) | Method for sealing gas of solid electrolyte fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040106 |