JPH09231987A - Seal structure of solid electrolyte fuel cell and its manufacture - Google Patents
Seal structure of solid electrolyte fuel cell and its manufactureInfo
- Publication number
- JPH09231987A JPH09231987A JP8031102A JP3110296A JPH09231987A JP H09231987 A JPH09231987 A JP H09231987A JP 8031102 A JP8031102 A JP 8031102A JP 3110296 A JP3110296 A JP 3110296A JP H09231987 A JPH09231987 A JP H09231987A
- Authority
- JP
- Japan
- Prior art keywords
- separator
- gas
- fuel cell
- seal structure
- lid member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は固体電解質型燃料電
池のシール構造およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell seal structure and a method for manufacturing the same.
【0002】[0002]
【従来の技術】最近、例えば空気と水素をそれぞれ、酸
化剤ガスおよび燃料ガスとして、燃料が本来持っている
化学エネルギーを直接電気エネルギーに変換する燃料電
池が、省資源、環境保護の観点から注目されており、特
に平板型固体電解質燃料電池は発電効率が高く、廃熱を
有効に利用できるなど多くの利点を有するため研究、開
発が進んでいる。2. Description of the Related Art Recently, a fuel cell which directly converts chemical energy originally possessed by a fuel into electric energy by using, for example, air and hydrogen as an oxidant gas and a fuel gas respectively, has attracted attention from the viewpoint of resource saving and environmental protection. In particular, flat-plate solid electrolyte fuel cells have many advantages such as high power generation efficiency and effective utilization of waste heat, and thus research and development are proceeding.
【0003】平板型固体電解質燃料電池に燃料ガスと酸
化剤ガスとを供給するため、そのセパレータおよび固体
電解質層にそれぞれのガスの給排気孔を設け、この孔か
ら各単電池の各電極面に各ガスを給排気するようにした
ものを内部マニホールド形式と称している。内部マニホ
ールド形式の平板型固体電解質燃料電池は、イットリア
などをドープしたジルコニア焼結体(YSZ)からなる
平板状固体電解質層の両面に、それぞれ(La、Sr)
MnO3 の空気極と、Ni/YSZサーメットの燃料極
とを配置してなる平板状単電池と、隣接する単電池同士
を電気的に直列に接続し、かつ各単電池に燃料ガスと酸
化剤ガスとを分配するセパレータとを交互に積層し、燃
料極とセパレータの燃料ガス流通路側との間に金属メッ
シュを介在し、単電池の固体電解質層とセパレータの間
にそれぞれシール剤またはスペーサやガスケットを介在
し、荷重を掛けてスタックに積層したものであり、各単
電池の各電極面にそれぞれ燃料ガスと酸化剤ガスとを接
触させることにより起電力を発生する。In order to supply the fuel gas and the oxidant gas to the flat plate type solid electrolyte fuel cell, supply and exhaust holes for the respective gases are provided in the separator and the solid electrolyte layer, and from these holes to the electrode surface of each unit cell. The one in which each gas is supplied and exhausted is called an internal manifold type. The flat plate type solid electrolyte fuel cell of the internal manifold type has (La, Sr) on both sides of a flat plate type solid electrolyte layer made of zirconia sintered body (YSZ) doped with yttria or the like.
A plate-shaped unit cell in which an air electrode of MnO 3 and a fuel electrode of Ni / YSZ cermet are arranged, adjacent unit cells are electrically connected in series, and a fuel gas and an oxidizer are connected to each unit cell. Gas and gas separators are laminated alternately, a metal mesh is interposed between the fuel electrode and the fuel gas flow passage side of the separator, and a sealant or spacer or gasket is provided between the solid electrolyte layer of the unit cell and the separator. And a load is applied to stack them in a stack, and an electromotive force is generated by bringing the fuel gas and the oxidant gas into contact with each electrode surface of each unit cell.
【0004】セパレータは燃料極と空気極とにそれぞれ
供給される燃料ガスと酸化剤ガスとを分離してそれらの
クロスリークを防止する作用と、単電池同士を電気的に
直列に接続する作用とを有するものである。スタックの
内部で漏洩した燃料ガスと酸化剤ガスが混合すると、燃
料利用率が低下して燃料電池の効率が低下するのは勿
論、両ガスの混合により燃焼して局部的な温度上昇を生
じ、熱応力分布が不均一となり、クラックや歪みを生
じ、スタックの寿命を短縮させる。現在使用されている
代表的なセパレータはストロンチウムをドープしたラン
タンクロマイトのような導電性酸化物板のセラミックス
である。このように、現在は固体電解質型燃料電池の構
成材料の殆どすべてに多種類のセラミックス材料が使用
されており、特に、シール性と機械的強度はこれらの材
料に要求される重要な性質である。The separator has a function of separating the fuel gas and the oxidant gas supplied to the fuel electrode and the air electrode, respectively, to prevent their cross leak, and a function of electrically connecting the unit cells to each other in series. Is to have. When the fuel gas and the oxidant gas leaking inside the stack are mixed, not only the fuel utilization rate is lowered and the efficiency of the fuel cell is lowered, but also the mixture of both gases causes combustion to cause a local temperature rise, The thermal stress distribution becomes non-uniform, causing cracks and distortions, which shortens the stack life. A typical separator currently used is strontium-doped conductive oxide plate ceramics such as lanthanum chromite. As described above, at present, many kinds of ceramic materials are used for almost all the constituent materials of the solid oxide fuel cell, and in particular, the sealing property and the mechanical strength are important properties required for these materials. .
【0005】図3は従来の内部マニホールド方式の平板
型固体電解質燃料電池に使用されているセパレータの斜
視図である。FIG. 3 is a perspective view of a separator used in a conventional internal manifold type flat plate type solid electrolyte fuel cell.
【0006】図3のセパレータは本体部11と導電性酸
化物製の集電部12からなる複合セパレータである。本
体部11の表面に凹んだポケット部13が形成され、こ
こに集電部12が図の矢印に示すように嵌め込まれる。
集電部12の表面に酸化剤ガス例えば空気を均等に分配
するため複数列のガス流通溝12aおよび突起12bを
交互に備えている。セパレータ本体部11は矩形状をな
し、4隅にガスの給排気孔1a、1bが開けられ、対角
線方向のガス給排気孔1a、1aが空気用となり、もう
一方の対角線方向のガス給排気孔1b、1bが燃料ガス
用となる。図示されていないが、本体部11の裏面に燃
料ガス流通溝および突起が同じように刻設されている。
図3の表面において、空気は左側ガス給排気孔1aから
セパレータ本体部11の左側のへこみ1d、集電部12
のガス流通溝12a、反対側(右側)のへこみ1dを流
れて右側の給排気孔1aに流入する。同じように図3の
裏面において、燃料ガスは別の対角線方向のガス給排気
孔1b、1bの間を流れ、その途中で本体部11の裏面
の燃料ガス流通溝を通過する。The separator shown in FIG. 3 is a composite separator composed of a main body 11 and a current collector 12 made of a conductive oxide. A recessed pocket portion 13 is formed on the surface of the main body portion 11, and the current collecting portion 12 is fitted therein as shown by an arrow in the figure.
A plurality of rows of gas flow grooves 12a and protrusions 12b are alternately provided on the surface of the current collector 12 in order to evenly distribute an oxidant gas, such as air. The separator body 11 has a rectangular shape, and gas supply / exhaust holes 1a, 1b are formed at four corners, the diagonal gas supply / exhaust holes 1a, 1a are used for air, and the other diagonal gas supply / exhaust hole is formed. 1b and 1b are for fuel gas. Although not shown, a fuel gas flow groove and a protrusion are similarly formed on the back surface of the main body 11.
On the surface of FIG. 3, air flows from the left gas supply / exhaust hole 1a to the recess 1d on the left side of the separator body 11 and the current collector 12
Flowing through the gas flow groove 12a and the dent 1d on the opposite side (right side) and flowing into the right air supply / exhaust hole 1a. Similarly, on the back surface of FIG. 3, the fuel gas flows between the gas supply / exhaust holes 1b, 1b in different diagonal directions, and passes through the fuel gas flow groove on the back surface of the main body 11 in the middle thereof.
【0007】[0007]
【発明が解決しようとする課題】図3に示すようなセパ
レータを使用した固体電解質型燃料電池において、燃料
ガスと酸化剤ガスとのクロスリークが最も生じ易い場
所、すなわちシール性の悪い場所は、燃料ガスと酸化剤
ガスとが最も接近して流れているセパレータの表面1c
のA領域(図3)およびこれに対応するセパレータ本体
部11の裏面の領域における構成材料間の隙間である。
ここのシール性を良くするためにシール剤やガスケット
が使用されているが、これらは完全でなく、さらにシー
ル性を向上するためには電池の組み立て時にスタックに
掛ける荷重を大にして隙間をできるだけ小さくするか、
または皆無にする必要がある。しかし、これには限度が
存在する。In the solid oxide fuel cell using the separator as shown in FIG. 3, the place where the cross leak between the fuel gas and the oxidant gas is most likely to occur, that is, the place where the sealing property is bad is The surface 1c of the separator in which the fuel gas and the oxidant gas flow closest to each other
Is a gap between the constituent materials in the area A (FIG. 3) and the area of the back surface of the separator body 11 corresponding thereto.
Sealing agents and gaskets are used to improve the sealing performance here, but these are not perfect.In order to further improve the sealing performance, the load applied to the stack at the time of battery assembly should be increased and the gap should be minimized. Make it smaller or
Or you need to get rid of it all. However, there are limits to this.
【0008】本発明は上述の点にかんがみてなされたも
ので、平板型固体電解質燃料電池の構成材料であるセラ
ミックス間の隙間をできるだけ減少するか、または、隙
間をまったく無くすことにより燃料ガスと酸化剤ガスと
のクロスリークを防止するすることができるシール構造
を提供することを目的とする。The present invention has been made in view of the above points, and reduces the gap between ceramics, which is a constituent material of a flat-plate solid electrolyte fuel cell, as much as possible, or eliminates the gap altogether to oxidize fuel gas and oxidation. It is an object of the present invention to provide a seal structure capable of preventing cross leak with agent gas.
【0009】[0009]
【課題を解決するための手段】固体電解質型燃料電池は
作動温度が約1000℃度と高く、その構成材料が室温
からこの高温度まで、高強度および良シール性を連続的
に保持するためには、構成材料であるセラミックス材料
を互いに強固に、さらにシール性が良好となるように接
合する技術の開発が望まれてきたが、各種のセラミック
ス材料を単に強固に接合することは簡単容易であった
が、接合部のシール性が良くなるように接合することは
困難であった。これを解決するため、発明者はセラミッ
クスの接合について色々実験を繰り返した結果、セラミ
ックスとの間に金属箔(または金属板)を接触状態に挿
入したものを、該金属箔の表皮層、すなわちセラミック
スと該金属箔との界面のみ酸化が進行するような条件で
700℃以上の温度に加熱溶融すると、金属箔の表皮
層、すなわちセラミックスとの界面のみ酸化され、金属
箔の中間部分は元の金属箔の材質をそのまま残して接合
されるので、セラミックス材料同志を強固に接合でき、
かつ中間部分は元の金属箔の材質がそのまま残り、この
部分が延性・展性を有するので、被接合体のセラミック
スとセラミックスとの間に生じる応力を緩和することが
可能となリ、シール性の極めて優れた接合が可能とな
リ、固体電解質型燃料電池の構成部材に最適のセラミッ
クス接合体が得られることが判明した。よって、発明者
はこの「セラミックスの接合方法および接合体」の技術
を特願平8−10284として特許出願した。A solid oxide fuel cell has a high operating temperature of about 1000 ° C., and its constituent material is to maintain high strength and good sealing property continuously from room temperature to this high temperature. , It has been desired to develop a technique for joining the ceramic materials, which are the constituent materials, to each other so that the ceramic materials are firmly bonded to each other and the sealing property is good, but it is easy and easy to simply bond various ceramic materials together. However, it has been difficult to join so as to improve the sealing property of the joint. In order to solve this, the inventor repeated various experiments on bonding of ceramics, and as a result, a metal foil (or a metal plate) inserted in contact with ceramics was used as a skin layer of the metal foil, that is, ceramics. When heated and melted at a temperature of 700 ° C. or higher under the condition that oxidation proceeds only at the interface between the metal foil and the metal foil, only the interface between the skin layer of the metal foil, that is, the ceramic, is oxidized, and the intermediate portion of the metal foil is the original metal. Since the material of the foil is left as it is, it is possible to firmly bond the ceramic materials together,
In addition, the material of the original metal foil remains as it is in the middle part, and since this part has ductility and malleability, it is possible to relieve the stress generated between the ceramics of the objects to be joined, and the sealing property. It has been found that a ceramics bonded body which is most suitable for the constituent members of the solid oxide fuel cell can be obtained because the extremely excellent bonding can be achieved. Therefore, the inventor has applied for a patent for the technique of "ceramic bonding method and bonded body" as Japanese Patent Application No. 8-10284.
【0010】本発明はこの特願平8−10284の技術
も利用するものである。The present invention also utilizes the technique of Japanese Patent Application No. 8-10284.
【0011】上記目的を達成するため、本発明の固体電
解質型燃料電池のシール構造は、平板状固体電解質層の
両面にそれぞれ空気極と燃料極とを配置してなる平板状
単電池と、隣接する単電池同士を電気的に直列に接続し
かつ各単電池に酸化剤ガスと燃料ガスを分配するセパレ
ータとを交互に積層し、前記燃料極と前記セパレータの
燃料ガス流通路側との間に金属メッシュを介在し、前記
単電池の固体電解質層とセパレータとの間にそれぞれシ
ール剤またはガスケットを介在してスタックに積層して
なる平板型固体電解質燃料電池のシール構造において、
前記セパレータが前記空気極または燃料極に対面してそ
れぞれ酸化剤ガスまたは燃料ガスを分配するための複数
列のガス流通溝および突起を交互に刻設された発電部分
と、前記発電部分の両側に接続された袖部分と、前記袖
部分に重ねて配置されたふた部材とを具備し、前記袖部
分とふた部材とが共同して前記発電部分に対し酸化剤ガ
スまたは燃料ガスを供給・排出するとともに該両ガスの
漏失を防止することを特徴とする。In order to achieve the above object, the seal structure for a solid oxide fuel cell according to the present invention is adjacent to a flat plate type single cell in which an air electrode and a fuel electrode are arranged on both sides of a flat plate type solid electrolyte layer. The cells are electrically connected in series to each other and the separators that distribute the oxidant gas and the fuel gas are alternately laminated to each cell, and a metal is provided between the fuel electrode and the fuel gas flow passage side of the separator. In the seal structure of the flat plate type solid electrolyte fuel cell, wherein the mesh is interposed, and the solid electrolyte layer and the separator of the unit cell are laminated in a stack with a sealant or gasket interposed therebetween,
A power generation portion in which the separator faces the air electrode or the fuel electrode and is alternately engraved with a plurality of rows of gas flow grooves and projections for distributing the oxidant gas or the fuel gas, respectively, and on both sides of the power generation portion. A sleeve part connected to the sleeve part and a lid member arranged to overlap the sleeve part are provided, and the sleeve part and the lid member cooperate to supply and discharge an oxidant gas or a fuel gas to the power generation part. At the same time, it is characterized that leakage of both gases is prevented.
【0012】また、本発明はふた部材のセパレータ袖部
分との接触面が平滑に研磨仕上げされていること、ふた
部材とセパレータ袖部分とが無機ガラス系材料で接合さ
れていること、ふた部材とセパレータ袖部分とが表皮層
のみ酸化された金属箔または金属板により接合されてい
ること、金属箔または金属板がアルミニウムまたはAl
−Mg基合金であることを特徴とする。According to the present invention, the contact surface of the lid member with the separator sleeve portion is smoothly polished, the lid member and the separator sleeve portion are joined with an inorganic glass material, and the lid member is The separator sleeve part is joined with a metal foil or metal plate in which only the skin layer is oxidized, and the metal foil or metal plate is aluminum or Al
-A Mg-based alloy.
【0013】また、本発明の固体電解質型燃料電池のシ
ール構造の製造方法は、ふた部材とセパレータ袖部分と
の間に接触状態に金属箔または金属板を挿入したもの
を、金属箔または金属板の表皮層のみ酸化が進行するよ
うな条件で700℃以上の温度に加熱し接合されたこと
を特徴とし、またセラミックスの接合面にあらかじめA
lを蒸着またはスパッタすることを特徴とする。In the method for manufacturing the seal structure for a solid oxide fuel cell according to the present invention, a metal foil or a metal plate is inserted between the lid member and the sleeve part of the separator in a contact state. Is characterized in that it is heated to a temperature of 700 ° C. or higher and bonded under the condition that only the skin layer of the ceramics is oxidized.
l is vapor-deposited or sputtered.
【0014】[0014]
【発明の実施の形態】図1は本発明によるシール構造を
有する平板型固体電解質燃料電池のセパレータの斜視図
である。1 is a perspective view of a separator of a flat plate type solid oxide fuel cell having a sealing structure according to the present invention.
【0015】平板型固体電解質燃料電池は平板状固体電
解質層の両面にそれぞれ空気極と燃料極とを配置してな
る平板状単電池と、隣接する単電池同士を電気的に直列
に接続しかつ各単電池に酸化剤ガスと燃料ガスを分配す
るセパレータとを交互に積層し、前記燃料極と前記セパ
レータの燃料ガス流通路側との間に金属メッシュを介在
し、前記単電池の固体電解質層とセパレータとの間にそ
れぞれシール剤またはガスケットを介在してスタックに
構成されたものである。The flat plate type solid electrolyte fuel cell comprises a flat plate type single cell in which an air electrode and a fuel electrode are arranged on both sides of a flat plate type solid electrolyte layer, and adjacent single cells are electrically connected in series. An oxidant gas and a separator that distributes a fuel gas are alternately stacked in each cell, a metal mesh is interposed between the fuel electrode and the fuel gas flow passage side of the separator, and a solid electrolyte layer of the cell. A sealant or a gasket is interposed between the separator and the separator to form a stack.
【0016】図1のセパレータは大別して、本体部1
1、集電部12およびふた部材14からなる複合セパレ
ータである。本体部11は矩形状をなし、その中央部は
発電部分Xとなり、その表面に凹んだポケット部13が
形成され、ここに集電部12が図の矢印Aに示すように
嵌め込まれる。集電部12の表面に酸化剤ガス例えば空
気を均等に分配するため複数列のガス流通溝12aおよ
び突起12bが交互に刻設されている。図示されていな
いが、本体部11の裏面に燃料ガス流通溝および突起が
同じように刻設されている。The separator shown in FIG. 1 is roughly classified into a main body 1
1 is a composite separator including a current collector 12, and a lid member 14. The main body 11 has a rectangular shape, the central portion thereof serves as a power generation portion X, and a recessed pocket portion 13 is formed on the surface thereof, and the current collecting portion 12 is fitted therein as shown by an arrow A in the figure. A plurality of rows of gas flow grooves 12a and projections 12b are alternately formed on the surface of the current collector 12 in order to evenly distribute an oxidant gas such as air. Although not shown, a fuel gas flow groove and a protrusion are similarly formed on the back surface of the main body 11.
【0017】この発電部分Xの両側に袖部分Yが接続さ
れ、この袖部分Yは発電部分Xに酸化剤ガスまたは燃料
ガスを供給・排出するものである。すなわち、4隅にガ
スの給排気孔11a、11bが開けられ、対角線方向の
ガス給排気孔11a、11aが空気用となり、もう一方
の対角線方向のガス給排気孔11b、11bが燃料ガス
用となる。袖部分Yに重ねてふた部材14が接触配置さ
れ、袖部分Yとふた部材14とが共同して空気極または
燃料極に酸化剤ガスまたは燃料ガスを供給・排出すると
ともに、ふた部材14を袖部分Yに重ねることにより両
ガスのクロスリークを防止することができる。このふた
部材14は本発明の要部である。図1に示すように、ふ
た部材14はそれぞれ袖部分Yの表面11cおよび裏面
に、2個ずつ合計4個が、矢印B(図1)で示すように
重ねて配置されている。ふた部材14はこれが袖部分Y
の表面11cまたは裏面(図示せず)に接触し且つ集電
部12に当接する側面に切欠溝14dを備えている。ま
た、ふた部材14には袖部分Yのガス給排気孔11a、
11bに対応して、同じ大きさ同じ配置のガス給排気孔
11a、11bが開けられている。A sleeve portion Y is connected to both sides of the power generation portion X, and the sleeve portion Y supplies and discharges an oxidant gas or a fuel gas to the power generation portion X. That is, gas supply / exhaust holes 11a, 11b are formed at four corners, the diagonal gas supply / exhaust holes 11a, 11a are for air, and the other diagonal gas supply / exhaust holes 11b, 11b are for fuel gas. Become. The lid member 14 is placed in contact with the sleeve portion Y so as to be in contact with each other, and the sleeve portion Y and the lid member 14 cooperate to supply and discharge the oxidant gas or the fuel gas to the air electrode or the fuel electrode, and the lid member 14 is sleeved. By overlapping on the portion Y, cross leak of both gases can be prevented. The lid member 14 is an essential part of the present invention. As shown in FIG. 1, a total of four lid members 14 are arranged on the front surface 11c and the back surface of the sleeve portion Y, four in total, as shown by an arrow B (FIG. 1). This is the sleeve portion Y of the lid member 14.
The notch groove 14d is provided on the side surface that contacts the front surface 11c or the back surface (not shown) of the above and abuts on the current collector 12. Further, the lid member 14 has a gas supply / exhaust hole 11a in the sleeve portion Y,
Corresponding to 11b, gas supply / exhaust holes 11a and 11b having the same size and the same arrangement are opened.
【0018】酸化剤ガスまたは燃料ガスのスタック内の
流れは次のようである。例えば、酸化剤ガスはスタック
内を下から上に流れるとすれば、(図1において左側下
のふた部材14の)左側ガス給排気孔14aから左側袖
部分Yの給排気孔11aを通って上昇し、左側袖部分Y
のへこみ11dに流入し、(図1において左側上の)ふ
た部材14の切欠溝14dを通り、集電部12のガス流
通溝12aを流れて、(図1において右側上の)ふた部
材14の切欠溝14dを通り、反対側(右側)袖部分Y
のへこみ11dに入り、右側の給排気孔11aおよび
(図1において右側上のふた部材14の)給排気孔14
aへ流出する。燃料ガスのスタック内の流れは、ガス給
排気孔14b、11b、燃料極に対面するセパレータの
ガス流通溝などを流れる。The flow of oxidant gas or fuel gas in the stack is as follows. For example, if the oxidant gas flows from the bottom to the top in the stack, it rises from the left gas supply / exhaust hole 14a (of the lower left lid member 14 in FIG. 1) through the supply / exhaust hole 11a of the left sleeve portion Y. The left sleeve Y
Flowing into the dent 11d, passing through the cutout groove 14d of the lid member 14 (on the left side in FIG. 1), flowing through the gas flow groove 12a of the current collector 12, and moving toward the lid member 14 (on the right side in FIG. 1). Passing through the cutout groove 14d, the opposite side (right side) sleeve part Y
Entering the recess 11d, the right air supply / exhaust hole 11a and the air supply / exhaust hole 14 (of the lid member 14 on the right side in FIG. 1)
outflow to a. The flow of the fuel gas in the stack flows through the gas supply / exhaust holes 14b and 11b, the gas flow groove of the separator facing the fuel electrode, and the like.
【0019】セパレータの材質として、セラミックのア
ルミナやAl−Mgスピネルが使用され、また、耐熱金
属のFe−Ni−Cr基合金やNi−Cr基合金が使用
され、さらにこれらの耐熱金属の表面をAl合金化処理
したものや表面をセラミックコーティングしたものが使
用されている。As the material for the separator, ceramic alumina or Al-Mg spinel is used, and heat-resistant metal Fe-Ni-Cr base alloy or Ni-Cr base alloy is used. An Al alloyed product and a ceramic coated surface are used.
【0020】ふた部材とセパレータの袖部分とは単に接
触させ、スタックに掛かる荷重により対面押圧状態にす
る場合がある。この場合、ふた部材とセパレータ袖部分
との接触面をできるだけ平滑に研磨仕上げすることによ
りシール性が向上する。In some cases, the lid member and the sleeve portion of the separator are simply brought into contact with each other, and face-to-face pressure is applied by the load applied to the stack. In this case, the sealability is improved by polishing the contact surface between the lid member and the sleeve part of the separator as smooth as possible.
【0021】また、ふた部材とセパレータの袖部分とを
接合する場合がある。この場合の接合方法には次のよう
な方法がある。 (1)ふた部材とセパレータ袖部分とが無機ガラス系材
料で接合されている。 (2)ふた部材とセパレータ袖部分とが表皮層のみ酸化
された金属箔または金属板により接合されている。 (3)金属箔または金属板がアルミニウムである。 (4)金属箔または金属板がAl−Mg基合金である。 (5)ふた部材とセパレータ袖部分との間に接触状態に
金属箔または金属板を挿入したものを、該金属箔または
金属板の表皮層のみ酸化が進行するような条件で700
℃以上の温度に加熱し接合する。 (6)(5)の接合方法において、セラミックスの接合
面にあらかじめAlを蒸着またはスパッタしておく。Further, the lid member and the sleeve portion of the separator may be joined together. The joining method in this case includes the following methods. (1) The lid member and the sleeve portion of the separator are joined with an inorganic glass material. (2) The lid member and the sleeve part of the separator are joined by a metal foil or a metal plate in which only the skin layer is oxidized. (3) The metal foil or metal plate is aluminum. (4) The metal foil or metal plate is an Al-Mg based alloy. (5) A product obtained by inserting a metal foil or a metal plate in a contact state between the lid member and the sleeve part of the separator is prepared under the condition that the oxidation of only the skin layer of the metal foil or the metal plate proceeds.
Heat to a temperature of ℃ or more to join. (6) In the joining method of (5), Al is previously vapor-deposited or sputtered on the joining surface of the ceramics.
【0022】上記(2)〜(6)の場合は前述した本発
明者の特願平8−10284の技術が利用される。In cases (2) to (6) above, the technique of the above-mentioned Japanese Patent Application No. 8-10284 of the present inventor is used.
【0023】[0023]
【実施例】本発明によるシール構造を有する平板型固体
電解質燃料電池を次の方法で製作した。EXAMPLE A flat plate type solid electrolyte fuel cell having a seal structure according to the present invention was manufactured by the following method.
【0024】60mm角、厚さ0.1mmの3Y−YS
Zの片面に燃料極としてNi−YSZを30μm、反対
側の面に空気極として(La、Sr)MnO3 を100
μmそれぞれ塗布し、それぞれ1450℃、1150℃
で焼成したものを単電池として用いた。その有効電極面
積は25cm2 であった。3Y-YS 60 mm square and 0.1 mm thick
Ni-YSZ is 30 μm as a fuel electrode on one surface of Z, and (La, Sr) MnO 3 is 100 as an air electrode on the opposite surface.
μm each applied, 1450 ℃, 1150 ℃
The one fired in 1. was used as a single cell. The effective electrode area was 25 cm 2 .
【0025】アルミナ製セパレータの袖部4か所にそれ
ぞれアルミナ製ふた部材を接合した。An alumina lid member was joined to each of the four sleeve portions of the alumina separator.
【0026】ふた部材の接合方法は次のようである。 (1)セパレータの袖部とふた部材との間に厚さ0.1
mmのアルミニウム箔を挿入する。 (2)N2 −3%H2 の雰囲気中で1000℃、3時間
保持し、接合する。 (3)燃料極側のセパレータとふた部材に段差がなくな
るように研削およびラッピングを行う。 (4)空気極側においては(La、Sr)CrO3 セパ
レータとふた部材が平らになるように研削およびラッピ
ングを行う。The method of joining the lid members is as follows. (1) Thickness between separator sleeve and lid member is 0.1
Insert a mm aluminum foil. (2) Joining by holding at 1000 ° C. for 3 hours in an atmosphere of N 2 -3% H 2 . (3) Grinding and lapping are performed so that there is no step between the separator on the fuel electrode side and the lid member. (4) On the air electrode side, grinding and lapping are performed so that the (La, Sr) CrO 3 separator and the lid member are flat.
【0027】以上のようにして製作した単電池とセパレ
ータを用いて1000℃において0.3A/cm2 負荷
し発電試験を行った。酸化剤ガスとして空気を用い利用
率は30%とした。燃料ガスとして水素を用い利用率を
変化させた時の単セルスタック(燃料極/電解質/空気
極/ランタンクロマイト間)の電位を測定した。なお、
燃料利用率は装置の都合上40%までとした。A power generation test was carried out using the unit cell and the separator manufactured as described above under a load of 0.3 A / cm 2 at 1000 ° C. Air was used as the oxidant gas, and the utilization rate was 30%. The potential of the single cell stack (between the fuel electrode / electrolyte / air electrode / lanthanum chromite) when hydrogen was used as the fuel gas and the utilization factor was changed was measured. In addition,
The fuel utilization rate was set to 40% for the convenience of the device.
【0028】図2は本発明のシール構造を有する平板型
固体電解質燃料電池と従来のシール構造を有する平板型
固体電解質燃料電池との発電試験の結果を比較する図で
ある。FIG. 2 is a diagram comparing the results of power generation tests of the flat plate type solid electrolyte fuel cell having the seal structure of the present invention and the conventional flat plate type solid electrolyte fuel cell having the seal structure.
【0029】図2において、横軸に燃料利用率(単位:
%)をとり、縦軸に電圧(単位:V)をとる。グラフの
中の点線で示す曲線は本発明のシール構造を有するセパ
レータを使用した場合すなわちふた部材を有するセパレ
ータの場合、実線で示す曲線はふた部材を有しない従来
のセパレータを使用した場合である。In FIG. 2, the horizontal axis represents the fuel utilization rate (unit:
%) And the vertical axis represents voltage (unit: V). The curve indicated by the dotted line in the graph is the case where the separator having the seal structure of the present invention is used, that is, the case where the separator has the lid member, and the curve indicated by the solid line is the case where the conventional separator having no lid member is used.
【0030】図2からふた部材を有するセパレータを用
いると利用率が著しく向上し、発電性能の良いことを証
明している。その理由は酸化剤ガスおよび燃料ガスの電
池への導入部におけるクロスリークが、ふた部材をつけ
ることにより抑制されたためである。From FIG. 2, it is proved that the use of the separator having the lid member significantly improves the utilization rate and the power generation performance is good. The reason is that the cross leak at the introduction portion of the oxidant gas and the fuel gas into the cell was suppressed by attaching the lid member.
【0031】[0031]
【発明の効果】以上説明したように、本発明は平板型固
体電解質燃料電池のセパレータの袖部分にふた部材を接
触または接合して配置し、袖部分とふた部材とが共同し
て前記発電部分に対し酸化剤ガスまたは燃料ガスを供給
・排出するとともに該両ガスの漏失を防止するように構
成したので、つぎのような極めて優れた効果が得られ
る。 (1)マニホールドの電池へのガス導出部位、および電
池からのガス導入部位において、酸化剤ガスと燃料ガス
のクロスリークを防止することができる。 (2)クロスリークを防止することができので、燃料電
池の利用率を向上することができる。 (3)濃度分極による電池特性の低下を抑制することが
できる。As described above, according to the present invention, the lid member is disposed in contact with or joined to the sleeve portion of the separator of the flat plate type solid oxide fuel cell, and the sleeve portion and the lid member cooperate to generate the power generating portion. On the other hand, since the oxidant gas or the fuel gas is supplied and discharged and the leakage of the both gases is prevented, the following extremely excellent effects are obtained. (1) It is possible to prevent cross-leakage of the oxidant gas and the fuel gas at the gas outlet portion of the manifold to the battery and the gas inlet portion of the battery. (2) Since cross leak can be prevented, the utilization rate of the fuel cell can be improved. (3) It is possible to suppress deterioration of battery characteristics due to concentration polarization.
【図1】本発明によるシール構造を有する平板型固体電
解質燃料電池のセパレータの斜視図である。FIG. 1 is a perspective view of a separator of a flat plate type solid electrolyte fuel cell having a seal structure according to the present invention.
【図2】本発明のシール構造を有する平板型固体電解質
燃料電池と従来のシール構造を有する平板型固体電解質
燃料電池との発電試験の結果を比較する図である。FIG. 2 is a diagram comparing the results of power generation tests of a flat plate solid electrolyte fuel cell having a seal structure of the present invention and a conventional flat plate solid electrolyte fuel cell having a seal structure.
【図3】従来の内部マニホールド方式の平板型固体電解
質燃料電池に使用されているセパレータの斜視図であ
る。FIG. 3 is a perspective view of a separator used in a conventional flat plate type solid electrolyte fuel cell of an internal manifold type.
1a ガス給排気孔 1b ガス給排気孔 1c 表面 1d へこみ 9 導電孔 11 本体部 11a ガス給排気孔 11b ガス給排気孔 11c 表面 11d へこみ 11e 導電孔 12 集電部 12a ガス流通溝 12b 突起 13 ポケット 14 ふた部材 14a ガス給排気孔 14b ガス給排気孔 14d 切欠溝 X 発電部 Y 袖部 1a Gas supply / exhaust hole 1b Gas supply / exhaust hole 1c Surface 1d Dimple 9 Conductive hole 11 Main body 11a Gas supply / exhaust hole 11b Gas supply / exhaust hole 11c Surface 11d Dimple 11e Conductive hole 12 Current collecting part 12a Gas distribution groove 12b Protrusion 13 Pocket 14 Lid member 14a Gas supply / exhaust hole 14b Gas supply / exhaust hole 14d Notch groove X Power generation part Y Sleeve part
Claims (8)
気極と燃料極とを配置してなる平板状単電池と、隣接す
る単電池同士を電気的に直列に接続しかつ各単電池に酸
化剤ガスと燃料ガスを分配するセパレータとを交互に積
層し、前記燃料極と前記セパレータの燃料ガス流通路側
との間に金属メッシュを介在し、前記単電池の固体電解
質層とセパレータとの間にそれぞれシール剤またはガス
ケットを介在してスタックに積層してなる平板型固体電
解質燃料電池のシール構造において、前記セパレータが
前記空気極または燃料極に対面してそれぞれ酸化剤ガス
または燃料ガスを分配するための複数列のガス流通溝お
よび突起を交互に刻設された発電部分と、前記発電部分
の両側に接続された袖部分と、前記袖部分に重ねて配置
されたふた部材とを具備し、前記袖部分とふた部材とが
共同して前記発電部分に対し酸化剤ガスまたは燃料ガス
を供給・排出するとともに該両ガスの漏失を防止するこ
とを特徴とする固体電解質型燃料電池のシール構造。1. A flat plate-shaped cell in which an air electrode and a fuel electrode are arranged on both sides of a plate-shaped solid electrolyte layer, and adjacent cells are electrically connected in series and oxidized to each cell. The agent gas and the separator for distributing the fuel gas are alternately laminated, a metal mesh is interposed between the fuel electrode and the fuel gas flow passage side of the separator, and between the solid electrolyte layer and the separator of the unit cell. In a seal structure of a flat plate type solid electrolyte fuel cell which is laminated in a stack with a sealant or gasket interposed, the separator faces the air electrode or the fuel electrode and distributes the oxidant gas or the fuel gas, respectively. A plurality of rows of gas flow grooves and protrusions are alternately engraved, sleeve portions connected to both sides of the power generation portion, and a lid member that is arranged to overlap the sleeve portion. A solid oxide fuel cell, wherein the sleeve portion and the lid member cooperate to supply and discharge an oxidant gas or fuel gas to the power generation portion and prevent leakage of both gases. Seal structure.
の接触面が平滑に研磨仕上げされていることを特徴とす
る請求項1に記載の固体電解質型燃料電池のシール構
造。2. The seal structure for a solid oxide fuel cell according to claim 1, wherein the contact surface of the lid member with the sleeve portion of the separator is polished to be smooth.
が無機ガラス系材料で接合されていることを特徴とする
請求項1に記載の固体電解質型燃料電池のシール構造。3. The sealing structure for a solid oxide fuel cell according to claim 1, wherein the lid member and the sleeve portion of the separator are joined with an inorganic glass material.
が表皮層のみ酸化された金属箔または金属板により接合
されていることを特徴とする請求項1に記載の固体電解
質型燃料電池のシール構造。4. The seal structure for a solid oxide fuel cell according to claim 1, wherein the lid member and the separator sleeve portion are joined by a metal foil or a metal plate in which only a skin layer is oxidized. .
であることを特徴とする請求項4に記載の固体電解質型
燃料電池のシール構造。5. The seal structure for a solid oxide fuel cell according to claim 4, wherein the metal foil or the metal plate is aluminum.
合金であることを特徴とする請求項4に記載の固体電解
質型燃料電池のシール構造。6. The seal structure for a solid oxide fuel cell according to claim 4, wherein the metal foil or the metal plate is an Al—Mg based alloy.
の間に接触状態に金属箔または金属板を挿入したもの
を、該金属箔または金属板の表皮層のみ酸化が進行する
ような条件で700℃以上の温度に加熱し接合されたこ
とを特徴とする請求項1に記載の固体電解質型燃料電池
のシール構造の製造方法。7. A metal foil or a metal plate inserted in a contact state between the lid member and the sleeve portion of the separator is used under conditions such that the oxidation of only the skin layer of the metal foil or the metal plate proceeds 700. The method for producing a seal structure for a solid oxide fuel cell according to claim 1, wherein the sealing structure is heated to a temperature of ℃ or more and bonded.
Alを蒸着またはスパッタすることを特徴とする請求項
7に記載の固体電解質型燃料電池のシール構造の製造方
法。8. The method for manufacturing a seal structure for a solid oxide fuel cell according to claim 7, wherein Al is previously vapor-deposited or sputtered on the joint surface of the ceramics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8031102A JPH09231987A (en) | 1996-02-20 | 1996-02-20 | Seal structure of solid electrolyte fuel cell and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8031102A JPH09231987A (en) | 1996-02-20 | 1996-02-20 | Seal structure of solid electrolyte fuel cell and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09231987A true JPH09231987A (en) | 1997-09-05 |
Family
ID=12322049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8031102A Withdrawn JPH09231987A (en) | 1996-02-20 | 1996-02-20 | Seal structure of solid electrolyte fuel cell and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09231987A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6231053B1 (en) | 1999-06-11 | 2001-05-15 | Nok Corporation | Gasket for fuel cell |
WO2001043218A1 (en) * | 1999-12-13 | 2001-06-14 | Sofco L.P. | Integrated manifold/reformer for fuel cell systems |
US6337120B1 (en) | 1998-06-26 | 2002-01-08 | Nok Corporation | Gasket for layer-built fuel cells and method for making the same |
US7063911B1 (en) | 1999-07-13 | 2006-06-20 | Nok Corporation | Gasket for fuel cell and method of forming it |
JP2007103223A (en) * | 2005-10-06 | 2007-04-19 | Toyota Motor Corp | Fuel cell and its manufacturing method |
DE10028395B4 (en) * | 1999-06-11 | 2008-05-15 | Nok Corp., Fujisawa | Arrangement consisting of a polymer electrolyte membrane element and a gasket for fuel cells |
EP2202833A2 (en) | 1999-05-20 | 2010-06-30 | NOK Corporation | Gasket for fuel cell and method of forming it |
-
1996
- 1996-02-20 JP JP8031102A patent/JPH09231987A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6337120B1 (en) | 1998-06-26 | 2002-01-08 | Nok Corporation | Gasket for layer-built fuel cells and method for making the same |
US6649097B2 (en) | 1998-06-26 | 2003-11-18 | Nok Corporation | Method of making a gasket for layer-built fuel cells |
EP2202833A2 (en) | 1999-05-20 | 2010-06-30 | NOK Corporation | Gasket for fuel cell and method of forming it |
US6231053B1 (en) | 1999-06-11 | 2001-05-15 | Nok Corporation | Gasket for fuel cell |
DE10028395B4 (en) * | 1999-06-11 | 2008-05-15 | Nok Corp., Fujisawa | Arrangement consisting of a polymer electrolyte membrane element and a gasket for fuel cells |
US7063911B1 (en) | 1999-07-13 | 2006-06-20 | Nok Corporation | Gasket for fuel cell and method of forming it |
WO2001043218A1 (en) * | 1999-12-13 | 2001-06-14 | Sofco L.P. | Integrated manifold/reformer for fuel cell systems |
US6326095B1 (en) * | 1999-12-13 | 2001-12-04 | Sofco L.P. | Integrated manifold/reformer for fuel cell systems |
JP2007103223A (en) * | 2005-10-06 | 2007-04-19 | Toyota Motor Corp | Fuel cell and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3466960B2 (en) | Flat cell with holding thin frame and fuel cell using the same | |
JP3456378B2 (en) | Solid oxide fuel cell | |
JP2000048831A (en) | Solid electrolyte fuel cell | |
JP2003512705A (en) | Unit solid oxide fuel cell | |
JPH09231987A (en) | Seal structure of solid electrolyte fuel cell and its manufacture | |
JPH08180885A (en) | Solid electrolytic fuel cell improved in current collecting efficiency of air electrode | |
JPH1116585A (en) | Flat solid electrolyte fuel cell and its layering method | |
JPH10134828A (en) | Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell | |
JPH09115530A (en) | Solid electrolytic fuel cell having mechanical seal structure | |
JPH09147884A (en) | Flat solid electrolyte fuel cell | |
JPH0714591A (en) | Gas seal structure of solid electrolytic fuel cell | |
JP2999653B2 (en) | Solid electrolyte fuel cell | |
JPH0845516A (en) | Plate type solid electrolyte fuel cell using mesh with different wire diameters | |
JPH0462757A (en) | Solid electrolyte type fuel cell | |
JP2654502B2 (en) | Solid electrolyte fuel cell with mechanical seal structure | |
JPH06140056A (en) | Solid electrolytic fuel cell having inside manifold structure to increase current collecting rate | |
JPH1079258A (en) | Current collecting method for flat type solid electrolyte fuel cell | |
JP2000306590A (en) | Solid electrolyte fuel cell | |
JPH0412468A (en) | High-temperature fuel cell | |
JPH07296829A (en) | Support film type solid electrolyte fuel cell | |
JPH06342668A (en) | Method for sealing gas of solid electrolyte fuel cell | |
JPH06342664A (en) | Method for reforming inside of flat solid electrolyte fuel cell having internal manifold structure using compound separator of heat resistant metal plate and oxide plate | |
JPH10208760A (en) | Solid electrolyte type fuel cell | |
JP2944141B2 (en) | High temperature fuel cell | |
JP3157678B2 (en) | Solid oxide fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030506 |