[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0387246A - Method and apparatus for correcting lateral vibration of tire grooving - Google Patents

Method and apparatus for correcting lateral vibration of tire grooving

Info

Publication number
JPH0387246A
JPH0387246A JP63134027A JP13402788A JPH0387246A JP H0387246 A JPH0387246 A JP H0387246A JP 63134027 A JP63134027 A JP 63134027A JP 13402788 A JP13402788 A JP 13402788A JP H0387246 A JPH0387246 A JP H0387246A
Authority
JP
Japan
Prior art keywords
tire
traverse
cutter
correction
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63134027A
Other languages
Japanese (ja)
Other versions
JPH0541429B2 (en
Inventor
Hiroshi Kinuhata
衣畑 啓
Masao Takami
昌夫 高見
Eiji Shibata
柴田 英司
Tadahiko Tamura
田村 宰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP63134027A priority Critical patent/JPH0387246A/en
Priority to AU26984/88A priority patent/AU606487B2/en
Priority to EP88121255A priority patent/EP0324959B1/en
Priority to DE3852388T priority patent/DE3852388T2/en
Priority to US07/432,405 priority patent/US5005628A/en
Priority to US07/572,278 priority patent/US5067539A/en
Publication of JPH0387246A publication Critical patent/JPH0387246A/en
Publication of JPH0541429B2 publication Critical patent/JPH0541429B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Tyre Moulding (AREA)

Abstract

PURPOSE:To hold the groove position to the center of a tread to a predetermined position even when lateral vibration is generated in a tire by controlling a horizontal moving stand and a lift stand in reference moving quantity and allowing the corrected moving quantity corresponding to the detection value of a detector to follow the reference moving quantity to correct the moving quantity of a cutter. CONSTITUTION:When a drive motor 61 is driven according to a reference program, a shaft 62 is rotated and a horizontal moving stand 5 is moved by predetermined quantity in a Y-axis direction and, when a correction motor 63 is driven according to a correction program, a shaft 64 is rotated and a follower gear 68 is rotated to move the horizontal moving stand 5 by predetermined quantity for the sake of correction. When the reference quantity moving mechanism part of a lift stand driving apparatus 8 is driven to allow a lift stand 7 to fall in a Z-axis direction and a heated cutter 10 is cut in a tire 3, in such a case that the lateral vibration E2 of the tire 3 is generated and a tread center line is shifted, the moving quantity correction mechanism part of the horizontal moving stand 5 is driven according to the correction program corresponding to the detection value due to a lateral vibration detector 13 and the horizontal moving stand 5 is moved in the Y-axis direction to correct the position of a cutter and the distance L of a groove position from the center of the tire is held.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、タイヤのグルービング装置においてタイヤ切
削面がタイヤの幅方向に@泣する横振れに応じてカッタ
位置を制御する補正方法とその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a correction method and device for controlling a cutter position in a tire grooving device in response to lateral runout in which the tire cutting surface moves in the width direction of the tire. Regarding.

(従来の技術) 新品タイヤや更生タイヤのトレッド面にグルービングを
行う装置では、タイヤを垂直に支持するタイヤ支持軸と
、このタイヤ支持軸に対して少なくとも平行な横行、お
よび直角な方向の直行移動が可能なカッタ装置をそなえ
ているが、タイヤ自体の歪みやタイヤ支持の片寄りなど
によりタイヤ側面に幅方向の横振れを生じろと、このタ
イヤを回転させながら設定されたプログラムにより、所
定の形状に沿った移動量でカッタを制御してグルービン
グを行っても、トレッド中心に対する溝の位置がタイヤ
ごとに異なり、また−本のタイヤにおいてもトレッド中
心が片寄ったりして製品が不安定になり、強度が低下す
るなどの品質上の問題がある。
(Prior art) A device for grooving the tread surface of a new or retreaded tire has a tire support shaft that supports the tire vertically, a lateral movement at least parallel to the tire support shaft, and a rectangular movement in a direction perpendicular to the tire support shaft. The machine is equipped with a cutter device that can cut the tire, but while the tire is rotating, a predetermined cutter is used to prevent lateral vibration from occurring in the width direction of the tire side surface due to distortion of the tire itself or uneven support of the tire. Even if grooving is performed by controlling the cutter to move according to the shape, the position of the groove relative to the center of the tread differs from tire to tire, and the center of the tread may shift to one side even for tires with a single tire, resulting in an unstable product. , there are quality problems such as reduced strength.

たとえば特開昭62−74635号公報には、トレッド
面の形状を検出する非接触式の検出手段を設け、タイヤ
の径方向の振れ、いわゆる縦振れの検出結果にもとづい
てカッタの位置を制御し、タイヤから切除するゴム量を
一定にするものか提案されている。
For example, Japanese Patent Laid-Open No. 62-74635 provides a non-contact detection means for detecting the shape of the tread surface, and controls the position of the cutter based on the detection result of the tire's radial runout, so-called vertical runout. , it has been proposed to keep the amount of rubber removed from the tire constant.

(本発明か解決しようとする問題点) しかしながら、このようなタイヤのグルービング装置で
は、タイヤの横方向の振れに対してカッタを移動するこ
とができず、タイヤの横振れに追従して溝位置を一定に
することができないなどの問題点がある。
(Problem to be solved by the present invention) However, in such a tire grooving device, the cutter cannot be moved in response to the lateral vibration of the tire, and the groove position can be adjusted by following the lateral vibration of the tire. There are problems such as the inability to maintain a constant value.

(問題点を解決するための手段) 本発明は、複数の動作軸を用いてカッタの移動を制御し
、タイヤ表面に所望のパターン溝を加工するタイヤのグ
ルービングにおいて、グルービングを行う前、またはグ
ルービングしながら、タイヤの幅方向の横振れを検出し
、カッタをタイヤ支持軸と平行に移動させる横行駆動軸
の基準プログラムによる移動量を、前記検出値にもとづ
くカッタの補正プログラムにより、タイヤの横振れに追
従して補正させるようにしており、また、このためにタ
イヤの幅方向の横振れを検出する検出器を設け、基準プ
ログラムによって回転されカッタをタイヤの幅方向に移
動させる横行駆動軸と、この横行駆動軸に平行に設けら
れ前記検出器の検出値にもとづく補正プログラムによっ
て回転しカッタを移動させる横行補正軸とをそなえてい
る。
(Means for Solving the Problems) The present invention uses a plurality of operating axes to control the movement of a cutter to form a desired pattern of grooves on the tire surface. The horizontal runout of the tire is detected, and the amount of movement according to the standard program of the traverse drive shaft that moves the cutter parallel to the tire support shaft is determined by the cutter correction program based on the detected value. In addition, for this purpose, a detector is provided to detect lateral runout in the width direction of the tire, and a transverse drive shaft that is rotated according to a standard program and moves the cutter in the width direction of the tire; A traverse correction shaft is provided parallel to the traverse drive shaft and rotates to move the cutter according to a correction program based on the detection value of the detector.

(作用) したがって、タイヤの基準トレッド面に対してカッタ位
置を設定する基準プログラムによりタイヤの幅方向に移
動させる横行駆動軸の基91g動量に、グルービングに
先立ち、またはグルービングしながらタイヤの横振れを
検出する検出器の検出値に応じた補正プログラムにより
動作する横行補正軸の補正移動ち1か1&鍼的に追従合
成され、タイヤの構振れに対してカッタ位置をhit正
させる。
(Function) Therefore, according to the standard program that sets the cutter position relative to the standard tread surface of the tire, the base 91g movement of the traverse drive shaft that is moved in the width direction of the tire is applied to prevent the lateral runout of the tire before or during grooving. The correction movement of the traverse correction axis operated by the correction program according to the detection value of the detector is combined in a one-to-one manner to follow and correct the cutter position with respect to the tire shake.

(実施例) これを図に示す実施例について詳細に説明する。(Example) This will be explained in detail with reference to the embodiment shown in the figure.

第1図および第2図に示すグルービング装置において、
1はベツド、2はベツド!上に設けたタイヤ支持台で、
タイヤ支持軸2目こタイヤ3を装着してモータ22で回
転させる。4は基台で、ベツドI上のレール4Iをガイ
ドバー42に沿って図示しないモータによりタイヤ支持
台2の軸心と直角なX軸方向に移動できるようにしであ
る。なお、基台4はタイヤ支持台との間隔を所定値にし
ておけば移動させなくてもよい。
In the grooving device shown in FIGS. 1 and 2,
1 is bed, 2 is bed! With the tire support stand installed on top,
A tire 3 is attached to the second tire support shaft and rotated by a motor 22. Reference numeral 4 designates a base that allows a rail 4I on the bed I to be moved along a guide bar 42 in the X-axis direction perpendicular to the axis of the tire support base 2 by a motor (not shown). Note that the base 4 does not need to be moved as long as the distance between it and the tire support is set to a predetermined value.

5は前記基台4上をレール43に沿ってタイヤ支持軸と
平行なY軸方向に移動する横行台、6は横行台5の横行
駆動装置で、とくに第3図で明らかなように、基台4上
に駆動モータ61て回転され送りねじを構成する横行駆
動軸62と、?+li正モータ63で回転されろスプラ
イン軸からなる横行補正軸64を、タイヤ支持軸2Iと
平行なY軸方向に平行に設け、横行台5の下面に設けf
こフレーム51にボールねしで構成しためねじ体65と
支持ポス66を回転自由に取り付け、このめねじ体65
を前記横行駆動軸62のねじ部に螺合させ、支持ボス6
6は横行補正軸64に軸とともに回転し軸方向に自由に
移動できろように挿入させている。67は支持ボス66
に一体に固着された駆動ギヤ、68は横行駆動軸62に
遊嵌し、めねじ体65に固着した従動ギヤで、前記駆動
ギヤ67に噛み合わせである。69は基台4上の支持軸
受である。
Reference numeral 5 denotes a traverse table that moves on the base 4 along the rail 43 in the Y-axis direction parallel to the tire support axis, and 6 is a traverse drive device for the traverse table 5. As is particularly clear in FIG. A transverse drive shaft 62 that is rotated by a drive motor 61 on the table 4 and constitutes a feed screw; A traverse correction shaft 64 made of a spline shaft rotated by a +li positive motor 63 is provided parallel to the Y-axis direction parallel to the tire support shaft 2I, and is provided on the lower surface of the traverse table 5.
An internally threaded body 65 and a support post 66 made of ball screws are attached to the frame 51 so as to be freely rotatable.
is screwed onto the threaded portion of the transverse drive shaft 62, and the support boss 6
6 is inserted into the traverse correction shaft 64 so that it can rotate together with the shaft and move freely in the axial direction. 67 is the support boss 66
A drive gear 68, which is integrally fixed to the transverse drive shaft 62, is a driven gear fixed to the female threaded body 65 and is meshed with the drive gear 67. 69 is a support bearing on the base 4.

7は直行台、8は直行台7をタイヤ支持軸2!に直角な
X軸方向に移動させる直行駆動装置で、横行台5に垂直
方向に支持され駆動モータ81により回転する送りねじ
で構成された直行駆動軸82とにより直行台7をガイド
軸83に沿って上下動させる。
7 is the straight stand, and 8 is the straight stand 7 as the tire support shaft 2! This is a orthogonal drive device that moves the orthogonal table 7 in the X-axis direction perpendicular to Move it up and down.

7!は回動アームで、直行台7からX軸方向に突出させ
たアーム支持軸72に取り付けられ、直行台7内の図示
しないモータによりアーム支持軸72の軸心線73を中
心に第2図の矢印A方向に回動される。
7! 2 is a rotating arm, which is attached to an arm support shaft 72 projecting from the orthogonal table 7 in the X-axis direction, and is rotated around the axial center line 73 of the arm support shaft 72 by a motor (not shown) in the orthogonal table 7 as shown in FIG. It is rotated in the direction of arrow A.

9は回動アーム71から前記軸心線73に向かって直角
方向に取り付けたカッタ支持装置で、回動アーム71に
支持した支柱91にカッタ支持枠92を設け、絶縁体9
3を介して取り付けたカッタホルダ94にカッタlOを
切削位置Pが前記軸心線73上に一致するように着脱可
能に取り付けており、図示しない給電装置によってカッ
タ10を加熱するようにしである。11はカッタ支持装
置9を回動させカッタの向きを変えるモータ、12はカ
ッタIOの位置を軸心線73に合わせるためカッタ支持
装置を上下動させるアクチエータである。
Reference numeral 9 denotes a cutter support device mounted in a direction perpendicular to the pivot arm 71 toward the axis 73. A cutter support frame 92 is provided on a column 91 supported by the pivot arm 71.
The cutter 10 is removably attached to a cutter holder 94 attached via the cutter holder 94 so that the cutting position P coincides with the axis 73, and the cutter 10 is heated by a power supply device (not shown). 11 is a motor that rotates the cutter support device 9 to change the direction of the cutter, and 12 is an actuator that moves the cutter support device up and down to align the position of the cutter IO with the axis 73.

なお、アクチエータ12に代えて、支1191にカッタ
支持装置9を取り付ける位置を調整してカッタ切削位置
Pを軸心線73上に一致させるようにしてもよい。
Note that instead of the actuator 12, the position at which the cutter support device 9 is attached to the support 1191 may be adjusted so that the cutter cutting position P coincides with the axis 73.

13はタイヤ側面のバトレスに適当な間隔mで対向させ
タイヤの横振れを検出する横振れ検出器で、たとえばタ
イヤ支持台2に取り付けた支持装置131によりタイヤ
径に応じて位置を調整するようにした光学式反射型変位
センサーなどであり、タイヤ支持軸21に支持されたタ
イヤのfll11面に向けて投光し、その検出値を図示
しない制御装置に人力させて横行駆動装置6の補正モー
タ63を駆動させる。
Reference numeral 13 denotes a lateral vibration detector for detecting lateral vibration of the tire, which is opposed to the buttress on the side surface of the tire at an appropriate interval m. The sensor is an optical reflection type displacement sensor, etc., which emits light toward the full 11 surface of the tire supported by the tire support shaft 21, and the detected value is manually transmitted to a control device (not shown) to drive the correction motor 63 of the traverse drive device 6. drive.

第4図および第5図は、横行台5を駆動する横行駆動装
置6の別の実施例を示すもので、基台4上に設けた駆動
モータ61で回転され送りねじを構成する横行駆動軸6
2とガイドロッド601で支持された中間支持台602
をそなえており、めねし部603を介して横行駆動軸6
2の回転により中間支持台602が移動する。この中間
支持台602上に補正モータ63と、送りねじを構成す
る横行補正軸6.1が設けられ、レール43に支持され
た横行台5のめねじ部604を前記横行駆動軸64に螺
合させている。なお、605は軸受であり、横行駆動軸
62と溝行蒲正袖64を入nilえて配置dさせてもよ
い。
4 and 5 show another embodiment of the traverse drive device 6 for driving the traverse table 5. The traverse drive shaft is rotated by a drive motor 61 provided on the base 4 and constitutes a feed screw. 6
2 and an intermediate support stand 602 supported by a guide rod 601
The traversing drive shaft 6 is provided through the female part 603.
2, the intermediate support base 602 moves. A correction motor 63 and a traverse correction shaft 6.1 constituting a feed screw are provided on the intermediate support 602, and the female threaded portion 604 of the traverse table 5 supported by the rail 43 is screwed into the traverse drive shaft 64. I'm letting you do it. Note that 605 is a bearing, and the transverse drive shaft 62 and the grooved sleeve 64 may be arranged in the same position.

上述の実施例では、カッタIOをタイヤ3の上方に設け
て、′7?、降F2動させるグルービング装置面につぃ
て説明しであるが、カッタをタイヤ支持軸に対して直角
な横方向に移動させる装置にも適用できることは当然で
ある。
In the above embodiment, the cutter IO is provided above the tire 3, and '7? Although the description has been made with respect to a grooving device that moves the cutter downward F2, it goes without saying that the present invention can also be applied to a device that moves the cutter in a lateral direction perpendicular to the tire support shaft.

また、モータは電気式サーボモータでら流体式のサーボ
モータでもよく、補正モータは微小位置の補正をすれば
足りるため、低速運転でよく、小容量のモータでよい。
Further, the motor may be a fluid type servo motor instead of an electric type servo motor, and since the correction motor only needs to perform minute position correction, it may be operated at low speed and may have a small capacity.

なお、横振れ検出器13は光学式反射型変位センサーに
限られず、接触式の差動トランスやディジタル式ダイヤ
ルゲージなどを用いることもてき、タイヤ両側に設けて
、両側の検出値によってカッタ位置の補正をするように
してもよい。
Note that the lateral runout detector 13 is not limited to an optical reflective displacement sensor, but may also use a contact type differential transformer or a digital dial gauge, and is installed on both sides of the tire to determine the cutter position based on the detected values on both sides. Correction may be made.

(動作) 本発明を用いてグルービングを行いながら、タイヤの振
れを検出し、振れデータを取り込み、演算してカッタの
補正を行う場合の動作を第7図のフローチャートによっ
て説明する。
(Operation) The operation of detecting tire runout, capturing runout data, and performing calculations to correct cutter while performing grooving using the present invention will be described with reference to the flowchart of FIG.

操作電源が投入されると、グルービングのパターンに応
じて図示しないコンピュータからの指令で各作動軸の原
点位置を設定する。
When the operating power is turned on, the origin position of each operating axis is set according to a command from a computer (not shown) according to the grooving pattern.

タイヤ支持軸21にパターン溝を加工するタイヤ3を取
り付け、横振れ検出器13をタイヤバトレス側面に向け
て設置させる。
A tire 3 having pattern grooves formed thereon is attached to a tire support shaft 21, and a lateral runout detector 13 is installed facing the side surface of the tire buttress.

コンピュータの基準プログラムにはタイヤの振れがない
場合の制御値が入力されており、このプログラムにした
がって、モータ11により切り込み方向に合わせてカッ
タ10の方向を設定し、タイヤ3をモータ22で矢印(
第1図)方向に回転させるとともに、直行台7の直行駆
動装置8の駆動モータ8Iが運転され、直行駆動軸82
の回転によりめねじ体85を介して直行台7をZ軸方向
に下降させ、給電により加熱したカッタ10をタイヤ3
にトレッド面から所定の深さまで切り込ませ、所定の溝
形状に応じて横行駆動装置6の駆動モータ61が基準プ
ログラムによって駆動され、横行駆動軸62の回転で横
行台5をY軸方向の移動させてカッタ10の横方向移動
を制御し、所要のグルービングが行われる。
Control values when there is no tire runout are input into the standard program of the computer, and according to this program, the motor 11 sets the direction of the cutter 10 according to the cutting direction, and the motor 22 moves the tire 3 along the arrow (
1), the drive motor 8I of the orthogonal drive device 8 of the orthogonal table 7 is operated, and the orthogonal drive shaft 82
, the orthogonal table 7 is lowered in the Z-axis direction via the female threaded body 85, and the cutter 10 heated by power supply is moved to the tire 3.
The drive motor 61 of the traverse drive device 6 is driven according to the standard program according to the predetermined groove shape, and the traverse base 5 is moved in the Y-axis direction by rotation of the traverse drive shaft 62. This controls the lateral movement of the cutter 10 and performs the required grooving.

また、第6図に示すように、タイヤ3に横振れE、を生
じてトレッド中心線がaからbに偏った場合は、横振れ
検出器13による検出値に応じて浦正プログラムから横
行駆動装置6の補正モータ63か制御され、第3図の横
行駆動装置では、横行補正軸64により駆動ギヤ67お
よび従動ギヤ68を介してめねじ体65を回転させ、横
行台5をY軸方向に移動させてカッタ位置を点線で示す
ように補正し、タイヤ中心からの溝位置の距IMを保持
させる。
In addition, as shown in FIG. 6, when the tire 3 has a lateral runout E and the tread center line is biased from a to b, the lateral runout E is generated from the Urasa program in accordance with the detected value by the lateral runout detector 13. The correction motor 63 of the device 6 is controlled, and in the traverse drive device shown in FIG. The cutter position is corrected as shown by the dotted line by moving it, and the distance IM of the groove position from the tire center is maintained.

第4図および第5図に示された横行駆動装置では、補正
モータ63の回転により横行補正軸64が回転し、めね
じ部604を介して横行台5を移動させる。
In the traverse drive device shown in FIGS. 4 and 5, the traverse correction shaft 64 is rotated by the rotation of the correction motor 63, and the traverse table 5 is moved via the female threaded portion 604.

このようにして、グルービングの間タイヤの横振れを検
出し、基準プログラムによる横行駆動軸の制御とともに
検出値による浦正プログラムで、横行台の位置を調整し
、タイヤバトレス表面と横振れセンサーとの間隔m(第
2図)が一定に保たれ、タイヤ全周にわたってタイヤ中
心からのij+Y (L置が一定になる。
In this way, the lateral runout of the tire is detected during grooving, and the traverse drive shaft is controlled by the standard program, and the position of the traverse table is adjusted by the Urasa program based on the detected value, and the distance between the tire buttress surface and the lateral runout sensor is adjusted. m (Fig. 2) is kept constant, and ij+Y (L position from the tire center is constant over the entire circumference of the tire.

つぎに、本発明装置を用いて、あらかじめタイヤを回転
させて各回転角位置におけるタイヤの振れを検出して記
憶させ、グルービング時に振れデータを取り出して演算
し、カッタ位置の補正を行う場合の動作を、第8図に示
すフローヂャートにより説明する。
Next, using the device of the present invention, the tire is rotated in advance to detect and store the tire runout at each rotation angle position, and the runout data is extracted and calculated during grooving to correct the cutter position. will be explained using the flowchart shown in FIG.

まず、電源を投入して図示しないコンピュータからの指
令で各作動軸の原点を設定しておき、タイヤ支持台2に
パターン溝を加工するタイヤ3を取り付け、原点マーク
として特定のウェヤインジ、ケータに一致するトレッド
表面上にマーキングを行い、k’/jfiれセンサー1
3をタイヤバトレスに向けて配置させる。
First, turn on the power, set the origin of each operating axis by commands from a computer (not shown), attach the tire 3 on which pattern grooves are to be machined to the tire support base 2, and match the origin mark to a specific wear indicator and holder. mark on the tread surface and mark the k'/jfi deviation sensor 1.
3 toward the tire buttress.

タイヤ3を低速回転させ、前記マーキング位置をNG制
御における原点とし、この位置からタイヤ3を1回転さ
せ、この間の溝振れセンサー13の検出値を、回転角位
置とともにメモリに記憶させる。
The tire 3 is rotated at a low speed, the marking position is set as the origin in the NG control, the tire 3 is rotated once from this position, and the detected value of the groove runout sensor 13 during this period is stored in a memory together with the rotation angle position.

メモリに振れデータの格納が終わった後に自動運転ボタ
ンを押すと、NC装置の基準プログラムにより、タイヤ
支持軸2Iが回転するとともにカッタIOは横行軸、直
行軸、回転軸など複数の作動軸により制御されてタイヤ
の所定位置に下降して接触し、この間にカッタを加熱し
て一定の軌跡で前記原点からの回転角位置に応じた所定
のグルービングを行う。
When the automatic operation button is pressed after the runout data has been stored in the memory, the tire support shaft 2I rotates according to the standard program of the NC device, and the cutter IO is controlled by multiple operating axes such as the transverse axis, orthogonal axis, and rotary axis. The cutter is then lowered into contact with the tire at a predetermined position, and during this time the cutter is heated to perform predetermined grooving in accordance with the rotational angular position from the origin in a constant trajectory.

タイヤの回転角位置に応じてメモリから振れデータが取
り出され、基準プログラムからのMliiEプログラム
制畑指令で浦正プログラムによる浦正量が演算され、バ
トレス周上の各回転位置に応じてメモリから横振れデー
タが取り出され、hli正プログラムにより演算された
+Xji振れ補正爪で横行駆動装置6の浦正モータ63
を駆動し、横行補正軸64を回転させ、カッタ10を基
準プログラムによる移動量に加えて横行させる。
Runout data is retrieved from the memory according to the rotational angular position of the tire, and the uramasa amount is calculated by the uramasa program using the MliiE program field control command from the standard program. Shake data is taken out, and the Urasa motor 63 of the traverse drive device 6 is operated by the +Xji shake correction claw calculated by the hli regular program.
is driven, the traverse correction shaft 64 is rotated, and the cutter 10 is caused to traverse in addition to the amount of movement according to the standard program.

(本発明の効果) このように、本発明はカッタをタイヤ支持軸に対して平
行に移動させる(黄行駆動軸と、直rq方向に移動させ
る直行駆動軸と、タイヤの支持軸に支持されたタイヤ幅
方向の横振れを検出する検出:4をそなえ、前記横行駆
動軸と直行駆動軸を堰準喀動量で制御するとともに、前
記検出器の検出値に応じた補正移動量を前記横行駆動軸
の基準移動量に重畳させて、カッタの移動量を補正する
ようにしであるので、タイヤの溝振れを生じて乙製品タ
イヤそれぞれの溝位置をタイヤトレッドの中央に対して
一定にし、走行特性を良好に保持することができ、基準
移動量は基準プログラムにより常に設定された値で制御
し、振れ検出値による補正移動量を別個の補正プログラ
ムによって補正すればよいため、プログラムの構成が簡
単で装置を小形化てき、補正を確実にし、生産性と歩留
まりを向上させ得る効果がある。
(Effects of the present invention) As described above, the present invention moves the cutter parallel to the tire support shaft (the yellow drive shaft, the orthogonal drive shaft that moves the cutter in the rq direction, and the cutter that is supported by the tire support shaft). Detection for detecting lateral runout in the width direction of the tire: 4 is provided, and the traverse drive shaft and the orthogonal drive shaft are controlled by the quasi-weir thrust amount, and the correction movement amount is adjusted according to the detected value of the detector by the traverse drive shaft. Since the amount of movement of the cutter is corrected by superimposing the amount of movement of the cutter on the reference amount of movement of the shaft, the groove position of each product tire is kept constant with respect to the center of the tire tread, and the running characteristics are improved. The standard movement amount can be maintained well, the standard movement amount is always controlled at the value set by the standard program, and the correction movement amount based on the shake detection value can be corrected by a separate correction program, so the program configuration is simple. This has the effect of reducing the size of the device, ensuring correction, and improving productivity and yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す側面図、第2図は正面図
、第3図は横行駆動装置を断面で示した平面図、第4図
は横行駆動装置の別の例を示す側面図、第5図はB−B
線に沿う断面図、第6図はタイヤの鵠振れ補正の状態を
示す説明図、第7図はグルービング操作の例を示すフロ
ーチャート、第8図は他のグルービング操作のフローチ
ャートである。 ■はベツド、2はタイヤ支持台、3はタイヤ、4は基台
、5は横行台、6は横行駆動装置、61は駆動モータ、
62は横行駆動軸、63は補正モータ、64は横行補正
軸、65はめねじ体、66は支持ボス、67は駆動ギヤ
、68は従動ギヤ、7は直行台、7Iは回動アーム、7
2はアーム支持軸、73は軸心線、8は直行駆動装置、
81駆動モータ、82は直行駆動軸、83はガイド軸、
9はカッタ支持装置、10はカッタ、13は横振れ検出
器である。
FIG. 1 is a side view showing an embodiment of the present invention, FIG. 2 is a front view, FIG. 3 is a plan view showing a cross section of the traverse drive device, and FIG. 4 is a side view showing another example of the traverse drive device. Figure 5 is B-B
6 is an explanatory diagram showing the state of tire wobbling correction, FIG. 7 is a flowchart showing an example of a grooving operation, and FIG. 8 is a flowchart of another grooving operation. ■ is a bed, 2 is a tire support stand, 3 is a tire, 4 is a base, 5 is a traversal table, 6 is a traverse drive device, 61 is a drive motor,
62 is a traverse drive shaft, 63 is a correction motor, 64 is a traverse correction shaft, 65 is a female threaded body, 66 is a support boss, 67 is a drive gear, 68 is a driven gear, 7 is a straight table, 7I is a rotating arm, 7
2 is an arm support shaft, 73 is an axis line, 8 is a direct drive device,
81 is a drive motor, 82 is a direct drive shaft, 83 is a guide shaft,
9 is a cutter support device, 10 is a cutter, and 13 is a lateral vibration detector.

Claims (1)

【特許請求の範囲】 1 複数の動作軸を用いてカッタの移動を制御し、タイ
ヤ表面に所望のパターン溝を加工するタイヤのグルービ
ングにおいて、タイヤ支持軸に支持されたタイヤの幅方
向の横振れをグルービングを行う前、またはグルービン
グしながら検出し、カッタをタイヤの幅方向に移動させ
る横行駆動軸を基準プログラムにより駆動させながら前
記検出値にもとづくカッタの補正プログラムによって、
前記横行駆動軸の駆動量を横振れに追従して調整させる
ことを特徴とするタイヤグルービングの横振れ補正方法
。 2 複数の動作軸を用いてカッタの移動を制御し、タイ
ヤ表面に所望のパターン溝を加工するタイヤのグルービ
ング装置において、タイヤ支持軸に支持されたタイヤの
幅方向の横振れを検出する検出器をそなえ、基準プログ
ラムに応じて回転し、カッタをタイヤの幅方向に移動さ
せる横行駆動軸と、前記検出器の検出値にもとづく補正
プログラムによって回転する横行補正軸とを平行に設け
、横行補正軸の回転を横行駆動軸の回転に重畳させる横
行駆動装置をそなえたことを特徴とするタイヤグルービ
ングの横振れ補正装置。 3 前記横行駆動軸が、カッタを移動させる横行台に回
転可能に設けられためねじ体と螺合する送りねじで構成
され、この横行駆動軸と平行な横行補正軸によって回転
する駆動ギヤと、前記めねじ体と一体に連結し前記駆動
ギヤに噛み合う従動ギヤとを設けていることを特徴とす
る特許請求の範囲第2項記載のタイヤグルービングの横
振れ補正装置。 4 前記横行駆動軸と横行補正軸をいずれも送りねじで
構成し、カッタを移動させる横行台に設けためねじ体に
それぞれの駆動軸と補正軸のいずれか一方軸を螺合させ
、他方軸を前記一方軸を支持した中間支持台のめねじ部
に螺合させて固定部に取り付けたことを特徴とする特許
請求の範囲第2項記載のタイヤグルービングの横振れ補
正装置。
[Claims] 1. In tire grooving, in which the movement of a cutter is controlled using a plurality of operating axes to form a desired pattern of grooves on the tire surface, lateral vibration in the width direction of a tire supported by a tire support shaft is controlled. is detected before grooving or while grooving, and by a cutter correction program based on the detected value while driving a traverse drive shaft that moves the cutter in the width direction of the tire according to a reference program,
A method for correcting lateral runout in tire grooving, characterized in that the amount of drive of the traverse drive shaft is adjusted to follow the lateral runout. 2. In a tire grooving device that controls the movement of a cutter using a plurality of operating axes to form a desired pattern of grooves on the tire surface, a detector that detects lateral vibration in the width direction of a tire supported by a tire support shaft. A traverse drive shaft that rotates according to a standard program and moves the cutter in the width direction of the tire, and a traverse correction axis that rotates according to a correction program based on the detection value of the detector are provided in parallel, and the traverse correction axis A lateral vibration correction device for tire grooving, comprising a traverse drive device that superimposes the rotation of the traverse drive shaft on the rotation of the traverse drive shaft. 3. The traverse drive shaft is configured with a feed screw rotatably provided on a traverse table for moving the cutter and screwed into a female screw body, and the drive gear rotates by a traverse correction shaft parallel to the traverse drive shaft; 3. The tire grooving lateral vibration correction device according to claim 2, further comprising a driven gear that is integrally connected to the female threaded body and meshes with the drive gear. 4. Both the traverse drive shaft and the traverse correction shaft are configured with feed screws, and one of the respective drive shafts and correction shafts is screwed into an internal threaded body provided on the traverse table for moving the cutter, and the other shaft is 3. The tire grooving lateral vibration correction device according to claim 2, wherein the device is attached to a fixing portion by being screwed into a female threaded portion of an intermediate support that supports the one shaft.
JP63134027A 1987-12-19 1988-05-30 Method and apparatus for correcting lateral vibration of tire grooving Granted JPH0387246A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63134027A JPH0387246A (en) 1988-05-30 1988-05-30 Method and apparatus for correcting lateral vibration of tire grooving
AU26984/88A AU606487B2 (en) 1987-12-19 1988-12-16 Method for correcting tyre deflection in tyre grooving and apparatus therefor
EP88121255A EP0324959B1 (en) 1987-12-19 1988-12-19 Method for correcting tyre deflection in tyre grooving and apparatus therefor
DE3852388T DE3852388T2 (en) 1987-12-19 1988-12-19 Method and device for correcting tire deformation during tread cutting.
US07/432,405 US5005628A (en) 1987-12-19 1989-11-06 Method for correcting tire deflection in tire grooving and apparatus therefor
US07/572,278 US5067539A (en) 1987-12-19 1990-08-24 Method for correcting type deflection in tire grooving and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63134027A JPH0387246A (en) 1988-05-30 1988-05-30 Method and apparatus for correcting lateral vibration of tire grooving

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62322202 Division 1987-12-19 1987-12-19

Publications (2)

Publication Number Publication Date
JPH0387246A true JPH0387246A (en) 1991-04-12
JPH0541429B2 JPH0541429B2 (en) 1993-06-23

Family

ID=15118666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63134027A Granted JPH0387246A (en) 1987-12-19 1988-05-30 Method and apparatus for correcting lateral vibration of tire grooving

Country Status (1)

Country Link
JP (1) JPH0387246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4798574B2 (en) * 2002-08-30 2011-10-19 サントリーホールディングス株式会社 Flavonoid 3 ', 5' hydroxylase gene sequence and method of use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4798574B2 (en) * 2002-08-30 2011-10-19 サントリーホールディングス株式会社 Flavonoid 3 ', 5' hydroxylase gene sequence and method of use thereof

Also Published As

Publication number Publication date
JPH0541429B2 (en) 1993-06-23

Similar Documents

Publication Publication Date Title
US5005628A (en) Method for correcting tire deflection in tire grooving and apparatus therefor
US7507142B2 (en) Eyeglass lens processing apparatus
EP2516108B1 (en) Machine tools and methods of operation thereof
CN210550116U (en) Intelligent ring polishing machine tool
JPH0451959Y2 (en)
CA2221156A1 (en) Improvements in and relating to machine tools
CN115008322B (en) Diamond wire cutting device
US5144996A (en) Tire grooving apparatus and method
JPH0387246A (en) Method and apparatus for correcting lateral vibration of tire grooving
JP6550865B2 (en) Eyeglass lens processing apparatus and eyeglass lens processing program
JP2546062B2 (en) Long shaft outer surface grinding machine
JPH01301233A (en) Method and apparatus for correcting vertical vibration of tire grooving
JPH0236934A (en) Correction of tire grooving and its apparatus
JP5401858B2 (en) Grinding machine and grinding method
JPH05200649A (en) Tool centering device
JPH0319832A (en) Grooving apparatus for tyre and grooving method thereof
JPH0319833A (en) Grooving apparatus for tyre and grooving method thereof
JPH09295251A (en) Cut copying device
JP2002127010A (en) Regulating wheel truing method and device for centerless grinder
JPH0316722A (en) Grooving device and grooving method for tire
JPH07241918A (en) Blade stage for cutting presnel lens
JPS62297065A (en) Method and device for grinding outer surface of rotation symmetrical work
JP2008073822A (en) Grinding method of peripheral edge of glass plate and device thereof
JPH06114731A (en) Grinding wheel truing device
JPS5914462A (en) Grindstone abrasion correcting device