[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0387024A - Manufacture of electrode for semiconductor device - Google Patents

Manufacture of electrode for semiconductor device

Info

Publication number
JPH0387024A
JPH0387024A JP27856989A JP27856989A JPH0387024A JP H0387024 A JPH0387024 A JP H0387024A JP 27856989 A JP27856989 A JP 27856989A JP 27856989 A JP27856989 A JP 27856989A JP H0387024 A JPH0387024 A JP H0387024A
Authority
JP
Japan
Prior art keywords
layer
electrode
atmosphere
forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27856989A
Other languages
Japanese (ja)
Inventor
Masami Nagaoka
正見 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPH0387024A publication Critical patent/JPH0387024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To manufacture an electrode high in evenness forming a high Schottky barrier by a method wherein the surface of a semiconductor layer is irradiated with ultraviolet rays in an atmosphere containing nitrogen or sulfur and after forming a nitride layer or a sulfide layer, a Schottky electrode is formed. CONSTITUTION:After implanting Si ions in the surface of a semiinsulating GaAs substrate 1, the substrate 1 is annealed in As atmosphere to form an n type semiconductor 21. Next, this n type semiconductor layer 21 together with the substrate 1 is exposed in an atmosphere mixed with NH3/N2 gas and after irradiation with ultraviolet rays 10 to form a nitride layer 3, WNx is deposited to form a gate electrode 4. Later, Si ion is implanted in the surface of the layer 21 using the electrode 4 as a mask and then the layer 21 is annealed in AsH3/Ar mixed atmosphere to form source.drain regions 5, 6. Finally, source.drain electrodes 7, 8 comprising AuGe alloy are formed. Through these procedures, an electrode forming a high Schottky barrier high in evenness regardless of the positions in the surface can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はショットキー電極の製造方法に改良を加えた半
導体装置用電極の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing an electrode for a semiconductor device, which is an improved method for manufacturing a Schottky electrode.

(従来の技術) 近年、スーパーコンピュータや高周波通信機器の重要部
分には高速性に優れた素子が使用されている。この素子
の中にStに比べ常温での電子易動度が倍から数倍大き
な化合物半導体例えばGaAsを形成母材に用いた電界
効果トランジスタがある。この電界効果トランジスタの
ゲート電極は形成方法が容易なことからショットキー接
合型のものが主として採用されている。ところがこのシ
ョットキー接合の障壁の高さは0.7eV程度でありp
−n接合或いはMO3構造等と比べて低いという欠点が
ある。この様な電界効果トランジスタを用イテデジタル
IC例えばDiroct−coupledFET  L
oglc  (DCFL)の論理回路方式からなるもの
では、動作マージンが非常に小さく実用上問題があった
。他の論理回路方式でも、この電界効果トランジスタを
使用する限り同じ問題がある。
(Prior Art) In recent years, elements with excellent high-speed performance have been used in important parts of supercomputers and high-frequency communication equipment. Among these devices, there is a field effect transistor using a compound semiconductor, for example, GaAs, as a base material, which has an electron mobility at room temperature that is two to several times larger than that of St. The gate electrode of this field effect transistor is mainly of Schottky junction type because it is easy to form. However, the barrier height of this Schottky junction is about 0.7 eV, and p
There is a drawback that it is lower than -n junction or MO3 structure. Ite digital IC using such field effect transistor, for example, Diroct-coupled FET L
OGLC (DCFL) logic circuits have a very small operating margin, which poses a practical problem. Other logic circuit systems also have the same problem as long as they use field effect transistors.

そこでこの問題を解決するため、いくつかの提案がなさ
れた。その1つに例えば〔「ジャーナルオプ ザ バキ
ューム ソサエティー テクノロジーJ (JJac、
Sci、Technol、)B 、 VoL、5.No
、8゜1987年11月、第1716〜1722頁〕が
知られている。
Several proposals have been made to solve this problem. For example, [Journal Op the Vacuum Society Technology J (JJac,
Sci, Technol, ) B, VoL, 5. No
, 8, November 1987, pp. 1716-1722].

これを第2図で簡単に説明する。This will be briefly explained with reference to FIG.

先ずGaAs基板(1)を準備する(第2図(a))。First, a GaAs substrate (1) is prepared (FIG. 2(a)).

次いでこの基板(1)表面に窒素イオン(20〉を注入
し、表面に窒化層(3)を形成する(第2図(b))。
Next, nitrogen ions (20) are implanted into the surface of this substrate (1) to form a nitride layer (3) on the surface (FIG. 2(b)).

最後にこの窒化層(3)表面に反応性スパッターによっ
て高融点金属窒化物のショットキー電極(4)を形成す
る(第2図(C))。
Finally, a Schottky electrode (4) made of high melting point metal nitride is formed on the surface of this nitride layer (3) by reactive sputtering (FIG. 2(C)).

この様に、基板と電極(4)間に窒化層(3)を介在さ
せることにより、ショットキー障壁は1.2eV程度の
高い障壁とすることができる。これにより、ICの動作
マージンの向上も図れる。
By interposing the nitride layer (3) between the substrate and the electrode (4) in this way, the Schottky barrier can be made as high as about 1.2 eV. This also improves the operating margin of the IC.

しかしながら、この方法には以下の様な問題があった。However, this method has the following problems.

■ 基板(1〉は表面に窒化イオン(20)を注入する
際、この基板(1)表面に激しい衝撃を与え、表面(A
)及びその近傍の内部の結晶性が乱れる。この乱れ方は
、ウェーハ上に多数のショットキー電極(4)を形成す
る場合、面内の場所で夫々異なるため、ショットキー電
極(4〉の障壁の高さにバラキが生じる。これに起因し
てICの製造歩留まり(1枚のウェーハから得られる完
動品の得られる割合)は向上できなかった。
■ When implanting nitride ions (20) into the surface of the substrate (1), a severe impact is applied to the surface of the substrate (1), causing the surface (A
) and the internal crystallinity in its vicinity is disturbed. When many Schottky electrodes (4) are formed on a wafer, the way this disturbance occurs differs depending on the location within the plane, resulting in variations in the height of the barrier of the Schottky electrodes (4). Therefore, the manufacturing yield of ICs (the percentage of fully functioning products obtained from one wafer) could not be improved.

■ やはりイオン注入の際、窒素イオンによって装置の
内壁からたたき出された金属イオンや、装置内壁に吸着
したり或いは雰囲気中に存在する炭素や酸素等が窒素イ
オンと共に基板(1〉表面に注入される。GaAs基板
中で炭素や酸素或いは金属は基板中に様々な深い準位を
つくるため、ショットキー障壁の高さ或いはこのショッ
トキー電極を用いて形成した電界効果トランジスタの閾
値電圧等の特性を不均一にする要因となる。
■ During ion implantation, metal ions are knocked out from the inner wall of the device by nitrogen ions, and carbon, oxygen, etc. adsorbed to the inner wall of the device or present in the atmosphere are implanted into the surface of the substrate (1) along with nitrogen ions. Since carbon, oxygen, and metals create various deep levels in the GaAs substrate, the characteristics such as the height of the Schottky barrier and the threshold voltage of the field effect transistor formed using this Schottky electrode are This causes unevenness.

(発明が解決しようとする課題) 以上説明したように、従来の電極形成方法は、ショット
キー障壁の高さを向上できるが、その高さは面内でバラ
ツキ、面内で均一なものを提供できなかった。
(Problems to be Solved by the Invention) As explained above, the conventional electrode forming method can improve the height of the Schottky barrier, but the height varies within the plane and cannot be uniform within the plane. could not.

本発明は上記問題点に鑑みなされたもので、ショットキ
ー障壁の高さが高い電極をしかも面内均一性良く提供す
ることを目的とする。
The present invention was made in view of the above problems, and an object of the present invention is to provide an electrode with a high Schottky barrier height and with good in-plane uniformity.

【発明の構成] (課題を解決するための手段) 本発明は上記問題点に鑑みなされたもので、窒素或いは
硫黄原子を含む雰囲気中に半導体層をさらした状態で光
を照射することにより前記半導体層表面に窒化層或いは
硫化層を形成する工程と、この後この窒化層或いは硫化
層表面にショットキー電極を形成する工程とを具備する
事を特徴とする半導体装置用電極の製造方法を提供する
ものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention has been made in view of the above-mentioned problems. Provided is a method for manufacturing an electrode for a semiconductor device, comprising the steps of forming a nitride layer or sulfide layer on the surface of the semiconductor layer, and then forming a Schottky electrode on the surface of the nitride layer or sulfide layer. It is something to do.

(作  用) 本発明では半導体層表面を、所望の窒素或いは硫黄を含
む雰囲気中で光を照射するだけで窒化層或いは硫化層に
変えることができるため、この半導体層表面に衝撃を与
えることがない。また製造装置内壁をイオン等でたたか
ないため、この雰囲気中に不必要な不純物の混入がなく
、従って窒素以外の不純物が半導体層表面に導入される
ことがない。従ってショットキー電極のその障壁は場所
に拘わることなくウェーハ全面にわたって高くしかも均
一性が高い。ここで、半導体層表面に形成した窒化層を
介してショットキー電極を形成する事によりそのショッ
トキー障壁が高くなる事が知られていたが、窒化層に代
えて硫化層を用いても、この障壁が高くなる事は、発明
者の実験結果により初めて見い出された。
(Function) In the present invention, the surface of the semiconductor layer can be changed into a nitride layer or sulfide layer simply by irradiating the surface with light in an atmosphere containing desired nitrogen or sulfur, so it is possible to avoid applying impact to the surface of the semiconductor layer. do not have. Furthermore, since the inner walls of the manufacturing apparatus are not hit with ions or the like, unnecessary impurities are not mixed into the atmosphere, and therefore impurities other than nitrogen are not introduced into the surface of the semiconductor layer. Therefore, the barrier of the Schottky electrode is high and highly uniform over the entire wafer surface regardless of location. It has been known that forming a Schottky electrode via a nitride layer formed on the surface of a semiconductor layer increases the Schottky barrier, but even if a sulfide layer is used in place of the nitride layer, this The fact that the barrier becomes higher was discovered for the first time by the inventor's experimental results.

(実施例) 本発明の詳細を実施例を用いて説明する。(Example) The details of the present invention will be explained using examples.

第1図は本発明の一実施例に係るショットキーゲート型
電界効果トランジスタを示すものである。
FIG. 1 shows a Schottky gate field effect transistor according to an embodiment of the present invention.

先ず、半絶縁性GaAs基板(1)表面に例えばSLイ
オンを加速電圧50KeV、  ドーズ量2×1012
clI−2の条件にて注入した後、As雰囲気中で&2
0℃、20分のアニールを行ってn型半導体層(2、)
を形成する。この半導体層は固相拡散法によっても或い
は、基板(1)に直接エピタキシャル形成しても良い(
第1図(a))。
First, for example, SL ions are deposited on the surface of a semi-insulating GaAs substrate (1) at an accelerating voltage of 50 KeV and a dose of 2 x 1012.
After implantation under the conditions of clI-2, &2 in an As atmosphere.
Annealing was performed at 0°C for 20 minutes to form an n-type semiconductor layer (2).
form. This semiconductor layer may be formed by solid phase diffusion or epitaxially directly on the substrate (1).
Figure 1(a)).

次いで、圧力1〜10TorrのNH3/N2ガスを混
合した雰囲気中に上記n型半導体層(2□)を基板(1
)ごとさらし、この状態で低圧水銀ランプによって紫外
線(LQ)を照射する。光源はレーザーでも良い。これ
により、n型半導体層(2□)表面に15A程度の窒化
層(3)を形成する。この窒化層(3)の膜厚はIOA
〜50Aが良く、IOA〜20Aが好ましい。以下にこ
の表面窒化のメカニズムと共に効果を詳説する。NH3
などの窒素水素化物を少なくとも含む非酸化性雰囲気に
てGaAsなどのAsを少くとも含む化合物半導体に紫
外光照射を行うことにより、以下の2つの効果が生じる
。即ち、第1にNH3の紫外光照射による光化学分解に
より生じた活性化されたH原子によりGaAs表面が還
元される。
Next, the n-type semiconductor layer (2□) is placed on the substrate (1) in an atmosphere containing a mixture of NH3/N2 gas at a pressure of 1 to 10 Torr.
) and in this state is irradiated with ultraviolet light (LQ) using a low-pressure mercury lamp. The light source may be a laser. As a result, a nitride layer (3) of about 15A is formed on the surface of the n-type semiconductor layer (2□). The thickness of this nitride layer (3) is IOA
~50A is good, and IOA ~20A is preferred. The mechanism and effect of this surface nitridation will be explained in detail below. NH3
By irradiating a compound semiconductor containing at least As, such as GaAs, with ultraviolet light in a non-oxidizing atmosphere containing at least a nitrogen hydride, the following two effects occur. That is, first, the GaAs surface is reduced by activated H atoms generated by photochemical decomposition of NH3 by ultraviolet light irradiation.

この時、八8203などのAs酸化物、およびGa2O
3などの■族元素酸化物が還元される。
At this time, As oxide such as 88203 and Ga2O
Group Ⅰ element oxides such as 3 are reduced.

さらにGaAs表面に存在する単体のAsも還元されて
A s Hsとして昇華して除去される。
Furthermore, simple As existing on the GaAs surface is also reduced and sublimated as As Hs and removed.

GaAs等のAsを構成元素として有する化合物半導体
では、表面の過剰As及びAs酸化物が表面準位発生の
原因となるため、これらが除去されることにより、Ga
As表面の表面準位密度が大幅に減少する。i2にNH
3の光化学分解により生じたH原子により、半導体層(
2□)表面に極めて薄い窒化層(3)が生じる。この層
は3eV以上のバンド幅を有するGaNを主としてでき
ており、この層上に後述する耐熱性金属又は耐熱性金属
の化合物等からできたショットキー電極を形成すること
により、耐熱性を有する疑似MIS接合が得られる。こ
の場合、leV以上の障壁の高さが得られる(第1図(
b〉)。
In compound semiconductors containing As as a constituent element such as GaAs, excess As and As oxides on the surface cause the generation of surface states, so by removing these, Ga
The surface state density on the As surface is significantly reduced. NH to i2
The semiconductor layer (
2□) An extremely thin nitride layer (3) is formed on the surface. This layer is mainly made of GaN with a bandwidth of 3 eV or more, and by forming a Schottky electrode made of a heat-resistant metal or a compound of a heat-resistant metal, etc., which will be described later, a heat-resistant pseudo-electrode is formed on this layer. A MIS junction is obtained. In this case, a barrier height of leV or more can be obtained (Fig. 1 (
b〉).

ここでは窒素原子を含む非酸化性雰囲気に用いるガスと
してNH3に限ることなく、他の窒素水素化物例えばN
  H、N  H等でも良く、或い 4 3 はこれ以外の窒素原子を含むガス例えばNF3等でも良
く場合によっては窒素ガス単体でも構わない。
Here, the gas used in the non-oxidizing atmosphere containing nitrogen atoms is not limited to NH3, but other nitrogen hydrides such as N
H, NH, etc. may be used, or 4 3 may be a gas containing nitrogen atoms other than these, such as NF3, and in some cases, nitrogen gas alone may be used.

この表面窒化工程の後、窒化層(3〉上にGaAsとシ
ョットキー接合をなす材料例えば窒化タングステン(W
 N x )を例えば350℃の化学的気相成長法(C
VD)により2000A厚程度堆積し、フォトレジスト
を用いた通常の光リソグラフィー及びCF4ガスを用い
た反応性イオンエツチングによりゲート電極(4)を形
成する。
After this surface nitriding step, a material such as tungsten nitride (W) which forms a Schottky junction with GaAs is placed on the nitrided layer (3).
N x ), for example, by chemical vapor deposition (C
The gate electrode (4) is deposited to a thickness of about 2000 Å by VD) and then formed by ordinary photolithography using photoresist and reactive ion etching using CF4 gas.

この際、ゲート電極(4〉となる金属を被着するには、
窒化層(3)及びn型GaAs層(21)へダメージを
与えない様にするため、このダメージが少ない方法例え
ばCVD法を用いる事が好ましい(第1図(C))。
At this time, in order to deposit the metal that will become the gate electrode (4),
In order to avoid damaging the nitride layer (3) and the n-type GaAs layer (21), it is preferable to use a method that causes less damage, such as the CVD method (FIG. 1(C)).

この後、このゲート電極(4〉をマスクにしてSLイオ
ンを加速電圧120KeV、  ドーズ量3X 10 
lBcm−2の条件にて半導体層(21)表面に打ち込
み、さらにAsH3/Ar混合雰囲気中にて800℃、
20分間のアニールを施してソースドレイン領域(5)
 、 (6)を形成する。最後にAuGe合金からなる
ソース・ドレイン電極(7)。
After that, using this gate electrode (4) as a mask, SL ions were accelerated at a voltage of 120 KeV and a dose of 3X 10
It was implanted into the surface of the semiconductor layer (21) under the conditions of 1Bcm-2, and then at 800°C in an AsH3/Ar mixed atmosphere.
Annealed for 20 minutes to remove source and drain regions (5)
, (6) is formed. Finally, source/drain electrodes (7) made of AuGe alloy.

(8〉を形成することにより、ショットキーゲート型電
界効果トランジスタ(MESFET)が完成する。
By forming (8>), a Schottky gate field effect transistor (MESFET) is completed.

以上の製造工程を経て形成された GaAsMES−FETと、N Ha / N 2混合
雰囲気での紫外光照射による窒化層形成工程のみを除い
て形成されたGaAsMESFETの特性を比較した。
The characteristics of a GaAsMES-FET formed through the above manufacturing process and a GaAsMESFET formed by removing only the step of forming a nitride layer by ultraviolet light irradiation in a NHa/N2 mixed atmosphere were compared.

これによると従来のGaAsMESFETではショット
キー障壁の高さが0.7eV程度であったが、本実施例
のものではこの障壁が1.2eVと極めて高められてい
る事が判った。
According to this, it was found that in the conventional GaAs MESFET, the height of the Schottky barrier was about 0.7 eV, but in this example, this barrier was extremely high as 1.2 eV.

また、第2図に示したイオン注入法で窒化層を形成した
従来のMESFETと本実施例のものを夫々3インチの
GaAsウェー八に多へ形威し、面内でのショットキー
障壁のバラツキを測定した。
In addition, the conventional MESFET shown in Fig. 2 in which a nitride layer was formed using the ion implantation method and the one of this embodiment were each molded into a 3-inch GaAs wafer, and the variation in the Schottky barrier within the plane was investigated. was measured.

この結果、従来のものではMESFETの閾値電圧(シ
ョットキー障壁の指標となる)の分散σvthが100
mV程度であったのに対し、この実施例のものでは、5
0mV以下と小さく、実施例のMESFETが面内での
均一性に優れていることが判った。またこの様なウェー
ハを同じ条件にて夫々複数個設けて同様の比較実験を行
ったが、再現性も良好であり、この傾向は変わらながっ
た。
As a result, in the conventional model, the dispersion σvth of the threshold voltage of the MESFET (which is an index of the Schottky barrier) is 100.
While it was about mV, in this example, it was about 5 mV.
It was found that the MESFET of the example had excellent in-plane uniformity as it was as small as 0 mV or less. A similar comparative experiment was conducted using a plurality of such wafers under the same conditions, and the reproducibility was good and this tendency remained unchanged.

以上述べた製造方法を用いた GaAsMESFETを採用し、DCFL回路方式から
なるIC例えばマルチプレクサをGaAsの3インチウ
ェーハに多数個形成してその歩留まりを測べたところ、
従来に比べて大幅に向上した。これは、ICの基本素子
であるG a A s M E S F E、 Tのシ
ョットキー障壁が高くて回路自体の動作余裕が大きくな
ったことと、しかも、このショットキー障壁の面内バラ
ツキが少なくなることにより夫々G a A s M 
E S F E Tが均一な閾値電圧を持った効果が相
まったからである。
Using the GaAs MESFET using the manufacturing method described above, we formed a large number of DCFL circuit type ICs, such as multiplexers, on a 3-inch GaAs wafer and measured the yield.
This is a significant improvement compared to the previous model. This is because the Schottky barrier of GaAsMESFE,T, which is the basic element of IC, is high and the operating margin of the circuit itself is large, and furthermore, the in-plane variation of this Schottky barrier is By decreasing each G a A s M
This is due to the combined effect that ESFET has a uniform threshold voltage.

次に、本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described.

この実施例は第1図に示した先の実施例と同様な工程を
経るもので、異むる点は第1図(b)に示した窒化層(
3)形成工程を還元及び硫化層形成工程としたところに
ある。以下この工程を詳説する。
This example goes through the same steps as the previous example shown in Figure 1, except that the nitride layer (
3) The formation process is a reduction and sulfide layer formation process. This process will be explained in detail below.

この工程も第1図(b)に示した如く、H2S/Arガ
スを混合した雰囲気中に上記n型半導体層(2□)を基
板(1)ごとさらし、この状態で低圧水銀ランプによっ
て紫外光(10)を照射する。光源はレーザーでも良い
。これにより、n型半導体層(2□)表面に15A程度
の硫化層(3)を形成する。この硫化層はS原子が一層
以上有れば良く、その膜厚もやはりIOA〜50^が良
く、10人〜20Aが好ましい。
In this step, as shown in FIG. 1(b), the n-type semiconductor layer (2□) is exposed together with the substrate (1) in an atmosphere containing H2S/Ar gas, and in this state, ultraviolet light is applied using a low-pressure mercury lamp. (10) Irradiate. The light source may be a laser. As a result, a sulfide layer (3) of about 15A is formed on the surface of the n-type semiconductor layer (2□). This sulfide layer only needs to have at least one layer of S atoms, and its film thickness is preferably IOA~50^, preferably 10~20A.

この工程では硫化水素を少なくとも含む還元性雰囲気に
おける紫外光照射により、活性化されたH原子を生じ、
Asを構成元素として有する化合物半導体の表面を還元
しうる。この時、As  OなどのAs酸化物、および
Ga2O33 などの■族元素酸化物が還元される。さらに、化合物半
導体表面に存在する過剰な元素Asも還元されてA s
 Hsの形で昇華し、除去される。
In this step, activated H atoms are generated by ultraviolet light irradiation in a reducing atmosphere containing at least hydrogen sulfide,
The surface of a compound semiconductor containing As as a constituent element can be reduced. At this time, As oxides such as As 2 O and oxides of group Ⅰ elements such as Ga2O33 are reduced. Furthermore, the excess element As present on the surface of the compound semiconductor is also reduced to As
It sublimates in the form of Hs and is removed.

GaAsなどのAsを構成元素として有する化合物半導
体では、表面の過剰AsおよびAs酸化物が表面準位発
生の原因となっているとされており、これらが除去され
ることにより、化合物半導体の表面準位密度を大幅に低
減することができる。さらに上述の処理の他の効果とし
て、雰囲気中の硫化水素より生じた硫黄原子が化合物半
導体半導体表面に吸着することにより、Ga−3の結合
を生じ、処理後に化合物半導体を大気中に取り出した際
の表面の酸化が抑えられる。これにより、大気中でも表
面準位密度が低下した状態を長時間維持することができ
る。
In compound semiconductors such as GaAs that have As as a constituent element, excess As and As oxides on the surface are said to be the cause of the generation of surface states, and by removing these, the surface states of the compound semiconductor are reduced. It is possible to significantly reduce the potential density. Furthermore, as another effect of the above-mentioned treatment, sulfur atoms generated from hydrogen sulfide in the atmosphere are adsorbed to the surface of the compound semiconductor semiconductor, resulting in Ga-3 bonding, and when the compound semiconductor is taken out into the atmosphere after the treatment, surface oxidation is suppressed. Thereby, a state in which the surface state density is reduced can be maintained for a long time even in the atmosphere.

この後、先の実施例と同様に、ショットキー電極及びソ
ース・ドレインのオーミック電極を形成してME S 
F ETが完成する。
After that, as in the previous embodiment, a Schottky electrode and source/drain ohmic electrodes are formed, and the ME S
FET is completed.

この様な工程を経て形成したMESFETも、先の実施
例のものと同様に約1eVの高いショットキー障壁を有
し、しかもその障壁のウェーハ面内での均一性は向上す
る事が判った。
It has been found that the MESFET formed through such a process also has a high Schottky barrier of about 1 eV as in the previous example, and that the uniformity of the barrier within the wafer surface is improved.

この様になる理由は吸着した硫黄原子が化合物半導体表
面にて負の固定電荷として作用し、表面フェルミ準位を
価電子帯側へ移動させるからである。これにより、この
化合物半導体表面と窒化タングステンからなるゲート電
極を形成することにより〜1eVの障壁高さが得られた
ものと考えられる。
The reason for this is that the adsorbed sulfur atoms act as negative fixed charges on the surface of the compound semiconductor, moving the surface Fermi level toward the valence band side. It is considered that a barrier height of ~1 eV was obtained by forming a gate electrode made of tungsten nitride on the surface of this compound semiconductor.

なお、本発明は上述の実施例に限られることなく以下の
様にしても良い。
Note that the present invention is not limited to the above-described embodiments, and may be modified as follows.

■ 窒素原子を含む非酸化性雰囲気に用いるガスとして
NH3に限ることなく、他の窒素水素化物例えばN  
H、N  H等でも良く、或いはこ 4 3 れ以外の窒素原子を含むガス例えばNF3等でも良く場
合によっては窒素ガス単体でも構わない。
■ The gas used in the non-oxidizing atmosphere containing nitrogen atoms is not limited to NH3, but other nitrogen hydrides such as N
It may be H, NH, etc., or it may be a gas containing nitrogen atoms other than these, such as NF3, and in some cases, nitrogen gas alone may be used.

■ 窒化層或いは硫化層形成の際に用いる光は、窒素原
子を含む非酸化性雰囲気を活性にさせるに十分エネルギ
ーの大きなものであれば紫外線に限ることなく、X線や
γ線等でも良い。
(2) The light used in forming the nitride layer or sulfide layer is not limited to ultraviolet light, but may also be X-rays, γ-rays, etc., as long as it has enough energy to activate the non-oxidizing atmosphere containing nitrogen atoms.

■ 表面に窒化層或いは硫化層の形成される半導体層は
n型を呈するものに限らず、P型や所請I型と呼ばれる
ものであっても構わない。
(2) The semiconductor layer on which a nitride layer or sulfide layer is formed is not limited to an n-type semiconductor layer, and may be a P-type or I-type semiconductor layer.

■ ショットキー電極の材料は窒化タングステン(WN
x)に限らず他の高融点金属の窒化物例えば窒化モリブ
デン(M o N x )或いは高融点金属の硅化物例
えば硅化タングステン(WSix)、硅化モリブデン(
MoSix)でも良く、また高融点金属の硅窒化物例え
ば硅窒化タングステン(WSixNy)であっても構わ
ない。さらに、高融点金属単体や高融点金属を含む合金
例えばモリブデン(Mo)、タングステン(W)、チタ
ン(Tt)、  タングステンアルミCWAf! )、
チタンタングステン(TiW)であっても差し支えない
■ The material of the Schottky electrode is tungsten nitride (WN
x), other high melting point metal nitrides such as molybdenum nitride (M o N
MoSix) or a silicon nitride of a high melting point metal such as tungsten silicon nitride (WSixNy). Furthermore, single high melting point metals and alloys containing high melting point metals such as molybdenum (Mo), tungsten (W), titanium (Tt), tungsten aluminum CWAf! ),
Titanium tungsten (TiW) may also be used.

■ ショットキー電極の形成方法はCVD法に限ること
なく、スパッタリング法或いは蒸着法であっても良い。
(2) The method for forming the Schottky electrode is not limited to the CVD method, and may be a sputtering method or a vapor deposition method.

■ 半導体層の形成母体となる半導体基板は、GaAs
に限らず、他のAsを含む化合物半導体例えばGaA[
As、I nAlAs。
■ The semiconductor substrate on which the semiconductor layer is formed is made of GaAs.
, but also other As-containing compound semiconductors such as GaA[
As, I nAlAs.

I nGaAs等であっても良く、この場合これらの半
導体層をInPやGaAs基板等の他の基板上に設けた
ものを基板として用いても良い。また、他の化合物半導
体例えばInP、GaP等を用いても良く、さらには、
■族半導体例えばStやGe等を用いても良い。
InGaAs or the like may be used, and in this case, the substrate may be one in which these semiconductor layers are provided on another substrate such as an InP or GaAs substrate. Further, other compound semiconductors such as InP, GaP, etc. may be used, and furthermore,
Group (2) semiconductors such as St and Ge may also be used.

■ イオン注入層をアニールする方法は、A s Ha
雰囲気中でのキャップレスアニール法に限らず、酸化硅
素(S iO2) 、窒化硅素(Si2H4)、窒化ア
ルミニウム(Al7 N)等を被覆膜として用いたキャ
ップアニール法を用いても良い。
■ The method of annealing the ion-implanted layer is A s Ha
In addition to the capless annealing method in an atmosphere, a cap annealing method using silicon oxide (S iO 2 ), silicon nitride (Si 2 H 4 ), aluminum nitride (Al 7 N), or the like as a coating film may be used.

■ デジタルICを形成する際の回路形式には、DCF
Lを用いたが、その他のもの例えばS L CF (S
ouce Coupled  F E T  Logl
c)を用い上記構成によれば、ショットキー障壁が高く
、しかも面内の場所に拘わることなく均一なものを得る
ことができる。
■ The circuit format used when forming digital ICs is DCF.
L was used, but other materials such as S L CF (S
ouse Coupled F E T Logl
According to the above configuration using c), it is possible to obtain a high Schottky barrier and a uniform one regardless of the location within the plane.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す工程順の断面図、第2
図は従来例を示す工程順の断面図である。 1・・・GaAs基板、2・・・n型半導体層、3・・
・窒化層、4・・・ゲート電極、5・・・ソース領域、
6・・・ドレイン領域、7・・・ソース電極、8・・・
ドレイン電極。
Fig. 1 is a cross-sectional view of the process order showing one embodiment of the present invention;
The figure is a cross-sectional view showing a conventional example in the order of steps. 1... GaAs substrate, 2... n-type semiconductor layer, 3...
-Nitride layer, 4...gate electrode, 5...source region,
6... Drain region, 7... Source electrode, 8...
drain electrode.

Claims (1)

【特許請求の範囲】[Claims] 窒素或いは硫黄原子を含む雰囲気中に半導体層をさらし
た状態で光を照射することにより前記半導体層表面に窒
化層或いは硫化層を形成する工程と、この後この窒化層
或いは硫化層表面にショットキー電極を形成する工程と
を具備する事を特徴とする半導体装置用電極の製造方法
A step of forming a nitride layer or a sulfide layer on the surface of the semiconductor layer by exposing the semiconductor layer to an atmosphere containing nitrogen or sulfur atoms and irradiating it with light, and then forming a Schottky layer on the surface of the nitride or sulfide layer. 1. A method of manufacturing an electrode for a semiconductor device, comprising the step of forming an electrode.
JP27856989A 1989-06-15 1989-10-27 Manufacture of electrode for semiconductor device Pending JPH0387024A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-150443 1989-06-15
JP15044389 1989-06-15

Publications (1)

Publication Number Publication Date
JPH0387024A true JPH0387024A (en) 1991-04-11

Family

ID=15497046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27856989A Pending JPH0387024A (en) 1989-06-15 1989-10-27 Manufacture of electrode for semiconductor device

Country Status (1)

Country Link
JP (1) JPH0387024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261147A (en) * 1990-03-12 1991-11-21 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device, and method and apparatus for manufacturing semiconductor device
JP2004335828A (en) * 2003-05-09 2004-11-25 Mitsubishi Electric Corp Method for stabilizing surface and method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261147A (en) * 1990-03-12 1991-11-21 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device, and method and apparatus for manufacturing semiconductor device
JP2004335828A (en) * 2003-05-09 2004-11-25 Mitsubishi Electric Corp Method for stabilizing surface and method for manufacturing semiconductor device
JP4620333B2 (en) * 2003-05-09 2011-01-26 三菱電機株式会社 Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US7449399B2 (en) Method for fabricating a semiconductor device for reducing a surface potential
US4713354A (en) Method of heat treatment for reduction of dislocation density near III-V substrate surface
US5170230A (en) Semiconductor device and production method thereof
US6242327B1 (en) Compound semiconductor device having a reduced source resistance
JPH0387024A (en) Manufacture of electrode for semiconductor device
US5399230A (en) Method and apparatus for etching compound semiconductor
JPS6184869A (en) Semiconductor device
JPH0235463B2 (en)
Redondo et al. Improvement of SiNx: H/InP gate structures for the fabrication of metal–insulator–semiconductor field-effect transistors
JPH01211970A (en) Manufacture of lateral bipolar transistor
JPH02262343A (en) Compound semiconductor device and manufacture thereof
JPH0352238A (en) Manufacture of compound semiconductor device
JPH01251665A (en) Manufacture of iii-v compound semiconductor field effect transistor
JPS6390175A (en) Manufacture of compound semiconductor field effect transistor
JPH023548B2 (en)
JPS61292964A (en) Manufacture of semiconductor device
JPH06244409A (en) Preprocessing method for compound semiconductor substrate
JPH02292831A (en) Manufacture of semiconductor device
US7309627B2 (en) Method for fabricating a gate mask of a semiconductor device
JPH03173475A (en) Compound semiconductor device and its manufacture
JPS6143443A (en) Manufacture of semiconductor device
JP2022014645A (en) Method for manufacturing nitride semiconductor device and nitride semiconductor device
JPH05291299A (en) Formation of metallic electrode
JPS60136264A (en) Manufacture of semiconductor device
JPS60150676A (en) Integrated circuit