JPH0375347A - Method for controlling operation in production of hot dip galvanized steel sheet - Google Patents
Method for controlling operation in production of hot dip galvanized steel sheetInfo
- Publication number
- JPH0375347A JPH0375347A JP21181789A JP21181789A JPH0375347A JP H0375347 A JPH0375347 A JP H0375347A JP 21181789 A JP21181789 A JP 21181789A JP 21181789 A JP21181789 A JP 21181789A JP H0375347 A JPH0375347 A JP H0375347A
- Authority
- JP
- Japan
- Prior art keywords
- production
- hot
- galvanized steel
- bath
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 55
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 20
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title abstract description 7
- 238000007747 plating Methods 0.000 claims abstract description 34
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 23
- 239000010959 steel Substances 0.000 claims abstract description 23
- 238000005246 galvanizing Methods 0.000 claims abstract description 16
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- 239000011701 zinc Substances 0.000 claims description 26
- 229910052725 zinc Inorganic materials 0.000 claims description 19
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 17
- 238000007726 management method Methods 0.000 claims description 5
- 238000005275 alloying Methods 0.000 abstract description 21
- 239000000463 material Substances 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- RQMIWLMVTCKXAQ-UHFFFAOYSA-N [AlH3].[C] Chemical compound [AlH3].[C] RQMIWLMVTCKXAQ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Coating With Molten Metal (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〉
この発明は、同−設備、同一ポットを用いて非合金化溶
融亜鉛めっき鋼板並びに合金化溶融めっき鋼板を製造す
る際の操業管理方法に関するものである。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an operational management method when manufacturing non-alloyed hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets using the same equipment and the same pot. It is.
〈従来技術とその課題〉
従来から、鋼板面に溶融亜鉛層を付着・凝固させた溶融
亜鉛めっき鋼板は経済性に冨んだ安価な防錆鋼板として
広い需要を誇ってきたが、近年、この“溶融亜鉛めっき
鋼板(GI)“と共にこれを合金化処理(熱拡散処理)
して耐食性の改善を図った“合金化溶融亜鉛めっき鋼板
(G A)”の生産量も増加の一途をたどっている。な
お、前記合金化溶融亜鉛めっき鋼板(以降、GAと記す
)は、設備コスト等の関係で溶融亜鉛めっき鋼板(以降
、Glと記す)の場合と同一の製造設備で同一の亜鉛ポ
ットを用いて製造されるのが普通であり、これによる溶
融亜鉛めっきに続き、加熱炉にて450〜650℃の加
熱拡散処理が施される。<Prior art and its challenges> Hot-dip galvanized steel sheets, in which a molten zinc layer is adhered and solidified on the steel sheet surface, have been in wide demand as economical and inexpensive rust-proof steel sheets. This is alloyed with “hot-dip galvanized steel sheet (GI)” (thermal diffusion treatment)
The production volume of ``alloyed galvanized steel sheets (GA)'' with improved corrosion resistance is also increasing. Note that the alloyed hot-dip galvanized steel sheet (hereinafter referred to as GA) is produced using the same zinc pot in the same manufacturing equipment as the case of hot-dip galvanized steel sheet (hereinafter referred to as GI) due to equipment costs, etc. It is usually produced by hot-dip galvanizing, followed by heating and diffusion treatment at 450 to 650°C in a heating furnace.
ところで、上記GIの製造の場合には、一般に溶融めっ
き浴中に0.08〜0.2%(以降、成分割合を表わす
%は重量%とする)のA1添加がなされている。ただ、
この添加したAlのうちの何割かは溶融亜鉛浴中に存在
するFeと結合し、Znを含めたPe −Zn−Af化
合物を形成して固相状態で溶湯中に分散する(一般に、
これを“ドロス”と呼んでいる)ため、Zn液相中に溶
解しているMの濃度は亜鉛浴中の全A1f7%度よりも
低くなるが、そのため通常は溶解しているAl濃度を有
効PJlfl1度[−Ai’]。、として[u] −t
= [Aj!] r [Fe] tなる式で算出
し、浴管理の基礎データとしている。By the way, in the case of manufacturing the above-mentioned GI, generally 0.08 to 0.2% (hereinafter, % representing the component proportion is expressed as weight %) of A1 is added to the hot-dip plating bath. just,
Some percentage of this added Al combines with Fe present in the molten zinc bath, forms a Pe-Zn-Af compound containing Zn, and is dispersed in the molten metal in a solid state (generally,
This is called "dross"), so the concentration of M dissolved in the Zn liquid phase is lower than the total A1f7% in the zinc bath. PJlfl1 degree [-Ai']. , as [u] −t
= [Aj! ] r [Fe] t and is used as basic data for bath management.
ここで、亜鉛浴中にAlを添加する目的は、溶融めっき
時に鋼板表面に形成されがちなFe −Zn系の金属間
化合物層の抑制にある。つまり、Fe −Zn系の金属
間化合物層が肥大成長すると、それが本質的に脆くて延
性に欠けるものであるため製品の加工性に少なからぬ悪
影響を与える。それ故、溶融亜鉛めっき鋼板の十分な皮
膜加工性確保を狙う場合には、溶融亜鉛浴は0.14%
以上の[Ai!]−rとなるように調整されるのが普通
である。そして、上記Al添加がなされると鋼板の表面
にはFe −Zn拡散層の形成を抑制する“薄いFe、
A1.相”が形成され、その結果としてFe−Zn系金
属間化合物層の肥大化が抑制されるので皮膜の加工性が
確保されることとなる。Here, the purpose of adding Al to the zinc bath is to suppress the Fe-Zn-based intermetallic compound layer that tends to be formed on the surface of the steel sheet during hot-dip plating. In other words, when the Fe-Zn-based intermetallic compound layer grows large, it has a considerable adverse effect on the workability of the product because it is essentially brittle and lacks ductility. Therefore, when aiming to ensure sufficient film workability for hot-dip galvanized steel sheets, the hot-dip zinc bath should be 0.14%
Above [Ai! ]-r. When the above-mentioned Al addition is made, "thin Fe," which suppresses the formation of an Fe-Zn diffusion layer, is formed on the surface of the steel sheet.
A1. phase" is formed, and as a result, the enlargement of the Fe--Zn-based intermetallic compound layer is suppressed, so that the workability of the film is ensured.
一方、GAは比較的薄く形成させた亜鉛めっき層を加熱
処理によってFe −Zn合金層に拡散変態させたもの
であるが、このGAを製造する場合に亜鉛浴中の[Al
1−rが高いと合金化の進行が遅れて製造性に多大な支
障が生じるため、前記[Al1−vは可及的に低くする
必要がある。従って、GAを製造する場合の亜鉛浴中の
[Al1゜、は一般に0.11%以下に調整される。On the other hand, GA is made by diffusion-transforming a relatively thin galvanized layer into an Fe-Zn alloy layer by heat treatment, but when manufacturing this GA, [Al
If 1-r is high, the progress of alloying is delayed and manufacturability is seriously hindered, so the above-mentioned [Al1-v] needs to be as low as possible. Therefore, [Al1°, in the zinc bath when producing GA is generally adjusted to 0.11% or less.
そこで、同一の溶融亜鉛浴ポットを共用するのが一般的
であるGIとGAの製造に当っては、従来、Gl製造時
には亜鉛浴を[Al1 、f≧0.14%なる条件に、
そしてGA製造時には[u] −rfaO,11%なる
条件にそれぞれ切り替え調整することが実施されてきた
。Therefore, in the production of GI and GA, which generally share the same molten zinc bath pot, conventionally, when producing GI, the zinc bath was set to [Al1, f≧0.14%].
When manufacturing GA, switching and adjusting the conditions to [u] -rfaO and 11% have been carried out.
しかし、実際作業においては、溶融亜鉛浴における[A
l1 ofを高めることは容易であるものの、逆に[A
i]atを減少させるための適当な方策がなく、従って
Gl製造からGA型製造の切り替えに際しては[Ai’
]atが徐々に減少するのを待つと言うのが現状であっ
た。そのため、この[U] 、tの減少過渡期、即ち
0.11%〈[AJ ] * t <0 、14%の間
はGl、GAの何れの製造にも不適な浴条件となるので
、仮にGIの製造を継続しても皮膜加工性の点で少なか
らず劣るものしか得られなかった。そして、これはGA
への要求性能がより高度化している状況下にあって非常
に深刻な問題となりつつあった。However, in actual work, [A
Although it is easy to increase l1 of, on the contrary, [A
There is no suitable measure to reduce [Ai'at] when switching from GI production to GA production.
] The current situation was to wait for AT to gradually decrease. Therefore, during this transition period when [U] and t decrease, that is, 0.11% <[AJ] * t <0, 14%, the bath conditions are unsuitable for the production of either Gl or GA. Even if we continued to manufacture GI, we could only obtain something that was rather inferior in terms of film processability. And this is GA
This was becoming a very serious problem as the performance requirements for
即ち、近年、自動車車体用として深絞り性の優れたGA
に対する需要が増え、これに対応すべく素材鋼として極
低C−Ti添加鋼を使用したGAの生産がなされるよう
になっているが、この極低CTi添加鋼を適用したGA
は他の鋼種を用いたGAに比較してめっき層に凹凸がで
きやすく、電着塗装の仕上がり等に悪影響が出る懸念が
あった。That is, in recent years, GA with excellent deep drawability has been used for automobile bodies.
In order to meet this demand, GA is being produced using ultra-low C-Ti additive steel as the material steel.
Compared to GA using other steel types, the plating layer is more likely to have unevenness, and there was a concern that the finish of the electrodeposition coating would be adversely affected.
ただ、この現象は、めっき鋼板基材が極低C−Ti添加
鋼の場合にフェライト粒界の合金化が優先的に進行する
ことに起因して生じるものであって、溶融亜鉛めっき浴
中の[Aj!]−rを更に低下させる(例えば[Aj!
]−r≦0.08%に調整する)ことで抑制が可能であ
ったが、この対策はG【製造時における[u]myとの
ギャップを大きくさせる結果となり、前述の問題を更に
拡大することにつながったのである。However, this phenomenon occurs because alloying of ferrite grain boundaries progresses preferentially when the plated steel sheet base material is steel with an extremely low C-Ti content, and is caused by the preferential alloying of ferrite grain boundaries in the hot-dip galvanizing bath. [Aj! ]-r is further reduced (e.g. [Aj!
]−r≦0.08%), but this measure resulted in a larger gap between G[u]my during manufacturing, further aggravating the aforementioned problem. This led to this.
このようなことから、本発明の目的は、亜鉛系溶融めっ
き鋼板の製造ラインにおいて、GIの製造からGAの製
造に切り替える際の移行時間が従来の[Al1−rコン
トロール方式に比して十分に短かく、極低C−Ti添加
鋼板を素材としたGAの製造にも迅速かつ的確に対処で
きて、皮膜凹凸が極力抑制された品質の良好なめっき製
品を高能率・高歩留で提供し得る手段を確立することに
置かれた。Therefore, an object of the present invention is to reduce the transition time when switching from GI production to GA production in a production line for zinc-based hot-dip galvanized steel sheets, compared to the conventional [Al1-r control method]. We can quickly and accurately manufacture GA using steel sheets with extremely low C-Ti content, and provide high-quality plated products with minimal film irregularities at high efficiency and high yield. It was placed on establishing the means to obtain.
く課題を解決するための手段〉
そこで、本発明者等は上記目的を達成すべく数多くの実
験を繰り返しながら研究を重ねた結果、次に示すような
知見を得るに至った。Means for Solving the Problems> Therefore, the present inventors conducted research while repeating numerous experiments in order to achieve the above object, and as a result, they came to the following findings.
即ち、従来から「溶融亜鉛めっき浴中へのMn添加が、
Al添加の場合と同様にめっき皮膜と鋼板との界面にお
けるFe −Zn化合物相の形成抑制に有効である」こ
とが知られていたが、溶解Alの存在下でこのMn添加
量が特定の値を超えるとMnは全く逆の作用を発現して
Fe −Zn間の合金化を促進するようになり、そのた
めCI製造時における従来のAl添加手段と組み合わせ
てOA製造切り替え時に特定量を超えるMn添加を実施
すれば、GA製造=G■製造の操業移行時間が大幅に低
減されるとの新たな事実を見出したのである。That is, conventionally, ``addition of Mn to a hot-dip galvanizing bath is
It was known that the amount of Mn added was effective in suppressing the formation of Fe-Zn compound phase at the interface between the plating film and the steel sheet, similar to the case of Al addition.However, in the presence of dissolved Al, the amount of Mn added When the amount exceeds Mn, Mn exhibits a completely opposite effect and promotes alloying between Fe and Zn. Therefore, when switching over to OA production, it is necessary to add Mn exceeding a certain amount in combination with conventional Al addition means during CI production. We have discovered a new fact that if this is implemented, the operational transition time for GA production = G② production will be significantly reduced.
この発明は、上記知見等に基づいてなされたものであり
、
「亜鉛系溶融めっき鋼板の製造において、0.05〜0
.2%の^lを溶解・含有した溶融亜鉛めっき浴、或い
は0.05〜0.2%のA1と式
%式%]
を満足する濃度でMnとを溶解・含有した溶融亜鉛めっ
き浴を用いると共に、CIの製造からGAの製造に切り
替えるに際し、めっき浴中にMnを添加して式
%式%]
を満足するMn濃度としてから合金化めっき鋼板の製造
に移ることにより該移行時間を極力短くして、品質の良
好な亜鉛系溶融めっき鋼板を高能率かつ高歩留で製造し
得るようにした点」
に特徴を有するものである。This invention was made based on the above-mentioned knowledge, etc., and it is said that ``In the production of zinc-based hot-dip galvanized steel sheets,
.. Use a hot-dip galvanizing bath that dissolves and contains 2% of ^l, or a hot-dip galvanizing bath that dissolves and contains Mn at a concentration that satisfies 0.05 to 0.2% of A1 and formula %. At the same time, when switching from CI production to GA production, the transition time can be minimized by adding Mn to the plating bath to achieve a Mn concentration that satisfies the formula % and then proceeding to the production of alloyed plated steel sheets. It is characterized by the fact that it is possible to manufacture high-quality zinc-based hot-dipped steel sheets with high efficiency and high yield.
ここで、[Mn(χ)」は溶融亜鉛めっき浴中のMnの
分析濃度を、そし7 [Al(X)J ハ[AlJ a
fをそれぞれ重量%で示した値である。Here, [Mn(χ)'' is the analytical concentration of Mn in the hot-dip galvanizing bath, and 7 [Al(X)J ha[AlJ a
Each value is expressed in weight%.
以下、本発明においてめっき浴の調整条件を前記の如く
に限定した理由を、その作用と共に説明する。Hereinafter, the reason why the conditions for adjusting the plating bath in the present invention are limited as described above will be explained together with the effect thereof.
〈作用〉
Alを含む溶融亜鉛めっき浴中にMnを添加すると、第
1図に示されるように、特定濃度に至るまではMJI度
の増加に伴いFe −Zn間の合金化抑制効果が増すの
で、浴中の溶解Al含有量が低くなっても品質の良好な
Gl製品の製造が可能となる。ところが、めっき浴中の
Mnt74度が前記特定濃度以上になると逆に合金化を
顕著に促進するようになる。従って、GA型製造切り替
える際、めっき浴中にMn添加を行ってMn濃度を前記
特定濃度以上に調整するだけで速やかに高品質のGA製
品製造態勢が整い、切り替え過渡期の品質悪化を懸念す
ることなく円滑な操業を続行することができる。なお、
前記第1図は、浴中Mn濃度と得られるめっき鋼板の所
要合金化時間(速度)の1例を示したグラフである。<Effect> When Mn is added to a hot-dip galvanizing bath containing Al, as shown in Figure 1, the effect of suppressing alloying between Fe and Zn increases as the MJI degree increases until a certain concentration is reached. , it is possible to produce Gl products of good quality even if the dissolved Al content in the bath is low. However, when Mnt 74 degrees in the plating bath exceeds the above-described specific concentration, alloying is significantly promoted. Therefore, when switching to GA type production, simply by adding Mn to the plating bath and adjusting the Mn concentration above the specified concentration, the system for producing high quality GA products is quickly established, and there is concern that quality may deteriorate during the transition period. This allows smooth operations to continue without any problems. In addition,
FIG. 1 is a graph showing an example of the Mn concentration in the bath and the required alloying time (rate) of the resulting plated steel sheet.
そして、Mnの添加が合金化の促進に効果を発揮するよ
うに変化する臨界Mn11度は、式%式%]
で与えられ、この値よりも[Mn (X) ]が低いと
合金化は逆に抑制されることとなる。従って、亜鉛系溶
融めっき鋼板の製造において、Gl製造時にはめっき浴
中にMnの積極添加を行わないか或いはめっき浴中のM
n濃度を式
%式%]
の範囲内に調整し、Glの製造からGAの製造に切り替
える際にめっき浴中へ式
%式%]
を満足するMntM度が得られる量のMnを添加するこ
とと定めた。ここで、GAの製造に切り替える際のめっ
き浴中Mn濃度の上限は特に定めないが、GAの製造に
際して多量のMnを添加すると化合物が生成されて浴中
のドロスが増加することから、実際にはu4度を下げる
と共にMntを上記範囲内で低目とするのが好ましい。The critical Mn11 degree at which the addition of Mn becomes effective in promoting alloying is given by the formula %, and if [Mn (X)] is lower than this value, alloying will be reversed. It will be suppressed. Therefore, in the production of zinc-based hot-dip coated steel sheets, Mn is not actively added to the plating bath during Gl production, or Mn is not actively added to the plating bath.
Adjust the n concentration within the range of the formula % formula %] and add Mn in an amount to obtain an MntM degree that satisfies the formula % formula %] into the plating bath when switching from GI production to GA production. It was determined that Here, there is no particular upper limit for the Mn concentration in the plating bath when switching to GA production, but since adding a large amount of Mn during GA production will generate compounds and increase dross in the bath, It is preferable to lower u4 degrees and lower Mnt within the above range.
また、本発明において、溶融亜鉛めっき浴中の溶解Al
濃度(= [u] 、r)が0.05%より低いとGl
製造時のめっき密着性の劣化が著しくなり、一方、前記
溶解AltM度が0.2%を超えるとGA化のために必
要な所要Mnfiが増加し、浴中にMn−触−Znの3
元化合物がドロスとして析出し易くなる。このため、溶
融亜鉛めっき浴中の溶解Al濃度は0.05〜0.2%
に調整することと定めた。In addition, in the present invention, dissolved Al in the hot-dip galvanizing bath
When the concentration (= [u], r) is lower than 0.05%, Gl
Deterioration of plating adhesion during manufacturing becomes significant. On the other hand, when the degree of dissolved AltM exceeds 0.2%, the required Mnfi required for GA increases, and 3
The original compound tends to precipitate as dross. Therefore, the dissolved Al concentration in the hot dip galvanizing bath is 0.05 to 0.2%.
It was decided that the adjustment should be made to
さて、第2図は、亜鉛系溶融めっき鋼板の製造における
“従来のめっき浴組成のコントロール手法(第2図(a
))”と“本発明法に従っためっき浴組成のコントロー
ル手法(第2図(b))”とを比較した概念図である。Now, Figure 2 shows the "conventional method of controlling the composition of the plating bath" (Figure 2 (a)
))" and "The method of controlling the plating bath composition according to the method of the present invention (FIG. 2(b))" is a conceptual diagram comparing the method.
この第2図からも明らかなように、本発明では、[Ai
]sr低下時のCI製造対策(FeZn系金属間化合物
層の形成を抑制する対策)として「比較的低い濃度(前
述の臨界濃度を下回る濃度)でのMn添加」を実施する
ことで合金化傾向を抑え、一方、GA型製造際してはr
Mn添加量を増して[Mn] ta度を前記臨界濃度以
上に上昇させる」ことで合金化傾向を高めるようにして
いる。As is clear from FIG. 2, in the present invention, [Ai
] As a CI manufacturing countermeasure (measure to suppress the formation of FeZn-based intermetallic compound layer) when sr decreases, alloying tendency can be reduced by implementing "Mn addition at a relatively low concentration (concentration below the critical concentration mentioned above)" On the other hand, when manufacturing the GA type, r
The alloying tendency is increased by increasing the amount of Mn added to raise the [Mn] ta degree above the critical concentration.
そのため、CI型製造らGA型製造の操業切り替えが極
めて円滑に行える上、切り替え過渡期に生じがちな製品
性能の悪化が極力防止できて材料歩留も大幅に向上する
。Therefore, the operation changeover from CI type manufacturing to GA type manufacturing can be performed extremely smoothly, and the deterioration of product performance that tends to occur during the transition period can be prevented as much as possible, and the material yield can be greatly improved.
その上、亜鉛めっき浴中にMnを添加すると、極低C−
Tt添加鋼板を基材としてGAを製造する場合であって
も“めっき層の凹凸発生問題”が効果的に解消され、優
れためっき皮膜平滑性を有するGA型製品安定して得ら
れるようになる。Moreover, adding Mn to the galvanizing bath results in extremely low C-
Even when manufacturing GA using Tt-added steel sheets as a base material, the "problem of unevenness in the plating layer" is effectively resolved, making it possible to stably obtain GA type products with excellent plating film smoothness. .
続いて、本発明を実施例に基づいてより具体的に説明す
る。Next, the present invention will be explained in more detail based on Examples.
〈実施例〉
実施例 1
まず、C: 0.04%、 Si : 0.01%、M
n:0.18%。<Example> Example 1 First, C: 0.04%, Si: 0.01%, M
n: 0.18%.
P : 0.010%、 S :0.008%及びs
ol、 Af : 0.027%を含むと共に、残部が
実質的にFeである低炭素アルミキルド鋼のフルハード
鋼板(厚さ:0.76m)を準備し、溶融めっきシュミ
レータ−〔■レスカ製〕を用いて“26%H2+N2雰
囲気”中で720℃×60秒の焼鈍を施してから溶融亜
鉛めっきを行った。P: 0.010%, S: 0.008% and s
A full hard steel plate (thickness: 0.76 m) of low carbon aluminum killed steel containing 0.027% of ol, Af and the remainder being substantially Fe was prepared, and a hot-dip plating simulator [■ made by Resca] was prepared. After annealing at 720° C. for 60 seconds in a “26% H2 + N2 atmosphere”, hot-dip galvanizing was performed.
なお、この時のめっき浴温度は470℃±3℃で、めっ
き浴にはAf、Mnを所定量添加した。Note that the plating bath temperature at this time was 470° C.±3° C., and predetermined amounts of Af and Mn were added to the plating bath.
そして、めっき付着量を65±10g/rrrに調整し
た溶融めっき鋼板を、引き続いて500℃の溶融塩浴に
て合金化処理し、合金化完了までに要する時間を測定し
た。Then, the hot-dip plated steel sheet whose coating weight was adjusted to 65±10 g/rrr was subsequently alloyed in a 500° C. molten salt bath, and the time required to complete alloying was measured.
この結果を第3図に示す。The results are shown in FIG.
第3図は浴中の[Alコ、fと[Mn]濃度を座標軸と
したグラフで、各組成における合金化所要時間を○(1
5秒以下)+ G(15秒超30秒以下)、・(30秒
超)で表示したものであるが、この第3図からも、めっ
き浴中のMn濃度が式
%式%)]
を充たす範囲において合金化が促進されることが確認で
きる。Figure 3 is a graph with the coordinate axes of [Alco, f and [Mn] concentrations in the bath, and shows the required alloying time for each composition.
5 seconds or less) + G (more than 15 seconds and less than 30 seconds), ・ (more than 30 seconds), and from this figure 3, the Mn concentration in the plating bath is expressed by the formula % formula %)] It can be confirmed that alloying is promoted within the range where the conditions are satisfied.
実施例 2
化学組成がC:0.003%、 Si:0.01%、
Mn:0.16%。Example 2 Chemical composition: C: 0.003%, Si: 0.01%,
Mn: 0.16%.
p :0.008%、 S:0.008%、 sol
、 Al :0.021%及びTi:0.066%を含
有し、残部が実質的にFeから成る極低C−Ti添加I
F鋼のフルハード鋼板(厚さ:0.8On)を、実施例
1におけると同様の装置を用いて“26%H2+NZ雰
囲気”中で850℃×60秒の焼鈍を施してから溶融亜
鉛めっきを行った。p: 0.008%, S: 0.008%, sol
, containing 0.021% Al and 0.066% Ti, with the remainder essentially consisting of Fe.
A full hard steel plate (thickness: 0.8On) of F steel was annealed at 850°C for 60 seconds in a "26% H2 + NZ atmosphere" using the same equipment as in Example 1, and then hot-dip galvanized. went.
なお、この時のめっき浴温度は470℃±3℃で、めっ
き浴にはAll、Mnを所定量添加した。Note that the plating bath temperature at this time was 470° C.±3° C., and predetermined amounts of All and Mn were added to the plating bath.
そして、めっき付着量を65±10g/%に調整した溶
融めっき鋼板を、引き続いて500℃の溶融塩浴にて合
金化処理し、合金化完了までに要する時間を測定すると
共に、合金化処理を施した試料を樹脂に埋め込んで断面
を観察してめっき層の凹凸発生状態を調べた。Then, the hot-dip galvanized steel sheet with the coating weight adjusted to 65±10 g/% was subsequently alloyed in a molten salt bath at 500°C, and the time required to complete alloying was measured, and the alloying process was The applied sample was embedded in resin and the cross section was observed to examine the occurrence of irregularities in the plating layer.
これらの結果を第1表に示す。These results are shown in Table 1.
なお、第1表において、「めっき層の平滑性」は第4図
(a)の状態を“良好”として○印で、第4図(b)の
状態を“不良”としてX印でそれぞれ表示した。In Table 1, the "smoothness of the plating layer" is indicated by an ○ mark indicating the state in Fig. 4 (a) as "good" and an X mark indicating the state in Fig. 4 (b) as "poor". did.
上記第1表に示される結果からも、本発明で規定する条
件に従うと品質の優れたGAの円滑な製造が行えるのに
対して、めっき浴組成管理が本発明で規定する条件から
外れた比較例では、所要合金化時間が長く、しかも得ら
れるGAのめっき層は平滑性に難のあることが確認でき
る。From the results shown in Table 1 above, it is clear that GA with excellent quality can be produced smoothly when the conditions specified in the present invention are followed, whereas comparisons are made when the plating bath composition management deviates from the conditions specified in the present invention. In the example, it can be confirmed that the required alloying time is long, and the resulting GA plating layer has difficulty in smoothness.
く効果の総括〉
以上に説明した如く、この発明によれば、亜鉛系溶融め
っき鋼板の製造におけるGlの製造からGAの製造への
切り替えが迅速に行える上、CIの製造においてもGA
の製造においても良好な品質の製品を安定して得ること
ができるようになるなど、産業上極めて有用な効果がも
たらされる。Summary of Effects> As explained above, according to the present invention, it is possible to quickly switch from the production of GI to the production of GA in the production of zinc-based hot-dip coated steel sheets, and it is also possible to quickly switch from the production of GA to the production of GA in the production of CI.
This brings about extremely useful effects industrially, such as making it possible to stably obtain products of good quality even in the production of products.
第1図は、溶融亜鉛めっき浴のMn含有量と所要合金化
時間との関係を示すグラフである。
第2図は、溶融亜鉛系めっき鋼板の製造におけるめっき
浴組成のコントロール例を示した概念図であり、第2図
(a)は従来例を、そして第2図(b)は本発明例に係
るものである。
第3図は、実施例における「めっき浴中[Mn] 。
[Af]srに対する合金化所要時間」の調査結果を示
したグラフである。
第4図は、実施例での「めっき層平滑性の評価基準」を
説明した模式図であり、第4図(a)は“良好”と評価
される状態を、そして第4図(blは“不良”と評価さ
れる状態をそれぞれ示している。
Mn含有量(重量%)
第3図
聞合有量(重量%)
良好(○)
不良(×)FIG. 1 is a graph showing the relationship between the Mn content of a hot-dip galvanizing bath and the required alloying time. FIG. 2 is a conceptual diagram showing an example of controlling the plating bath composition in the production of hot-dip galvanized steel sheets. FIG. 2(a) shows the conventional example, and FIG. 2(b) shows the example of the present invention. This is related. FIG. 3 is a graph showing the investigation results of "alloying time required for [Mn] in plating bath and [Af]sr" in Examples. FIG. 4 is a schematic diagram explaining the "evaluation criteria for plating layer smoothness" in Examples, and FIG. 4(a) shows the state evaluated as "good", and FIG. The states that are evaluated as “poor” are shown respectively. Mn content (weight %) Figure 3 Comparison content (weight %) Good (○) Poor (×)
Claims (2)
で0.05〜0.2%のAlを溶解・含有した溶融亜鉛
めっき浴を用いると共に、非合金化めっき鋼板の製造か
ら合金化めっき鋼板の製造に切り替えるに際し、めっき
浴中にMnを添加して式 [Mn(%)]≧3.5×Al(%)^1^.^5を満
足するMn濃度としてから合金化めっき鋼板の製造に移
ることを特徴とする、亜鉛系溶融めっき鋼板を製造する
に当っての操業管理方法。(1) In the production of zinc-based hot-dip galvanized steel sheets, a hot-dip galvanizing bath containing 0.05 to 0.2% Al by weight is used, and from the production of non-alloyed galvanized steel sheets to alloyed galvanized steel plates. When switching to production, Mn is added to the plating bath to obtain the formula [Mn (%)]≧3.5×Al (%)^1^. An operation management method for manufacturing zinc-based hot-dip galvanized steel sheets, characterized in that the production of alloyed galvanized steel sheets begins after the Mn concentration satisfies ^5.
鉛めっき浴を、Alと共に式 [Mn(%)]<3.5×[Al(%)]^1^.^5
を満足する濃度でMnを溶解・含有するものとしたこと
を特徴とする、請求項1記載の亜鉛系溶融めっき鋼板を
製造するに当っての操業管理方法。(2) The hot-dip galvanizing bath before switching to the production of alloyed plated steel sheets, together with Al, is calculated using the formula [Mn (%)] < 3.5 x [Al (%)]^1^. ^5
2. The operational management method for producing a zinc-based hot-dip plated steel sheet according to claim 1, wherein Mn is dissolved and contained at a concentration that satisfies the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21181789A JPH0375347A (en) | 1989-08-17 | 1989-08-17 | Method for controlling operation in production of hot dip galvanized steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21181789A JPH0375347A (en) | 1989-08-17 | 1989-08-17 | Method for controlling operation in production of hot dip galvanized steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0375347A true JPH0375347A (en) | 1991-03-29 |
Family
ID=16612088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21181789A Pending JPH0375347A (en) | 1989-08-17 | 1989-08-17 | Method for controlling operation in production of hot dip galvanized steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0375347A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100376474B1 (en) * | 1998-12-29 | 2003-05-17 | 주식회사 포스코 | Method for Controlling Alloying Degree of Molten Zinc Alloy Coated Steel Sheet |
US7601433B2 (en) * | 2004-12-28 | 2009-10-13 | Sakuratech Co., Ltd. | Highly corrosion-resistant/highly workable plated steel wire, plating bath composition, method for producing the plated steel wire and wire netting product |
-
1989
- 1989-08-17 JP JP21181789A patent/JPH0375347A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100376474B1 (en) * | 1998-12-29 | 2003-05-17 | 주식회사 포스코 | Method for Controlling Alloying Degree of Molten Zinc Alloy Coated Steel Sheet |
US7601433B2 (en) * | 2004-12-28 | 2009-10-13 | Sakuratech Co., Ltd. | Highly corrosion-resistant/highly workable plated steel wire, plating bath composition, method for producing the plated steel wire and wire netting product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4264373B2 (en) | Method for producing molten Al-based plated steel sheet with few plating defects | |
AU2015362106A1 (en) | Plating composition, method for manufacturing plated steel material by using same, and plated steel material coated with plating composition | |
JPH0375347A (en) | Method for controlling operation in production of hot dip galvanized steel sheet | |
JP2978947B2 (en) | Management method of hot dip galvanizing bath | |
JP2895346B2 (en) | Hot-dip aluminized steel sheet with excellent corrosion resistance | |
WO2023098125A1 (en) | Zinc-aluminum-magnesium alloy coated steel containing v and b and preparation method therefor | |
JP2695260B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability | |
JPH11222658A (en) | Method for regulating spangle in hot dip zinc-aluminum series plated steel sheet | |
JP3198900B2 (en) | Manufacturing method of thin galvanized steel sheet | |
JPH0368749A (en) | Production of hot dip galvanized steel sheet | |
KR20050085910A (en) | Alloyed-molten-zinc-plated steel sheet with excellent processability and high strength and process for producing the same | |
JP3166568B2 (en) | Manufacturing method of hot-dip galvanized steel | |
JP2550849B2 (en) | Method for producing high strength galvannealed steel sheet with excellent deep drawability, plating adhesion and corrosion resistance after painting | |
KR100985345B1 (en) | Galvannealing process for superior convertion from GI to GA mode | |
JP2002105613A (en) | Method for manufacturing galvannealed steel sheet having excellent surface smoothness | |
KR100376474B1 (en) | Method for Controlling Alloying Degree of Molten Zinc Alloy Coated Steel Sheet | |
JP3271234B2 (en) | Manufacturing method of galvannealed steel sheet with excellent alloying properties | |
JPH0413856A (en) | Production of galvannealed steel sheet having superior corrosion resistance | |
JP4507813B2 (en) | Method for producing galvannealed steel sheet | |
JP3159017B2 (en) | Manufacturing method of thin galvanized steel sheet | |
JPS6240353A (en) | Production of alloyed zinc plated steel sheet | |
KR20000008649A (en) | Process for preparing quasi-alloyed, fused zinc plated steel sheet | |
JPH04154937A (en) | High strength galvannealed steel sheet | |
JP2024539569A (en) | Plated steel sheet with excellent corrosion resistance and whiteness and its manufacturing method | |
JPS60152663A (en) | Aluminized steel sheet having superior corrosion resistance and heat resistance |