JPS6240353A - Production of alloyed zinc plated steel sheet - Google Patents
Production of alloyed zinc plated steel sheetInfo
- Publication number
- JPS6240353A JPS6240353A JP17896785A JP17896785A JPS6240353A JP S6240353 A JPS6240353 A JP S6240353A JP 17896785 A JP17896785 A JP 17896785A JP 17896785 A JP17896785 A JP 17896785A JP S6240353 A JPS6240353 A JP S6240353A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- bath
- steel sheet
- hot dipping
- alloy plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、合金化亜鉛めっき鋼板の製造方法、特に、浴
温度450〜490℃でAl’lH度0.15%以上の
溶融亜鉛めっき浴に鋼ストリップを浸漬することにより
行う合金化亜鉛めっき鋼板の製造方法に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing an alloyed galvanized steel sheet, particularly a hot-dip galvanizing bath having a bath temperature of 450 to 490°C and an Al'lH degree of 0.15% or more. The present invention relates to a method for producing an alloyed galvanized steel sheet by immersing a steel strip in water.
(従来の技術)
従来、連続溶融亜鉛めっきにおける連続炉ヒートサイク
ルは、加熱均熱帯で700℃程度に加熱した鋼ストリッ
プを一次冷却帯、低温保持帯、二次冷却帯を経て徐々に
冷却し、はぼ溶融亜鉛めっき浴と同じ温度になってから
めっき浴槽内に入り、めっきされる。(Prior art) Conventionally, in the continuous furnace heat cycle in continuous hot-dip galvanizing, a steel strip is heated to about 700°C in a heating soaking zone, and then gradually cooled through a primary cooling zone, a low-temperature holding zone, and a secondary cooling zone. After reaching the same temperature as the hot-dip galvanizing bath, it enters the plating bath and is plated.
その場合、溶融亜鉛めっき浴は、製品によりその浴成分
を若干変更して操業している。すなわち、亜鉛めっき浴
に添加される成分元素のうち、AlはZnとFeとの合
金化を抑制することから、通常めっき材(以下、“Gl
材”という)においては、そのめっき密着性を確保する
ためにAl p3度を上げて操業し、めっき後加熱して
合金化を図る合金化処理材(以下、“GA材”という)
においては、溶融亜鉛めっき浴のAl ?M度を下げて
操業を行っている。In that case, the hot-dip galvanizing bath is operated with slightly different bath components depending on the product. In other words, among the component elements added to the zinc plating bath, Al suppresses alloying of Zn and Fe, so it is commonly used in plating materials (hereinafter referred to as "Gl
In order to ensure plating adhesion, the alloyed material (hereinafter referred to as "GA material") is operated at a higher Al p3 degree and heated after plating to achieve alloying.
In the case of Al? in a hot-dip galvanizing bath? We are operating at a lower M degree.
経験的にもGl材におけるAC!/Zn(重量%)は0
.15以上必要であり、GA材については0.15未満
であることが望ましいとされてきた。Based on my experience, AC in GL material! /Zn (weight%) is 0
.. 15 or more is required, and it has been considered desirable for GA materials to be less than 0.15.
すなわち、連続溶融亜鉛めっきラインにおいてGI材を
製造する場合と、GA材を製造する場合とを同し製造ラ
インで兼ねるときにはそれぞれの場合において溶融亜鉛
めっき浴組成は、それぞれ通常、0.16%および0.
12%となるように調整される。このように、Grl材
を製造する場合には合金化を抑制するため、GI材を製
造する場合に比較して浴中Al星が低下されている。し
たがって、操業時にGI材からGA材に製造材が変更に
なる場合、あるいはその逆の場合、通常、浴中に追加投
入する調合亜鉛のAl含有量を変更して行うが、煩雑な
操作を必要とするばかりか浴中のAl量の変更もそう速
やかに行えるものではないため過渡期において、GA材
における合金形成が不十分であったり、あるいはGI材
のめっき層の密着性が不良となる等の欠陥の発生はさけ
られない。That is, when a continuous hot-dip galvanizing line is used to manufacture GI materials and GA materials, the hot-dip galvanizing bath composition in each case is usually 0.16% and 0.16%, respectively. 0.
It is adjusted to be 12%. In this way, when producing a Grl material, since alloying is suppressed, the Al stars in the bath are lower than when producing a GI material. Therefore, when the manufacturing material is changed from GI material to GA material during operation, or vice versa, this is usually done by changing the Al content of the mixed zinc added to the bath, but this requires complicated operations. Not only that, but it is also not possible to change the amount of Al in the bath quickly, so during the transition period, alloy formation in the GA material may be insufficient, or the adhesion of the plating layer on the GI material may be poor. The occurrence of defects is unavoidable.
(発明が解決しようとする問題点)
かくして、本発明の目的は、GI材、GA材相互の切替
えを容易に行い得る方法を提供することであ本発明の別
の目的は、このGA材を製造するにあたり、浴中Al濃
度を下げることなしに操業を可能にすることにより、G
I材、GA材相互の切替えを容易にする方法を提供する
ことである。(Problems to be Solved by the Invention) Thus, an object of the present invention is to provide a method for easily switching between GI material and GA material. Another object of the present invention is to provide a method for easily switching between GI material and GA material. During production, by making it possible to operate without reducing the Al concentration in the bath, G
It is an object of the present invention to provide a method that facilitates switching between I material and GA material.
(問題点を解決するための手段)
ここに、本発明者らは、上述の目的達成のために、種々
検討を加えたところ、熔融亜鉛めっき浴槽内に入るいわ
ゆるTi添加鋼である被処理鋼ストリップの温度を高め
ることにより亜鉛と鉄との合金化反応が速やかに進み、
0.15%以上のAl量が存在していても何ら障害にな
らないことに着目し、研究開発を続けたところ、Ti添
加鋼の場合、浴温度450〜490℃でAl fHHO
215%以上としたときに、460〜550℃の温度で
浸漬することにより効果的にGA材の製造が行われ、本
発明の目的が達成されることを知り、本発明を完成した
。(Means for Solving the Problems) In order to achieve the above-mentioned objective, the present inventors have made various studies and found that the steel to be treated, which is so-called Ti-added steel, is By increasing the temperature of the strip, the alloying reaction between zinc and iron proceeds rapidly,
Focusing on the fact that even the presence of 0.15% or more Al does not cause any problems, we continued our research and development, and found that in the case of Ti-added steel, Al fHHO was formed at a bath temperature of 450-490°C
The present invention was completed based on the knowledge that GA material can be effectively produced by dipping at a temperature of 460 to 550° C. when the GA material is 215% or more, and the object of the present invention can be achieved.
よって、本発明の智旨とするところは、重量%で、C:
0.002〜0.05%、Si : 0.6%以下、M
n;0.6〜1.6%、P :0.025%以下、s
ol、A(2: 0.12%以下、Ti : 0.02
〜0.5%を含有し、残りがFeと不可避不純物からな
る組成を有する綱を連続溶融亜鉛めっきラインにて、7
80〜900°Cの温度範囲内の温度で再結晶焼鈍し、
前記焼鈍後の冷却過程で、浴7m 度450〜490℃
7! Al tM度0.15%以上の熔融亜鉛浴に46
0〜550℃の温度で浸漬し、引き続いて475〜55
0℃の温度で10秒以上の加熱+保持の条件で合金化処
理を行うことを特徴とする、合金化亜鉛めっき鋼板の製
造方法である。Therefore, the idea of the present invention is that, in weight %, C:
0.002-0.05%, Si: 0.6% or less, M
n: 0.6 to 1.6%, P: 0.025% or less, s
ol, A(2: 0.12% or less, Ti: 0.02
~0.5%, with the remainder consisting of Fe and unavoidable impurities, on a continuous hot-dip galvanizing line.
Recrystallization annealing at a temperature within the temperature range of 80 to 900 °C,
In the cooling process after the annealing, a bath of 7 m was heated at a temperature of 450 to 490°C.
7! 46 in a molten zinc bath with an Al tM degree of 0.15% or more
Soaking at a temperature of 0-550°C, followed by 475-55°C
This is a method for manufacturing an alloyed galvanized steel sheet, characterized in that alloying treatment is performed under conditions of heating and holding at a temperature of 0° C. for 10 seconds or more.
言うまでもなく、GI材の製造に際しては、合金化処理
を省略するだけで、そのまま上記条件で操業を続けるこ
とができるのであって、再びGA材の製造を行うに当た
ってもAl濃度は変える必要はなく、単に前述の合金化
処理工程を加えるだけでよい。Needless to say, when manufacturing GI materials, it is possible to continue operation under the above conditions by simply omitting the alloying treatment, and there is no need to change the Al concentration when manufacturing GA materials again. Simply adding the alloying process described above is sufficient.
よって、本発明によれば、GA材とGI材との製造が極
めて容易に切り替えられるのである。Therefore, according to the present invention, the production of GA material and GI material can be switched extremely easily.
(作用)
本発明においては、鋼種が限定されるが、これは、鋼種
毎に最適処理温度があることを見い出したことにもとす
くのであって、上述の規定する鋼種はいわゆるTi添加
鋼のそれである。したがって、本発明は、Ti添加鋼一
般について適用されるもので、その限りにおいて特に制
限はないが、要すれば、その各組成割合の限定理由は次
の通りである。(Function) In the present invention, the steel types are limited, but this is due to the discovery that there is an optimum treatment temperature for each steel type, and the steel types specified above are the so-called Ti-added steels. That's it. Therefore, the present invention is applicable to Ti-added steel in general, and there are no particular limitations to that extent, but if necessary, the reasons for limiting each composition ratio are as follows.
C:
C成分は、後記Tiの添加効果を発揮させるために低い
ほうが好ましい。すなわち、C量が多いとTiCの生成
量が増え、結晶粒の成長を阻害してr値を低下させ、T
1の添加効果を減少させる。一方、clを著しく低くす
ることは製鋼過程での生産性を阻害するだけでなく、鋼
中酸素の増加(酸化物系介在物の」曽加を伴う)を引き
起こし、好ましくない。このためCIは0.002〜0
.05%とする。C: It is preferable that the C component is low in order to exhibit the effect of adding Ti, which will be described later. In other words, when the amount of C is large, the amount of TiC produced increases, inhibiting the growth of crystal grains and lowering the r value.
Reduces the effect of adding 1. On the other hand, significantly lowering Cl not only impedes productivity in the steelmaking process, but also causes an increase in oxygen in the steel (accompanied by the addition of oxide inclusions), which is undesirable. Therefore, CI is 0.002~0
.. 05%.
Si:
合金化処理で良好なFe−Zn合金層を形成し、かつ鋼
板に良好な遅時効性を付与するためには、Si含有量は
できるだけ少なくした方が良く、これらの良好な特性を
確保できる許容上限値が0.6%である。一方、Si成
分には鋼板の強度を向上させる特性があるので、Siを
0.6%以下の範囲内で含有させて、上記の性質を損な
うことなく、強度改善をはかることができる。Si: In order to form a good Fe-Zn alloy layer through alloying treatment and to impart good slow aging properties to the steel sheet, it is better to keep the Si content as low as possible, and to ensure these good properties. The allowable upper limit is 0.6%. On the other hand, since the Si component has the property of improving the strength of the steel sheet, it is possible to improve the strength without impairing the above properties by including Si in a range of 0.6% or less.
Mn:
連続ラインだけで鋼板が遅時効性と適度の焼付硬化性を
もつようにするために、Mn含有量を06〜1.6%に
コントロールする必要があるのであって、その含有量が
0.6%未満では所望の遅時効性および焼付硬化性を確
保することができず、一方、1.6%を越えて含有する
と、?8製が困難になるばかりでなく、コスト上昇の原
因ともなり、さらにr(l!!が低下して成形加工性が
劣化するようになるのである。Mn: In order for the steel plate to have slow aging properties and appropriate bake hardenability only on a continuous line, it is necessary to control the Mn content to 0.6% to 1.6%. If the content is less than .6%, the desired slow aging properties and bake hardenability cannot be ensured, whereas if the content exceeds 1.6%, ? This not only makes it difficult to manufacture 8, but also causes an increase in cost, and furthermore, r(l!!) decreases and moldability deteriorates.
P :
P成分は、通常は不可避不純物として含有するものであ
り、鋼板の成形加工性を重視する場合、0.025%以
下とする。P: The P component is normally contained as an unavoidable impurity, and when emphasis is placed on the formability of the steel plate, it should be 0.025% or less.
Sol、Al
Alは酸化物系介在物低減のために必要であり、健全な
鋼を得るためには不可欠の成分であるが、多量に加える
とA!22031が増大して好ましくないことから、そ
の許容上限を0.12%と定めた。Sol, Al Al is necessary to reduce oxide inclusions and is an essential component to obtain sound steel, but if added in large quantities, it will cause A! Since the increase in 22031 is undesirable, the allowable upper limit was set at 0.12%.
T1:
Tiは、鋼中のCおよびNを固定するのに必要な量添加
することにより、非時効性を与え、かつ深絞り特性を飛
躍的に向上させる。このため、0.02〜0.5%添加
させる。具体的添加量は、その範囲内において、そのと
きのcl等により決まるが、Ti0.5%超では、Ti
lが飽和し、それ以上の添加効果は小さい。T1: By adding Ti in an amount necessary to fix C and N in the steel, it imparts anti-aging properties and dramatically improves deep drawing properties. For this reason, it is added in an amount of 0.02 to 0.5%. The specific addition amount is determined by the Cl etc. at that time within the range, but if it exceeds 0.5% Ti, the Ti
1 is saturated, and the effect of further addition is small.
ここで、添付図面に関連させて本発明をさらに説明する
。The invention will now be further described in connection with the accompanying drawings.
添付図面は連続溶融亜鉛めっきラインを略式で説明する
線図であり、アンコイラ−10からの鋼ストリップは、
シャー11およびウエルダ−12を経て、非酸化性加熱
炉13、再結晶焼鈍炉14そして冷却炉15から成る予
備処理帯域に送られ、材質の調整、めっき面調整が行わ
れる。本発明において再結晶焼鈍は780〜900℃の
範囲の温度で行われるが、そのときの温度が780℃よ
り低いと十分な再結晶化が行われず、一方、900℃を
超えると過度に軟化してしまう。冷却炉15を出る温度
、つまり溶融亜鉛めっき浴20への浸入温度を460〜
550℃に制限するが、この温度が460“Cより低い
とGA材を製造する場合に合金化が十分進まず、一方5
50℃を超えると今度はGI材を製造する場合にめっき
ヤケが著しくなってしまう。好ましくは、500〜53
0℃である。The attached drawing is a diagram schematically illustrating a continuous hot-dip galvanizing line, in which the steel strip from the uncoiler 10 is
After passing through the shear 11 and welder 12, it is sent to a pretreatment zone consisting of a non-oxidizing heating furnace 13, a recrystallization annealing furnace 14, and a cooling furnace 15, where material quality and plating surface adjustment are performed. In the present invention, recrystallization annealing is performed at a temperature in the range of 780 to 900°C, but if the temperature is lower than 780°C, sufficient recrystallization will not occur, while if it exceeds 900°C, excessive softening will occur. I end up. The temperature leaving the cooling furnace 15, that is, the temperature entering the hot dip galvanizing bath 20, is set to 460~
The temperature is limited to 550°C, but if this temperature is lower than 460"C, alloying will not proceed sufficiently when producing GA material, and on the other hand,
If the temperature exceeds 50°C, plating fading will become significant when producing GI materials. Preferably 500-53
It is 0°C.
溶融亜鉛めっき浴20は、GI材、GA材のいずれを製
造する場合にも、450〜490℃の温度範囲、Al濃
度0.15%以上に保持されるが、浴温度が450℃よ
り低いと、GA材製造時に合金化層が十分生成せず、一
方、490℃超と余り浴温度が高くなると溶融亜鉛めっ
き浴による侵食が著しくなるため、本発明では上記範囲
に制限する。好ましくは、460〜480℃である.A
l濃度もGll型製造時は0.15%以上を確保する必
要があり、好ましくは0.16%前後に調整しておく。The hot-dip galvanizing bath 20 is maintained at a temperature range of 450 to 490°C and an Al concentration of 0.15% or higher, regardless of whether GI or GA materials are manufactured. However, if the bath temperature is lower than 450°C, In the present invention, the alloyed layer is not sufficiently formed during the production of the GA material, and on the other hand, if the bath temperature is too high above 490° C., corrosion by the hot-dip galvanizing bath becomes significant. Therefore, in the present invention, the temperature is limited to the above range. Preferably it is 460-480°C. A
It is also necessary to ensure a concentration of 0.15% or more when manufacturing the Gll type, and preferably it is adjusted to around 0.16%.
このように、本発明において、被処理鋼ストリップの温
度は比較的高いため、めっき浴槽温度もそれに伴って高
(なる傾向があり、したがって、めっき浴槽の構造部材
の侵食が促進されるため、好ましくは、本発明における
めっき浴槽は適宜冷却手段を備え、浴温度の過剰な上昇
を防止している6例えば特開昭57−35671号に開
示された冷却装置等を設けるのがよい。Thus, in the present invention, since the temperature of the steel strip to be treated is relatively high, the temperature of the plating bath tends to be correspondingly high, thus accelerating the erosion of the structural members of the plating bath. The plating bath according to the present invention is preferably equipped with a cooling means to prevent an excessive rise in bath temperature, such as the cooling device disclosed in JP-A-57-35671.
めっき浴を出た鋼ストリップは、次いで、GA材を製造
する場合には、合金化処理炉21に入って475〜55
0℃に10秒以上加熱、保持され、合金化処理が行われ
る。cr材を製造する場合、これを省略してめっき層凝
固後そのままコイラ26に巻取られ、処理を終了する。The steel strip that has left the plating bath then enters the alloying treatment furnace 21 and undergoes 475 to 55
The alloy is heated and held at 0° C. for 10 seconds or more to perform alloying treatment. When manufacturing a CR material, this step is omitted and the plating layer is simply wound around the coiler 26 after solidification, and the process is completed.
上述の合金化処理条件は慣用のそれである。The alloying treatment conditions described above are conventional.
このように、本発明では浸人材温度を高めることにより
合金化促進および制御を行うのであるが、溶融亜鉛めっ
き浴中におけるAl/Zn重量比0.16、浴温度46
0℃のときの525℃で20秒間の合金化挙動を示すと
第1表に示す通りである。同様のテストを合金化を伴わ
ないGI材について行った場合も併せて示す。In this way, in the present invention, alloying is promoted and controlled by increasing the immersion temperature.
The alloying behavior at 525°C for 20 seconds at 0°C is shown in Table 1. A case where similar tests were conducted on GI materials without alloying is also shown.
第1表
・:めっきヤケ大
これらの結果からも明らかなように、GI材においてめ
っきヤケの発生する領域はm板からのFe拡散が合金化
処理を行わなくても進行していることを示し、めっき浴
浸入被処理材温度が上昇した場合、めっき層と鋼素地と
におけるF e −Al合金層を破壊し、Fe−Znの
合金化を促進することを示している。Table 1: Large plating discoloration As is clear from these results, the areas where plating discoloration occurs in GI materials indicate that Fe diffusion from the m-plate is progressing even without alloying treatment. , it has been shown that when the temperature of the treated material entering the plating bath increases, the Fe-Al alloy layer in the plating layer and the steel base is destroyed and alloying of Fe-Zn is promoted.
上記の場合において得られたGA材のめっき層の品質に
ついてそのめっき皮膜組成分析と加工性(パウダリング
性)とについて調査した結果をグラフにまとめて第2図
に示す。図示結果からも明らかなように、めっき皮膜中
Fe/Zn+Fe=10〜13%において加工性(パウ
ダリング性)は良好であった。The quality of the plating layer of the GA material obtained in the above case was investigated in terms of the plating film composition analysis and processability (powdering property), and the results are summarized in a graph and shown in FIG. 2. As is clear from the illustrated results, the workability (powderability) was good when Fe/Zn+Fe=10 to 13% in the plating film.
なお、試験材プ゛ランクの円筒絞り試験を行い、成形後
テーピングテストにより強制剥離させ、試験材の重量減
量を評価することにより耐パウダリング性を評価した。The powdering resistance was evaluated by performing a cylindrical drawing test on the blank of the test material, forcibly peeling it off by a taping test after molding, and evaluating the weight loss of the test material.
めっき浴への浸人材温度は板厚との関係から一義的に決
めることは困難であるが、板厚の薄いものについては適
正範囲上限近傍に、また、厚いものには下限範囲近傍に
設定する。It is difficult to unambiguously determine the temperature of the person immersed in the plating bath due to its relationship with the plate thickness, but it should be set near the upper limit of the appropriate range for thin plates, and near the lower limit for thick plates. .
次に、本発明を実施例にもとすいてさらに詳細に説明す
る。Next, the present invention will be explained in more detail using examples.
実施例1
第2表に示す鋼組成を有するTi添加鋼ストリップ(厚
さ0.8mm )に第1図に示す装置によって連続溶融
亜鉛めっき、次いで合金化処理を行った。Example 1 A Ti-added steel strip (thickness: 0.8 mm) having the steel composition shown in Table 2 was continuously hot-dip galvanized and then alloyed using the apparatus shown in FIG.
なお、合金化処理は、炉温度1000℃、被処理材温度
525℃(目標)で行った。The alloying treatment was performed at a furnace temperature of 1000° C. and a temperature of the treated material of 525° C. (target).
第2表
CSi Mn P S
O,010,0120,150,0140,005孤−
」−」L旦−
0,0400,00300,010,060各処理条件
および得られためっき鋼板の特性は第3表にまとめて示
す。浴中Alffiは0.16%であった。Table 2 CSi Mn P SO, 010, 0120, 150, 0140, 005 -
"-" Ldan-0,0400,00300,010,060 The treatment conditions and the properties of the obtained plated steel sheets are summarized in Table 3. Alffi in the bath was 0.16%.
第3表
(注)◎ 優、○ 良
実施例2
実施例1においてめっき浴温度を463℃とするととも
に、板厚および侵入温度、さらにラインスピードを変え
て種々実験を行った。Table 3 (Note) ◎ Excellent, Good Example 2 In Example 1, various experiments were conducted by setting the plating bath temperature to 463° C. and changing the plate thickness, penetration temperature, and line speed.
それぞれの場合について得られためっき皮膜の加工特性
を操業条件とともにまとめて第4表に示す。The processing characteristics of the plated films obtained in each case are summarized in Table 4 together with the operating conditions.
なお、加工性は前述のパウダリング性によって評価した
が、いずれも満足のゆくものであった。The processability was evaluated by the powdering property described above, and all results were satisfactory.
第4表Table 4
第1図は、連続溶融亜鉛めっきラインを略式で説明する
線図、および
第2図は、浸人材温度とパウダリング性との関係を示す
グラフである。
I3:非酸化性加熱炉、14:再結晶焼鈍炉、15:冷
却炉、 20:溶融亜鉛めっき浴、21;合金化
処理炉
尾/I2JFIG. 1 is a diagram schematically explaining a continuous hot-dip galvanizing line, and FIG. 2 is a graph showing the relationship between immersion temperature and powdering property. I3: Non-oxidizing heating furnace, 14: Recrystallization annealing furnace, 15: Cooling furnace, 20: Hot-dip galvanizing bath, 21: Alloying treatment furnace tail/I2J
Claims (1)
%以下、Mn:0.6〜1.6%、P:0.025%以
下、sol.Al:0.12%以下、Ti:0.02〜
0.5%を含有し、残りがFeと不可避不純物からなる
組成を有する鋼を連続溶融亜鉛めっきラインにて、78
0〜900℃の温度範囲内の温度で再結晶焼鈍し、前記
焼鈍後の冷却過程で、浴温度450〜490℃でAl濃
度0.15%以上の溶融亜鉛浴に460〜550℃の温
度で浸漬し、引き続いて475〜550℃の温度で10
秒以上の加熱+保持の条件で合金化処理を行うことを特
徴とする、合金化亜鉛めっき鋼板の製造方法。In weight%, C: 0.002 to 0.05%, Si: 0.6
% or less, Mn: 0.6 to 1.6%, P: 0.025% or less, sol. Al: 0.12% or less, Ti: 0.02~
0.5%, with the remainder consisting of Fe and unavoidable impurities, on a continuous hot-dip galvanizing line.
Recrystallization annealing is performed at a temperature within the temperature range of 0 to 900°C, and in the cooling process after the annealing, it is placed in a molten zinc bath with a bath temperature of 450 to 490°C and an Al concentration of 0.15% or more at a temperature of 460 to 550°C. Soaking and subsequently at a temperature of 475-550°C for 10
A method for manufacturing an alloyed galvanized steel sheet, characterized by performing alloying treatment under conditions of heating and holding for more than a second.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17896785A JPS6240353A (en) | 1985-08-14 | 1985-08-14 | Production of alloyed zinc plated steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17896785A JPS6240353A (en) | 1985-08-14 | 1985-08-14 | Production of alloyed zinc plated steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6240353A true JPS6240353A (en) | 1987-02-21 |
Family
ID=16057797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17896785A Pending JPS6240353A (en) | 1985-08-14 | 1985-08-14 | Production of alloyed zinc plated steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6240353A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03100154A (en) * | 1989-09-13 | 1991-04-25 | Kawasaki Steel Corp | Production of alloying hot dip galvanized steel strip |
EP0613961A1 (en) * | 1993-03-04 | 1994-09-07 | Kawasaki Steel Corporation | Alloyed hot dip galvanized steel sheet |
JP4667603B2 (en) * | 1998-11-23 | 2011-04-13 | アルセロールミタル インベスティガシオン イ デサローロ,エス.エル. | Steel strip coating method |
-
1985
- 1985-08-14 JP JP17896785A patent/JPS6240353A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03100154A (en) * | 1989-09-13 | 1991-04-25 | Kawasaki Steel Corp | Production of alloying hot dip galvanized steel strip |
EP0613961A1 (en) * | 1993-03-04 | 1994-09-07 | Kawasaki Steel Corporation | Alloyed hot dip galvanized steel sheet |
JP4667603B2 (en) * | 1998-11-23 | 2011-04-13 | アルセロールミタル インベスティガシオン イ デサローロ,エス.エル. | Steel strip coating method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6187028B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent productivity and press formability and manufacturing method thereof | |
JP2970445B2 (en) | Hot-dip galvanizing method for Si-added high tensile steel | |
JPS6256209B2 (en) | ||
CN108929991A (en) | A kind of hot-dip potassium steel and its manufacturing method | |
JPS6240352A (en) | Production of alloyed zinc plated steel sheet | |
KR100205190B1 (en) | Steel sheet for electrogalvanizing excellent in grained flow resistance trogalvanized steel sheet and their production | |
JPS6240353A (en) | Production of alloyed zinc plated steel sheet | |
JPH0748662A (en) | Production of galvanized steel sheet excellent in plating adhesion and appearance | |
JPS6240354A (en) | Production of alloyed zinc plated steel sheet | |
JPS6048571B2 (en) | Manufacturing method of alloyed galvanized steel sheet for deep drawing | |
JP3257301B2 (en) | Manufacturing method of hot-dip galvanized steel sheet from hot-rolled steel sheet | |
JPS582248B2 (en) | Manufacturing method for hot-dip galvanized steel sheet with excellent workability | |
CA1178182A (en) | Process for preparing aluminum-plated steel sheets having low yield strength and high oxidation resistance | |
JPH0230738A (en) | Steel plate for direct one treatment enameling having excellent resistance to fault of bubble and black spot | |
JPH04176854A (en) | Production of aluminized steel sheet excellent in adhesive strength of plating and external appearance characteristic | |
JPS633930B2 (en) | ||
JPH0551714A (en) | Hot-dip galvanizing method for si-containing steel sheet | |
JPH0625817A (en) | Production of hot-dip galvanized cold rolled steel sheet having high strength and excellent in adhesion of plating film | |
JPS60110845A (en) | Cold rolled steel sheet for enamel and its manufacture | |
JPS63171871A (en) | Production of high strength steel plated with zinc by vapor deposition | |
JPH0354186B2 (en) | ||
KR100210866B1 (en) | Cold rolled steel sheet and hot-dipped galvanized steel sheet excellent in uniform workability and process for producing the sheet | |
JPH07243012A (en) | Production of galvannealed steel sheet excellent in external appearance of surface | |
JP3271234B2 (en) | Manufacturing method of galvannealed steel sheet with excellent alloying properties | |
JP2512147B2 (en) | Method for producing galvannealed steel sheet with excellent powdering resistance |