JPH0362203B2 - - Google Patents
Info
- Publication number
- JPH0362203B2 JPH0362203B2 JP60053783A JP5378385A JPH0362203B2 JP H0362203 B2 JPH0362203 B2 JP H0362203B2 JP 60053783 A JP60053783 A JP 60053783A JP 5378385 A JP5378385 A JP 5378385A JP H0362203 B2 JPH0362203 B2 JP H0362203B2
- Authority
- JP
- Japan
- Prior art keywords
- axis
- arrival
- wave
- waves
- directions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001228 spectrum Methods 0.000 claims description 19
- 230000001133 acceleration Effects 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 9
- 239000013598 vector Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 15
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は波動の到来方位検出方法、殊に海洋に
於いて多方向から到来する夫々波長の異なる波浪
の到来方位を分離検出する方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for detecting the direction of arrival of waves, and particularly to a method for separately detecting the directions of arrival of waves arriving from multiple directions in the ocean and having different wavelengths.
(従来技術)
従来から台風等によつて発生する海洋の波浪の
到来方向を調べるには航空機或は船舶上からの目
視に頼るのが一般的であつたが斯る観測方法の不
確実性、非継続性、観測者に対する危険性或は費
用の観点から波浪到来方位測定装置を搭載したブ
イを放流し、測定データを継続的に人工衛星等適
当な中継局を介して地上局に伝送することが研究
されている。(Prior art) Conventionally, it has been common to rely on visual observation from an aircraft or ship to investigate the direction of arrival of ocean waves generated by typhoons, etc., but there are uncertainties in such observation methods, From the viewpoint of discontinuity, danger to observers, or cost, a buoy equipped with a wave arrival direction measuring device should be released and the measurement data should be continuously transmitted to a ground station via an appropriate relay station such as an artificial satellite. is being studied.
上述の如き手法を採用する際の波浪到来方位検
出法としては例えばブイの波浪による昇降とその
傾斜とを観測することによつて波浪のブイに対す
る到来方位を求めることが提案されていた。 As a method for detecting the direction of wave arrival when employing the method described above, it has been proposed, for example, to obtain the direction of arrival of waves relative to the buoy by observing the elevation of the buoy due to the waves and its inclination.
しかしながら斯る手法は理論的にはとも角現実
にはブイの傾斜量は波浪の大きさ、即ち波長、波
高とブイのサイズ或は排水量との相関が強くあら
ゆる種類の波浪の傾斜を同一のブイにて正確に観
測することは不可能であるのみならず到来した波
動方位とこれより180゜偏位した波動到来方位との
区別ができず、従つて波浪の到来方位も正確に検
出することは不可能であるという欠陥があつた。 However, although such a method is theoretical, in reality, the amount of inclination of a buoy has a strong correlation with the size of the wave, that is, the wavelength, wave height, and the size or displacement of the buoy. Not only is it impossible to accurately observe waves, but it is also impossible to distinguish between the direction of wave arrival and the direction of wave arrival that is deviated by 180 degrees from this direction. Therefore, it is impossible to accurately detect the direction of arrival of waves. The flaw was that it was impossible.
又、ブイ中にステイブル・プラツトフオームを
設けその上に例えば互に直交する水平(X軸及び
Y軸)方向加速度センサを固定し、これらセンサ
出力にFFT(高速フーリエ変換)を施して前記ブ
イに多方向から到来する波動の波長毎のパワスペ
クトルをを算出すると共にそのX方向とY方向と
の比から特定波長の波動の到来方位を検出するこ
とも提案されている。 In addition, a stable platform is provided inside the buoy, on which acceleration sensors in horizontal (X-axis and Y-axis) directions that are orthogonal to each other are fixed, and the outputs of these sensors are subjected to FFT (fast Fourier transform). It has also been proposed to calculate the power spectrum for each wavelength of waves arriving from multiple directions and to detect the direction of arrival of waves of a specific wavelength from the ratio of the X direction and Y direction.
しかしながら斯る手法も前記ステイブル・プラ
ツトフオームが高級、従つて高価なものである場
合はとも角、簡単安価な例えば振子型ステイブ
ル・プラツトフオームを用いる如き場合には殊に
安定台がブイの動揺に追従して傾斜しX方向及び
Y方向のパワスペクトル算定値が夫々ばらつく為
波浪到来方位検出精度の信頼性に欠けるという問
題があつた。 However, such a method is not applicable when the stable platform is a high-class and therefore expensive one, but when a simple and inexpensive stable platform such as a pendulum type is used, especially when the stable platform is a buoy. There was a problem in that the wave arrival direction detection accuracy was unreliable because it tilted following the oscillation and the calculated values of the power spectrum in the X and Y directions varied.
(発明の目的)
本発明は上述した如き従来の波動到来方位検出
手法の欠陥を除去する為になされたものであつ
て、観測精度のブイの如き浮体サイズ又は排水量
への依存性が少なく且つ安価簡単なステイブル・
プラツトフオームを用いても高い精度を実現しう
る波動到来方位検出方法を提供することを目的と
する。(Objective of the Invention) The present invention has been made to eliminate the deficiencies of the conventional wave arrival direction detection method as described above. Easy stable
The purpose of this invention is to provide a wave arrival direction detection method that can achieve high accuracy even when using a platform.
(発明の概要)
上述の目的を達成する為本発明に係る波動到来
方位検出方法は以下の如き構成及び手法を用い
る。(Summary of the Invention) In order to achieve the above object, the wave arrival direction detection method according to the present invention uses the following configuration and method.
即ち、浮体内にステイブル・プラツトフオーム
を配置しその上に相互に直交する水平(X,Y)
方向及び垂直(Z)方向加速度センサを設け、こ
れら出力にFFT(高速フーリエ変換)を施すと共
にZ方向出力に対すX及びY方向出力の相互相関
を夫々クロススペクトルとして前記浮体に到来す
る各種波動の波長毎に分離算出し前記両クロスス
ペクトルの虚部(クオドラチヤスペクトル)の比
のアーク・タンジエントを演算することによつて
前記X軸或いはY軸に対する特定波長の波動の到
来方位を検出するものである。 That is, a stable platform is placed inside a floating body, and horizontal (X, Y)
Directional and vertical (Z) direction acceleration sensors are provided, and their outputs are subjected to FFT (Fast Fourier Transform), and the cross-correlation of the X and Y direction outputs with respect to the Z direction output is used as a cross spectrum to calculate various waves arriving at the floating body. Detecting the arrival direction of a wave of a specific wavelength with respect to the X-axis or Y-axis by separately calculating each wavelength and calculating the arc tangent of the ratio of the imaginary parts (quadrature spectra) of both cross spectra. It is.
(発明の実施例)
以下、本発明をその理論に基づいて詳細に説明
する。(Embodiments of the Invention) The present invention will be described in detail below based on its theory.
実施例の説明を行うに先立つて本発明の理解を
助ける為にステイブル・プラツトフオーム上に固
定した水平方向(X軸及びY軸)加速度センサの
みを用いて波動の到来方位を検出する手法につい
て考察するに、安定台が角度δだけ傾いた場合こ
れら水平方向加速度センサの出力は重力の加速度
をgとした場合gsinδだけ小さく観測される為出
力レベルも極めて小さなものとなること、又斯る
出力にFFTを施し両者のパワスペクトルの比か
ら波動到来方向を検出する従来の手法は安定台の
傾斜量或はその方向によつて検出精度が著しくば
らつき信頼性に欠けること前述のとうりである。 Before explaining the embodiments, in order to help understand the present invention, we will explain a method of detecting the arrival direction of waves using only horizontal direction (X-axis and Y-axis) acceleration sensors fixed on a stable platform. Considering this, when the stability platform is tilted by an angle δ, the output of these horizontal acceleration sensors will be observed to be smaller by g sin δ when the acceleration of gravity is g, so the output level will also be extremely small. As mentioned above, the conventional method of applying FFT to detecting the direction of wave arrival from the ratio of the power spectra of the two is unreliable because the detection accuracy varies greatly depending on the amount of inclination of the stable platform or its direction.
この問題を解決する為、本発明に於いてはX、
Y両方向の加速度センサの他にこれらに垂直方向
(Z軸)加速度センサを付加する。 In order to solve this problem, in the present invention,
In addition to the acceleration sensors in both Y directions, a vertical direction (Z-axis) acceleration sensor is added to these.
Z方向加速度センサの出力はこれを搭載する安
定台が角度δ傾むいたとしてもその出力は真値Ζ¨
に対してΖ¨cosδとなるのみでδが小さい場合の誤
差は無視しうると考えてよい。 The output of the Z-direction acceleration sensor is the true value Ζ¨ even if the stable platform on which it is mounted is tilted by an angle δ.
It can be considered that the error is negligible when δ is small since it is only Ζ¨cosδ for .
従つてZ方向加速度センサ出力と前記X,Y方
向のそれらとの相互相関を求めれば波動の到来方
位を正確に決定し得るであろうことに想到したも
のである。 Therefore, we have come up with the idea that if we find the cross-correlation between the Z-direction acceleration sensor output and those in the X and Y directions, we can accurately determine the arrival direction of the wave.
而して上述した波動到来方位検出方法は以下の
如き理論計算に従うことになる。 The wave arrival direction detection method described above follows the following theoretical calculation.
即ち、海面の昇降をηとすると、一般に η=∫∫∫B(〓)exp{i(κ・〓−σt) }d〓1・d〓2・dσ …(1) と表現し得る。 That is, if the rise and fall of the sea level is η, it can generally be expressed as η=∫∫∫B(〓)exp{i(κ・〓−σt)}d〓 1・d〓 2・dσ (1).
ここでB(〓)はη(〓,t)のフーリエ変換で
あつて物理空間に於ける時間t,座標〓が周波数
空間に変換された場合夫々周波数σ,座標〓に変
換される。 Here, B(〓) is the Fourier transform of η(〓, t), and when time t and coordinate 〓 in physical space are transformed into frequency space, they are transformed into frequency σ and coordinate 〓, respectively.
ところが速度ポテンシアルφは基準面に於いて
gη=−∂φ/∂t …(2)
であるから
φ=−〓gηdt
=(ig/σ)∫∫∫B(〓)exp{i
(〓・〓−σt)}d〓1・d〓2
・dσ …(3)
又K・X=k・xcosθ+k・ysinθであるから波
浪の方向スペクトルφ(σ,θ)は以下の如く与
えられる。 However, since the velocity potential φ is gη = −∂φ/∂t …(2) at the reference plane, φ=−〓gηdt = (ig/σ)∫∫∫B(〓)exp{i (〓・〓 −σt)}d〓 1・d〓 2・dσ (3) Also, since K・X=k・xcosθ+k・ysinθ, the wave direction spectrum φ(σ, θ) is given as follows.
φ(σ,θ)=1/2・()*()/
dσdθ …(4)
ここで前記X¨,Y¨及びZ¨各軸方向の加速度を
夫々x、y及びzとしてこれら各要素の共分散関
数からZ−X及びZ−Y間の相互相関を示すクロ
ススペクトルを求めることができるから夫々の実
部(コスペクトル)及び虚部(クオドラチヤスペ
クトル)が計算し得る。φ (σ, θ) = 1/2・() * ()/
dσdθ...(4) Here, let the accelerations in the directions of the X, Y, and Z axes be x, y, and z, respectively, and show the cross-correlation between Z-X and Z-Y from the covariance function of each of these elements. Since the cross spectra can be obtained, the real part (cospectrum) and imaginary part (quadrature spectrum) of each can be calculated.
説明の煩雑を避ける為途中の計算を省略してコ
スペクトルPm,n及びクオドラチヤスペクトル
Qm,nを求めると;
PZZ(σ)=∫2x 0σ4φ(σ,θ)dθ
PXX(σ)=∫2x 0g2k2cos2θφ(σ,θ)dθ
PYY(σ)=∫2x 0g2k2sin2θφ(σ,θ)dθ
PXY(σ)=∫2x 0g2k2sinθsecθφ(σ,θ)dθ
QZX(σ)=∫2x 0gkσ2cosθφ(σ,θ)dθ
QZY(σ)=∫2x 0gkσ2sinθφ(σ,θ)dθ
…(5)
となる。 To avoid the complexity of the explanation, we omit the intermediate calculations and use the cospectra Pm, n and quadratia spectrum.
To find Qm , n ; _ _ _ _ _ σ)=∫ 2x 0 g 2 k 2 sin 2 θφ(σ, θ)dθ P XY (σ)=∫ 2x 0 g 2 k 2 sinθsecθφ(σ, θ)dθ Q ZX (σ)=∫ 2x 0 gkσ 2 cosθφ(σ, θ)dθ Q ZY (σ)=∫ 2x 0 gkσ 2 sinθφ(σ, θ)dθ …(5).
ここでコスペクトルPZZ,PXX及びPYYは夫々X,
Y及びZ方向加速度センサ出力に関する自己相関
を示すパワスペクトルと同等のものであり、PXY
はX方向及びY方向加速度センサ出力の相互相関
を示すクロススペクトルのコスペクトルである。 Here, the cospectra P ZZ , P XX and P YY are respectively X,
It is equivalent to the power spectrum that shows autocorrelation regarding the Y and Z direction acceleration sensor outputs, and P
is a cospectrum of a cross spectrum showing the cross-correlation of the X-direction and Y-direction acceleration sensor outputs.
ところで前記波浪の方向スペクトルφ(σ,θ)
のフーリエ級数展開の係数aν,bν(ν=0,1,
2,……)
一般に複素数aν+ibνで与えられこれは
aν+ibν=1/π∫2x O
φ(σ,θ)exp{iνθ}dθ …(6)
ここでexp{iνθ}=cosνθisinνθであることを勘
案
して(5)式と(6)式とを比較すると
a0=1/πσ4PZZ(σ)
a1=1/πgkσ2QZX(σ)
a2=1/πg2k2PXX(σ)PYY(σ)
b1=1/πgkσ2QZY(σ)
b2=2/πg2k2PXY(σ)
…(7)
となる。 By the way, the wave direction spectrum φ(σ, θ)
The coefficients aν, bν (ν=0, 1,
2,...) Generally, it is given by a complex number aν+ibν, which is aν+ibν=1/π∫ 2x O φ(σ, θ)exp{iνθ}dθ...(6) Here, considering that exp{iνθ}=cosνθisinνθ Comparing equations (5) and (6), a 0 = 1/πσ 4 P ZZ (σ) a 1 = 1/πgkσ 2 Q ZX (σ) a 2 = 1/πg 2 k 2 P XX ( σ)P YY (σ) b 1 = 1/πgkσ 2 Q ZY (σ) b 2 = 2/πg 2 k 2 P XY (σ) …(7).
これら5個の係数を計算すれば近似的な波浪の
方向スペクトルφ(σ,θ)は以下の如く展開さ
れる。 By calculating these five coefficients, an approximate wave direction spectrum φ(σ, θ) can be developed as follows.
φ(σ,θ)≒1/2a0+(a1cosθ+b1sinθ)
+(a2cos2θ+b2sin2θ)+ …(8)
ところで(8)式でエネルギが最大となる条件に於
けるθの値は周波数σなる波動の到来方位を示す
ものであるから(8)式のフーリエ係数第2項と第3
項からそれぞれ到来方位θ2(σ),θ3(σ)を求め
ると、2
(σ)=tan-1(b1/a1),3(σ)
=tan-1(b2/a2)である。φ(σ,θ)≒1/2a 0 +(a 1 cosθ+b 1 sinθ) + (a 2 cos2θ+b 2 sin2θ)+ …(8) By the way, θ under the condition where the energy is maximum in equation (8) Since the value of indicates the direction of arrival of the wave with frequency σ, the second and third terms of the Fourier coefficients in equation (8)
Determining the arrival directions θ 2 (σ) and θ 3 (σ) from the terms, 2 (σ) = tan -1 (b 1 /a 1 ), 3 (σ) = tan -1 (b 2 /a 2 ).
従つて波動の到来方位2(σ)は
θ(σ)=tan- 1(b1/a1)=tan-1{QZY(σ)/QZY(σ)}
…(9)
或は3
(σ)=1/2tan-1(a2/b2)=1/2・tan-1
〔2PXY(σ)/PXX(σ)−PYY(σ)}〕 …(10)
にて計算しうる。 Therefore, the wave arrival direction 2 (σ) is θ(σ)=tan - 1 (b 1 /a 1 )=tan -1 {Q ZY (σ)/Q ZY (σ)}
…(9) Or 3 (σ)=1/2tan -1 (a 2 /b 2 )=1/2・tan -1 [2P XY (σ)/P XX (σ)−P YY (σ)} ] …It can be calculated using (10).
ここでクオドラチヤスペクトルQZY,QZXは波
動の到来方位によつて正、負いずれの値もとりう
るから前記(9)基づいて演算を行えば真の波動到来
方位とこれから180゜偏つた方位との弁別が不可能
となることはなく波動到来方向を一義的に決定し
うる。 Here, the quadratia spectra Q ZY and Q ZX can take either positive or negative values depending on the direction of arrival of the wave, so if calculations are performed based on the above (9), the true direction of arrival of the wave and the direction deviated by 180° from this direction can be calculated. It is possible to uniquely determine the direction of arrival of the waves without making it impossible to distinguish between them.
これに対し前記(10)式はパワ・スペクトルのみを
用いるものである故上述の弁別が困難であること
前述のとうりである。 On the other hand, as mentioned above, the above-mentioned equation (10) uses only the power spectrum, so the above-mentioned discrimination is difficult.
最後に参考の為上述した理論に基づいて漂流ブ
イに搭載した3軸加速度センサ出力を内蔵するマ
イクロプロセツサにて現実に処理する過程を第1
図に示すフローチヤートに示す。これは卓越波の
みならずこれに重畳するある一定(さざなみ程
度)以上の波動を全て検出する為前記(8)式による
演算を用いるものである。 Finally, for reference, we will explain the actual processing process based on the above theory using a microprocessor equipped with a 3-axis acceleration sensor output mounted on a drifting buoy.
The flowchart shown in Figure. This uses the calculation according to the above equation (8) in order to detect not only the dominant wave but also all waves above a certain level (about the size of ripples) superimposed on the dominant wave.
尚、この演算プロセスの中には磁気コンパスに
よる方位の座標変換が記述されているが、磁気コ
ンパスを組み合わせることによつて波動の絶対到
来方位を検出するにはステイブル・プラツトフオ
ームのX又はY軸と磁気コンパスの指比の偏位角
を適当なビツクオフを用いて検出すればよくこれ
は極めて容易であるからその詳細な説明は省略し
た。 Note that this calculation process describes the coordinate transformation of the direction using a magnetic compass, but in order to detect the absolute arrival direction of the wave by combining the magnetic compass, it is necessary to use the stable platform X or Y. The deviation angle between the axis and the finger ratio of the magnetic compass can be detected by using an appropriate bit-off, and this is extremely easy, so a detailed explanation thereof will be omitted.
(発明の効果)
本発明は以上説明した如き手法に基づいて波動
の到来方位を検出するものであるから従来提案さ
れていた手法に比しハードウエア上特段の変更を
行うことなく正確に波動の到来方向を検出するこ
とが可能となるので殊に海洋の波浪の観測を行う
漂流ブイ等に適用する場合これを安価に構成し得
ると共にその観測データの信頼性向上に著しい効
果を発揮する。(Effects of the Invention) Since the present invention detects the arrival direction of waves based on the method described above, it is possible to accurately detect waves without making any special changes in hardware compared to conventionally proposed methods. Since it is possible to detect the direction of arrival, especially when applied to a drifting buoy for observing ocean waves, it can be constructed at low cost and has a remarkable effect on improving the reliability of observation data.
又、本発明の手法によれば波高データをも併せ
て検出し得るので従来未知の領域にあつた海洋の
特性を示す詳細なデータを入手し得るから単なる
学術的興味に止まることなく船舶、海洋油田開発
用リグの設計等、海洋開発の為の基礎資料を蒐集
する上でも極めて有効である。 In addition, since the method of the present invention can also detect wave height data, it is possible to obtain detailed data showing the characteristics of the ocean, which was previously unknown. It is also extremely effective in collecting basic materials for offshore development, such as the design of oil field development rigs.
第1図は本発明に係る波動到来方位検出方法の
一実施例を示す演算手順のフローチヤート図であ
る。
FIG. 1 is a flowchart of a calculation procedure showing an embodiment of the wave arrival direction detection method according to the present invention.
Claims (1)
ム上に相互に直交する水平(X軸及びY軸)方向
並びに垂直(Z軸)方向加速度センサを搭載しこ
れら各センサによつて多方向から前記浮体に到来
する夫々波長の異なる波動に基づいて発生する加
速度のベクトルを検出すると共に、到来した各波
動のZ軸方向検出々力に対するX軸及びY軸方向
検出々力の相互相関を夫々クロススペクトルとし
て各波動の波長毎に分離算出しこれら両クロスス
ペクトルの虚部(クオドラチヤスペクトル)の比
のアーク・タンジエントを演算することによつて
前記X軸或いはY軸に対する各種波長の異なる波
動の到来方位を分離検出するようにしたことを特
徴とする波動到来方位検出方法。 2 磁気コンパスが示す絶対方位と前記X軸或い
はY軸との関係を検出することによつて前記各種
波動の絶対到来方位を検出するようにしたことを
特徴とする特許請求の範囲1記載の波動到来方位
検出方法。[Claims] 1. Acceleration sensors in the horizontal (X-axis and Y-axis) and vertical (Z-axis) directions that are orthogonal to each other are mounted on a stable platform provided within the floating body. Detecting acceleration vectors generated based on waves of different wavelengths arriving at the floating body from multiple directions, and cross-correlating the detected force in the X-axis and Y-axis directions with the detected force in the Z-axis direction of each arriving wave. By separating and calculating each wavelength of each wave as a cross spectrum, and calculating the arc tangent of the ratio of the imaginary parts (quadrature spectrum) of these two cross spectra, the various wavelengths with respect to the X axis or Y axis can be calculated. A wave arrival direction detection method characterized in that the arrival directions of different waves are detected separately. 2. The wave according to claim 1, characterized in that the absolute direction of arrival of the various waves is detected by detecting the relationship between the absolute direction indicated by a magnetic compass and the X-axis or the Y-axis. Arrival direction detection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60053783A JPS61212714A (en) | 1985-03-18 | 1985-03-18 | Detection for incoming direction of wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60053783A JPS61212714A (en) | 1985-03-18 | 1985-03-18 | Detection for incoming direction of wave |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61212714A JPS61212714A (en) | 1986-09-20 |
JPH0362203B2 true JPH0362203B2 (en) | 1991-09-25 |
Family
ID=12952411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60053783A Granted JPS61212714A (en) | 1985-03-18 | 1985-03-18 | Detection for incoming direction of wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61212714A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007083483A1 (en) | 2006-01-19 | 2007-07-26 | Konica Minolta Holdings, Inc. | Display element |
WO2007142025A1 (en) | 2006-06-02 | 2007-12-13 | Konica Minolta Holdings, Inc. | Display element |
WO2007145100A1 (en) | 2006-06-15 | 2007-12-21 | Konica Minolta Holdings, Inc. | Display element |
WO2008029669A1 (en) | 2006-09-08 | 2008-03-13 | Konica Minolta Holdings, Inc. | Display element |
WO2008075565A1 (en) | 2006-12-21 | 2008-06-26 | Konica Minolta Holdings, Inc. | Display element and method for driving the same |
WO2008087790A1 (en) | 2007-01-17 | 2008-07-24 | Konica Minolta Holdings, Inc. | Display element and method for driving display element |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007064957A (en) * | 2005-08-30 | 2007-03-15 | Kaiyo Chosa Kyokai | Buoy-type wave height meter |
JP4892972B2 (en) * | 2005-11-24 | 2012-03-07 | 株式会社Jvcケンウッド | Wave height measuring device |
JP2009014697A (en) * | 2007-07-06 | 2009-01-22 | Port & Airport Research Institute | Wave direction calculating method of buoy-type wave height meter |
JP5098919B2 (en) * | 2008-09-18 | 2012-12-12 | 富士通株式会社 | Moving direction calculating device, moving direction calculating program, and moving direction calculating method |
JP6558760B2 (en) * | 2015-11-20 | 2019-08-14 | 流体テクノ株式会社 | Sea state estimation device and sea state estimation method |
-
1985
- 1985-03-18 JP JP60053783A patent/JPS61212714A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007083483A1 (en) | 2006-01-19 | 2007-07-26 | Konica Minolta Holdings, Inc. | Display element |
WO2007142025A1 (en) | 2006-06-02 | 2007-12-13 | Konica Minolta Holdings, Inc. | Display element |
WO2007145100A1 (en) | 2006-06-15 | 2007-12-21 | Konica Minolta Holdings, Inc. | Display element |
WO2008029669A1 (en) | 2006-09-08 | 2008-03-13 | Konica Minolta Holdings, Inc. | Display element |
WO2008075565A1 (en) | 2006-12-21 | 2008-06-26 | Konica Minolta Holdings, Inc. | Display element and method for driving the same |
WO2008087790A1 (en) | 2007-01-17 | 2008-07-24 | Konica Minolta Holdings, Inc. | Display element and method for driving display element |
Also Published As
Publication number | Publication date |
---|---|
JPS61212714A (en) | 1986-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8396684B2 (en) | Method and system for motion tracking | |
Sukkarieh et al. | A low-cost, redundant inertial measurement unit for unmanned air vehicles | |
US11002547B2 (en) | Method for determining the orientation of a sensor frame of reference tied to a mobile terminal carried or worn by a user | |
US6883372B2 (en) | Airborne gravity gradiometers | |
JPH0362203B2 (en) | ||
Sherki et al. | Design of real time sensor system for detection and processing of seismic waves for earthquake early warning system | |
JP3758917B2 (en) | Displacement measuring method and displacement measuring apparatus of object by GPS | |
EP3073297A1 (en) | Method for tilt (roll) and pitch estimation in a multi-sensor streamer | |
Liang et al. | A solution to the attitude problem using two rotation units of micromechanical gyroscopes | |
JP2002054946A (en) | Attitude sensor of object and integer bias re- determination method | |
Zhang et al. | An improved computation scheme of strapdown inertial navigation system using rotation technique | |
Liu et al. | Ocean wave buoy based on parallel six-dimensional accelerometer | |
WO2015105146A1 (en) | Travel direction estimation device and travel direction estimation method | |
Emel’yantsev et al. | Improving the accuracy of GPS compass for small-sized objects | |
Karimi et al. | Skewed-redundant hall-effect magnetic sensor fusion for perturbation-free indoor heading estimation | |
RU2003107688A (en) | METHOD FOR DETERMINING ORIENTATION AND NAVIGATION PARAMETERS AND A FREE PLATFORM INERTIAL NAVIGATION SYSTEM FOR RAPID FACILITIES | |
Zhang et al. | A novel separation and calibration method for DVL and compass error in dead reckoning navigation systems | |
Zhu et al. | Accuracy improvement of a redundant inertial measurement unit brought about by the dual-axis rotational motion | |
RU2272995C1 (en) | Method for elaboration of navigational parameters and local vertical (modifications) | |
Aleshechkin | Algorithm of GNSS-based attitude determination | |
Won et al. | A quaternion-based tilt angle correction method for a hand-held device using an inertial measurement unit | |
Schipf et al. | Using AUV-acquired survey data to derive a magnetic model for a surface vessel | |
Khalil et al. | Wave heave sensor verification in dry conditions with optoelectronic reference | |
Roberts | An advanced acoustic position reference system | |
JP4256227B2 (en) | Inclination angle detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |