JPH0357181B2 - - Google Patents
Info
- Publication number
- JPH0357181B2 JPH0357181B2 JP59209374A JP20937484A JPH0357181B2 JP H0357181 B2 JPH0357181 B2 JP H0357181B2 JP 59209374 A JP59209374 A JP 59209374A JP 20937484 A JP20937484 A JP 20937484A JP H0357181 B2 JPH0357181 B2 JP H0357181B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- corrosion resistance
- content
- steel
- hot workability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005260 corrosion Methods 0.000 claims description 73
- 230000007797 corrosion Effects 0.000 claims description 72
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 14
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims 2
- 229910000831 Steel Inorganic materials 0.000 description 40
- 239000010959 steel Substances 0.000 description 40
- 238000012360 testing method Methods 0.000 description 29
- 230000000694 effects Effects 0.000 description 21
- 239000000460 chlorine Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 229910001220 stainless steel Inorganic materials 0.000 description 10
- 239000013535 sea water Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 239000012085 test solution Substances 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241001232202 Chrysothamnus stylosus Species 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Description
<産業上の利用分野>
この発明は、高温硫化物環境中、特に硫化水素
並びに塩素イオンの存在する高温湿潤環境中での
応力腐食割れ(以下、「SCC」と略称する)や〓
間腐食等に対しても極めて高い抵抗性を示すな
ど、非常に優れた耐食性を有する上、熱間加工性
も良好なオーステナイト系ステンレス鋼に関する
ものである。
近年、耐食性及び耐酸化性に優れた安定な材料
であるステンレス鋼の需要は、重化学工業等の分
野のみならず、各種日用品類の領域にまで幅広く
浸透し、なお一層増大する傾向を示している。
また一方では、海水利用産業の著しい発達、或
いは海底資源の活用が大きな注目を浴びている状
況下にあつて、従来のステンレス鋼以上に優れた
耐食性や耐酸化性を有する鋼材の開発が強く要望
されてもいた。
<従来の技術>
ところで、塩素イオン(Cl-)が存在する環境
下でステンレス鋼を使用する場合には、特に“〓
間腐食”や“孔食”と言つた局部腐食問題を避け
ることができないが、この種の腐食防止を含めた
耐食性向上手段としてMoやN等を添加すること
の有効性が知られるようになつてからは、例えば
海水等が接触する腐食環境下でNを添加した高
Cr高Mo含有オーステナイト系ステンレス鋼が採
用され、大きな成果を上げており、これまで、合
金組成に様々な工夫を凝らしたN含有高Cr高Mo
オーステナイト系ステンレス鋼が提案されてきた
(例えば、特公昭49−40331号公報、特開昭49−
135812号公報、特開昭52−95524号公報を参照さ
れたい)。
<発明が解決しようとする問題点>
しかしながら、より一層苛酷な環境での鋼材の
使用を必要としつつある現在の情況を考慮し、実
際上の様々なステンレス鋼使用環境を想定して行
われた本発明者等の実験・検討結果は、
「前記従来のN含有高Cr高Moオーステナイト
系ステンレス鋼はあくまでも“中性Cl-−O2”環
境での高耐食性材料であり、“高温H2S−Cl-”環
境での耐食性が考慮されていないので、H2Sを含
む高温環境ではSCCを発生する」
ことを明らかにしたのである。
そして、従来のN含有高Cr高Moオーステナイ
ト系ステンレス鋼におけるこのような問題は、今
後の需要増が見込まれる海底資源掘削リグ上の配
管や石炭液化装置等の設計に不安を与えるもので
あつた。なぜなら、資源掘削リグ上の配管材料
は、内面は“CO2−H2S−Cl-”環境に、そして
管外面は“海水ミスト”環境にさらされるので、
耐海水性が良好であつても管内面側の耐SCC性が
不良であれば使用に耐えないと判断されるもので
あり、一方、石炭液化装置においては、高温H2S
がらみの腐食、特にSCCが最近の問題として注目
されてきたからである。
また、他方では、従来のN含有高Cr高Moオー
ステナイト系ステンレス鋼は熱間加工性に劣つて
おり、板材の製造上問題のあることが指摘されて
きた材料でもあつた。
<問題点を解決するための手段>
本発明者等は、上述のような観点から、従来の
N含有高Cr高Moオーステナイト系ステンレス鋼
にみられる上記問題点を解決し、耐食性、特に
“高温H2S−Cl-”環境での耐SCC性に優れるとと
もに、強度及び熱間加工性とも十分に満足し得る
鋼材を提供すべく研究を重ねた結果、
(a) 高Cr高Mo含有ステンレス鋼の“H2S−Cl-”
環境での耐SCC性はNi含有量に大きく依存し、
更に、適量のW或いはCuの添加により著しく
改善されること、
(b) Nを含有する高Cr高Moオーステナイト系ス
テンレス鋼の基本的な耐食性にはCr,Mo及び
N量が大きく影響し、これらの含有量を、特に
Cr(%)+3Mo(%)+10N(%)≧38.0
と調整することによつて十分に満足し得る基本
的耐食性能を安定して確保できること、
(c) N含有高Cr高Moオーステナイト系ステンレ
ス鋼に適量のAlを添加すると、高Mo高N化に
伴つて生じる熱間加工性の劣化が抑制されるこ
と、
(d) 鋼中不純物であるS及びOは結晶粒界に偏析
して鋼の脆弱化を促進するが、適量のAlの添
加とともにS及びOを極力低減すると、N含有
高Cr高Moオーステナイト系ステンレス鋼の熱
間加工性は一段と向上すること、
(e) 上記オーステナイト系ステンレス鋼にB,
Mg,La又はCeの微量添加を実施すると、その
熱間加工性は更に向上すること、
(f) 従つて、N含有高Cr高Moオーステナイト系
ステンレス鋼のCr,Mo及びN量を総合的に調
整するとともに、これにW或いはCuを添加し、
更にS及びOを極度に低減して適量のAlを含
有せしめると、“H2S−Cl-”環境での耐SCC性
を含む耐食性や熱間加工性が大幅に改善された
鋼材が実現されること、
以上(a)〜(f)に示される如き知見を得るに至つた
のである。
この発明は上記知見に基づいて完成されたもの
であり、
オーステナイト系ステンレス鋼を
C:0.03%以下(以降、%は重量基準とする)、
Si:1.5%以下、Mn:2.0%以下、
Cr:19.0%以上22.5%未満、
Ni:21.0%以上30.0%未満、
Mo:6.0超〜10.0%、
W又はCuの1種以上:0.3〜2.0%、
Al:0.01〜0.15%、N:0.05〜0.30%、
P:0.03%以下、S:0.002%以下、
O:0.005%以下
を含有するか、或いは更に
B,Mg,La又はCeの1種以上:0.001〜0.100
%
をも含有し、
残部:Fe及び他の不可避的不純物
から成り、かつ、式
Cr(%)+3Mo(%)+10N(%)≧38.0
を満足する成分組成に構成することにより、十分
な強度はもちろんのこと、優れた耐食性(特に、
“高温H2S−Cl-”環境での耐SCC性をも含む)並
びに良好な熱間加工性をも備えしめた点に特徴を
有するものである。
次に、この発明のオーステナイト系ステンレス
鋼において、各組成成分の含有割合を前記の如く
に数値限定した理由を説明する。
(a) C
Cはオーステナイト生成元素であるが、0.03
%を越えて含有させると鋼の耐粒界腐食性の低
下をもたらすことから、C含有量を0.03%以下
と定めた。なお、C含有量が少ないほど鋭敏化
感度性が低下するので、C量は極力抑えるのが
好ましい。
(b) Si
Si成分は、耐酸性並びに耐孔食性改善に有効
な元素であるが、1.5%を越えて含有させると
鋼の溶接性及び熱間加工性が阻害される傾向が
出て来ることから、Si含有量を1.5%以下と定
めた。
なお、Si量が微量であつてもそれなりの耐酸
性及び耐孔食性改善効果は認められるが、でき
れば0.05%以上の含有量を確保することが望ま
しい。
(c) Mn
Mn成分には、耐食性改善効果を有するNの
固溶量を増大させ、その安定化を図る作用があ
るが、2.0%を越えて含有させると孔食の起点
となり易い硫化物(MnS)の生成が増大し、
“H2S−Cl-”環境は勿論、特に、“Cl-−O2”
環境での耐孔食性を劣化させ、また加工性の劣
化を招くことから、Mn含有量を2.0%以下と定
めた。
なお、微量のMn量であつてもそれなりのN
安定化効果が発揮されるが、好ましくは0.1%
以上のMnを含有させるのが良い。
(d) Cr
Cr成分には、耐酸性、耐孔食性、耐〓間腐
食性並びにその他の一般耐食性を改善する作用
があり、極めて重要な元素であるが、その含有
量が19.0%未満では“H2S−Cl-”環境におけ
る耐食性が十分でなくなる。一方、本発明のよ
うな高Mo合金系では、Cr含有量が22.5%以上
であるとσ相の析出が促進されて脆化が起り易
くなるとともに、完全オーステナイトが得られ
にくくなる。
従つて、Cr含有量は19.0%以上22.5%未満と
定めた。
(e) Ni
Ni成分は主要なオーステナイト生成元素で
あり、Cr等のフエライト生成元素とバランス
してその組織をオーステナイト一相に保つため
に重要な役割を果たし、また鋼の耐酸性や塩化
物を含む高温溶液環境、特に“H2S−Cl-”環
境における耐SCC性を改善する作用を有する反
面、“Cl-−O2”環境、特に海水環境における
耐孔食性および耐隙間腐食性にも大きく影響す
る。そして、その含有量が21.0未満では前記
“H2S−Cl-”環境における耐SCC性改善が十分
でなく、一方、30.0%を超えて含有させると脱
不動態化P.H(ペーハー)が上昇するため前記
“Cl-−O2”環境における耐孔食性および耐隙
間腐食性の劣化を招くことから、Ni含有量は
21.0%以上30.0%未満と定めた。
(f) Mo
Mo成分は、Crと同様、鋼の耐孔食性及び耐
〓間腐食性の改善に必須の元素であるが、その
含有量が6.0%以下では海水等のようなCl-濃度
の高い環境下における耐〓間腐食性が劣化し、
かつH2Sを含む塩化物環境での耐孔食性も劣化
する。そして、Mo含有量は多くなるほど耐食
性も向上するが、10.0%を越えて含有させると
σ相の析出が促進されて鋼が脆化するようにな
り、熱間加工性が極度に悪化することから、
Mo含有量と6.0超〜10.0%と定めた。
(g) W,及びCu
これらの成分は、いずれも、塩化物溶液中で
の耐孔食性及び耐〓間腐食性の改善に有効なも
のであり、また、特にNiとの複合添加によつ
て“H2S−Cl-”環境での耐SCC性を著しく向
上させる均等な作用を有していることから、い
ずれか1種、或いは2種の同時添加を行うもの
であるが、その含有量が0.3%未満では前記作
用に所望の効果が得られず、一方、2.0%を越
えて含有させると鋼の熱間加工性が劣化するよ
うになることから、W及びCuの含有量は、単
独又は複合で0.3〜2.0%と定めた。
(h) Al
Al成分は、高Mo高N鋼の熱間加工性を改善
する作用を有しているので欠くことのできない
元素であるが、その含有量が0.01%未満では前
記作用に所望の効果が得られず、一方、0.15%
を越えて含有させると鋼の耐食性を劣化させる
ことから、Al含有量は0.01〜0.15%と定めた。
(i) N
N成分は、前記Cr,Ni及びMo同様、鋼の耐
食性(特に耐孔食性及び耐〓間腐食性)向上に
有効なものであるが、その含有量が0.05%未満
では十分な耐食性向上効果が得られず、一方、
0.30%を越えて含有させると鋼塊中に気泡を発
生しがちになることから、N含有量は0.05〜
0.30%と定めた。
(j) P
Pは鋼中に不可避的に混入する不純物元素で
あるが、溶接性の低下や熱間加工性の劣化をも
たらすので極力低減するのが好ましい。そし
て、P含有量が0.03%を越えると、溶接性や熱
間加工性の劣化傾向が目立つようになることか
ら、P含有量を0.03%以下と定めた。
(k) S
Sは、Pと同様、鋼中に不可避的に存在する
不純物元素であり、耐孔食性及び熱間加工性に
悪影響を及ぼすものである。そして、S含有量
が特に0.002%を越えると熱間加工性の劣化が
著しくなることから、その許容量を0.002%以
下と限定した。
即ち、本発明の如き高Mo高N含有合金にお
いては高温での変形抵抗が非常に大となるた
め、熱間加工の際に変形が粒界に集中してその
箇所より割れが発生し易いが、Sは結晶粒界に
偏析して脆化を促進する挙動を示す元素なので
ある。そして、この発明の鋼では、低S化によ
る熱間加工性改善効果を確保するためにS量の
許容上限値を0.002%と定めたが、望ましくは
0.001%以下にS量を制限するのが良い。
ところで、第1図は、(19.5〜21.6)%Cr−
(23.4〜26.2)%Ni−(5.0〜6.7)%Mo−(0.12
〜0.22)%N鋼について、熱間加工性に及ぼす
Sの影響を調査した結果が示されたグラフであ
るが、この第1図は、
「S含有量を0.002%以下に抑えることで熱間
加工性がかなり改善され、0.001%以下では更
に顕著な熱間加工性改善効果を得られる」
ことを示している。
(l) O
Oも、Sと同様に鋼の高温度変形態を低下さ
せ、熱間加工性を著しく劣化させる不純物元素
であるが、その含有量を0.005%以下に抑える
と前記熱間加工性劣化作用が目立たなくなるこ
とから、O含有量を0.005%以下と定めた。
(m) B,Mg,La及びCe
これらの成分には、いずれも、「SやOの抵
減」並びに「Alの添加」と相俟つて高Mo高N
鋼の熱間加工性を向上する均等な作用があるの
で、特に熱間加工性を一段と向上させる必要が
ある場合に1種以上添加されるものであるが、
その含有量が0.001%未満では上記作用に顕著
な効果が得られず、一方、0.100%を越えて含
有させると鋼塊疵を発生するようになることか
ら、これらの成分の含有量は、単独又は複合で
0.001〜0.100%と定めた。
なお、Cr,Mo及びNは、いずれも、塩化物溶
液環境における鋼の耐孔食性・耐〓間腐食性改善
のために欠かせない成分であるが、これらは相互
に密接に関連して前述のような耐孔食性・耐〓間
腐食性改善効果を醸し出すものであつて、鋼中に
おけるこれらの含有割合を、特に
Cr(%)+3Mo(%)+10N(%)≧38.0
とすることで耐食性能がより安定化することか
ら、Cr,Mo及びN含有量は、上記式を満足する
ように更に総合的に調整することと定めた。
また、通常、鋼中のCを固定するためにはTi
等の安定化元素を添加することが多いが、この発
明の鋼ではNを添加するため安定化元素の添加は
行わない。なぜなら、例えばTiを添加すると、
該Tiは鋼中のNと結合してTiNを生成し、有効
N量を低減するからである。
上述のように、この発明のオーステナイト系ス
テンレス鋼は、“Cl-−O2”系よりも腐食性の厳
しい“H2S−Cl-”系環境で優れた耐食性を発揮
する材料であるが、“Cl-−O2”系環境において
も十分に優れた耐食性を示すことは断わるまでも
ないことである。
次いで、この発明を実施例により比較例と対比
しながら説明するが、該実施例によつてこの発明
の技術的範囲が制限されるものでないことは言う
までもない。
<実施例>
まず、真空溶解法によつて第1表に示される如
き成分組成の鋼1〜30を溶製した。
次に、これを常法通り熱間圧延して熱延鋼板と
した後、固溶化熱処理(1100℃×30分保持後、水
冷)を施し、続いてTIGなめ溶接(溶接フイラー
なし)してから、SCC試験片(75mml×10mmw×
2mmtの寸法のもの2枚)と〓間腐食試験片(30
mml×20mmw×3mmtの寸法のものと、30mml×15mmw
×3mmtの寸法のもの)とを切り出し、SCC試験
並びに〓間腐食試験を実施した。
SCC試験には、第2図に示されるように、2枚
の前記試験片1,1を重ね合せた状態でU字状に
曲げ、更にフツ素樹脂製ブツシユ2,2を介して
Ti製ボルト3及びTi製ナツト4で拘束したもの
<Industrial Application Field> This invention is applicable to stress corrosion cracking (hereinafter abbreviated as "SCC") in a high-temperature sulfide environment, particularly in a high-temperature and humid environment where hydrogen sulfide and chloride ions are present.
The present invention relates to an austenitic stainless steel that has excellent corrosion resistance, such as extremely high resistance to intermittent corrosion, and also has good hot workability. In recent years, the demand for stainless steel, which is a stable material with excellent corrosion and oxidation resistance, has permeated not only in fields such as heavy and chemical industries, but also in the field of various daily necessities, and is showing a tendency to further increase. . On the other hand, given the remarkable development of seawater utilization industries and the growing interest in the utilization of seabed resources, there is a strong demand for the development of steel materials with superior corrosion and oxidation resistance than conventional stainless steel. It was also done. <Conventional technology> By the way, when using stainless steel in an environment where chlorine ions (Cl - ) exist,
Localized corrosion problems such as "intermittent corrosion" and "pitting corrosion" cannot be avoided, but the effectiveness of adding Mo, N, etc. as a means of improving corrosion resistance including preventing this type of corrosion has become known. After that, for example, in a corrosive environment where there is contact with seawater, high
Austenitic stainless steel containing high Cr and Mo has been adopted and has achieved great results.
Austenitic stainless steels have been proposed (for example, Japanese Patent Publication No. 40331/1983,
135812, JP-A-52-95524). <Problems to be solved by the invention> However, in consideration of the current situation where it is becoming necessary to use steel materials in even harsher environments, the invention was made assuming various practical environments in which stainless steel is used. The results of experiments and studies conducted by the present inventors indicate that the conventional N-containing, high-Cr, high-Mo austenitic stainless steel is a highly corrosion-resistant material in a neutral Cl - -O 2 environment, and that it is highly corrosion resistant in a high-temperature H 2 S environment. -Cl - ``Because corrosion resistance in the environment was not taken into consideration, SCC occurs in high-temperature environments containing H 2 S.'' Such problems with conventional N-containing, high Cr, high Mo austenitic stainless steels have caused concerns in the design of piping and coal liquefaction equipment on submarine resource drilling rigs, where demand is expected to increase in the future. . This is because the inner surface of the piping materials on a resource drilling rig is exposed to a "CO 2 − H 2 S−Cl - " environment, and the outer surface of the pipe is exposed to a "seawater mist" environment.
Even if the seawater resistance is good, if the SCC resistance on the inner surface of the pipe is poor, it is judged that the pipe cannot withstand use.On the other hand, in coal liquefaction equipment, high-temperature H 2 S
This is because corrosive corrosion, especially SCC, has recently received attention as a problem. On the other hand, conventional N-containing, high-Cr, high-Mo austenitic stainless steels have poor hot workability, and have been a material that has been pointed out to pose problems in the manufacture of plate materials. <Means for Solving the Problems> From the above-mentioned viewpoints, the present inventors have solved the above-mentioned problems observed in conventional N-containing, high-Cr, high-Mo austenitic stainless steels, and improved corrosion resistance, especially "high-temperature" stainless steel. H 2 S−Cl - “As a result of repeated research to provide a steel material that has excellent SCC resistance in the environment and has sufficient strength and hot workability, we have developed (a) High Cr, high Mo content stainless steel. “H 2 S−Cl - ”
The SCC resistance in the environment is highly dependent on the Ni content,
Furthermore, the corrosion resistance can be significantly improved by adding an appropriate amount of W or Cu. (c) By adjusting the content of Cr (%) + 3Mo (%) + 10N (%) ≧38.0, it is possible to stably secure basic corrosion resistance performance that is fully satisfactory; (c) N-containing high Cr Adding an appropriate amount of Al to high-Mo austenitic stainless steel suppresses the deterioration of hot workability that occurs due to the increase in Mo and N. However, by adding an appropriate amount of Al and reducing S and O as much as possible, the hot workability of N-containing, high-Cr, high-Mo austenitic stainless steel is further improved. ) B to the above austenitic stainless steel,
Adding a small amount of Mg, La or Ce will further improve its hot workability. In addition to adjusting, W or Cu is added to this,
Furthermore, by extremely reducing S and O and containing an appropriate amount of Al, a steel material with greatly improved corrosion resistance including SCC resistance and hot workability in an "H 2 S-Cl - " environment can be realized. This led us to the findings shown in (a) to (f) above. This invention was completed based on the above knowledge, and the austenitic stainless steel has C: 0.03% or less (hereinafter, % is based on weight), Si: 1.5% or less, Mn: 2.0% or less, Cr: 19.0% or more and less than 22.5%, Ni: 21.0% or more and less than 30.0%, Mo: more than 6.0 to 10.0%, one or more of W or Cu: 0.3 to 2.0%, Al: 0.01 to 0.15%, N: 0.05 to 0.30% , P: 0.03% or less, S: 0.002% or less, O: 0.005% or less, or further contains one or more of B, Mg, La, or Ce: 0.001 to 0.100.
%, the balance consists of Fe and other unavoidable impurities, and by configuring the composition to satisfy the formula Cr (%) + 3Mo (%) + 10N (%) ≧ 38.0, sufficient strength can be achieved. Of course, it has excellent corrosion resistance (especially
It is characterized by having good hot workability (including SCC resistance in a high-temperature H 2 S-Cl - environment) and good hot workability. Next, in the austenitic stainless steel of the present invention, the reason why the content ratio of each composition component is numerically limited as described above will be explained. (a) C C is an austenite forming element, but 0.03
If the C content exceeds 0.03%, the intergranular corrosion resistance of the steel decreases, so the C content was set at 0.03% or less. Note that the lower the C content, the lower the sensitization sensitivity, so it is preferable to suppress the C content as much as possible. (b) Si The Si component is an effective element for improving acid resistance and pitting corrosion resistance, but if it is contained in excess of 1.5%, it tends to impede the weldability and hot workability of steel. Therefore, the Si content was determined to be 1.5% or less. Note that even if the amount of Si is small, a certain effect of improving acid resistance and pitting corrosion resistance is recognized, but it is desirable to secure a content of 0.05% or more if possible. (c) Mn The Mn component has the effect of increasing the solid solution amount of N, which has the effect of improving corrosion resistance, and stabilizing it, but if it is contained in excess of 2.0%, sulfide ( MnS) production increases,
Not only “H 2 S−Cl − ” environment, but especially “Cl − −O 2 ”
The Mn content was set at 2.0% or less because it degrades pitting corrosion resistance in the environment and also causes deterioration of workability. In addition, even if the amount of Mn is small, a certain amount of N
Stabilizing effect is exerted, preferably 0.1%
It is preferable to contain Mn in the above amount. (d) Cr The Cr component has the effect of improving acid resistance, pitting corrosion resistance, inter-corrosion resistance, and other general corrosion resistance, and is an extremely important element, but if its content is less than 19.0%, “ H 2 S−Cl - “Corrosion resistance in the environment becomes insufficient. On the other hand, in a high Mo alloy system such as the present invention, if the Cr content is 22.5% or more, precipitation of the σ phase is promoted, embrittlement is likely to occur, and complete austenite is difficult to obtain. Therefore, the Cr content was set at 19.0% or more and less than 22.5%. (e) Ni Ni is a major austenite-forming element and plays an important role in maintaining the structure as a single austenite phase by balancing with ferrite-forming elements such as Cr. Although it has the effect of improving SCC resistance in high-temperature solution environments, especially in "H 2 S-Cl - " environments, it also has the effect of improving pitting corrosion and crevice corrosion resistance in "Cl - -O 2 " environments, especially in seawater environments. It has a big impact. If the content is less than 21.0, the SCC resistance improvement in the above-mentioned "H 2 S-Cl - " environment will not be sufficient, while if the content exceeds 30.0%, the depassivation pH will increase. Therefore, the Ni content is
It is set at 21.0% or more and less than 30.0%. (f) Mo Mo component, like Cr, is an essential element for improving the pitting corrosion resistance and interstitial corrosion resistance of steel, but if its content is less than 6.0%, the Cl - concentration, such as seawater, Interstitial corrosion resistance deteriorates in high environments,
In addition, pitting corrosion resistance in a chloride environment containing H 2 S also deteriorates. Corrosion resistance improves as the Mo content increases, but if it exceeds 10.0%, the precipitation of the σ phase will be promoted and the steel will become brittle, resulting in extremely poor hot workability. ,
The Mo content was set at over 6.0% to 10.0%. (g) W and Cu These components are both effective in improving pitting corrosion resistance and interlocking corrosion resistance in chloride solutions, and are particularly effective when added in combination with Ni. Since it has an even effect of significantly improving SCC resistance in the "H 2 S-Cl - " environment, one or both of them are added at the same time, but the content If the content of W and Cu is less than 0.3%, the desired effect cannot be obtained, while if the content exceeds 2.0%, the hot workability of the steel will deteriorate. Or, it was set at 0.3 to 2.0% in combination. (h) Al The Al component is an indispensable element because it has the effect of improving the hot workability of high-Mo high-N steel, but if its content is less than 0.01%, the desired effect cannot be achieved. No effect, while 0.15%
The Al content was set at 0.01% to 0.15% since the corrosion resistance of steel deteriorates if the Al content exceeds 0.01% to 0.15%. (i) N Like Cr, Ni and Mo, the N component is effective in improving the corrosion resistance (especially pitting corrosion resistance and interlocking corrosion resistance) of steel, but if its content is less than 0.05%, it is insufficient. The effect of improving corrosion resistance was not obtained; on the other hand,
If the N content exceeds 0.30%, bubbles tend to occur in the steel ingot, so the N content should be 0.05~
It was set at 0.30%. (j) PP Although P is an impurity element that inevitably mixes into steel, it is preferable to reduce it as much as possible since it causes a decrease in weldability and hot workability. If the P content exceeds 0.03%, the tendency for deterioration of weldability and hot workability becomes noticeable, so the P content was set at 0.03% or less. (k) S S, like P, is an impurity element that inevitably exists in steel, and has an adverse effect on pitting corrosion resistance and hot workability. In particular, if the S content exceeds 0.002%, the deterioration of hot workability becomes significant, so the allowable amount was limited to 0.002% or less. In other words, in a high-Mo, high-N content alloy like the one of the present invention, the deformation resistance at high temperatures is extremely high, so deformation concentrates at the grain boundaries during hot working, and cracks are likely to occur from that location. , S is an element that segregates at grain boundaries and exhibits behavior that promotes embrittlement. In the steel of the present invention, the allowable upper limit of the S content was set at 0.002% in order to ensure the effect of improving hot workability by reducing the S content.
It is best to limit the amount of S to 0.001% or less. By the way, Figure 1 shows (19.5-21.6)%Cr-
(23.4~26.2)%Ni−(5.0~6.7)%Mo−(0.12
This is a graph showing the results of investigating the influence of S on hot workability for ~0.22)%N steel. The workability is considerably improved, and at 0.001% or less, an even more remarkable hot workability improvement effect can be obtained. (l) O O, like S, is an impurity element that reduces the high temperature deformation of steel and significantly deteriorates hot workability, but if its content is suppressed to 0.005% or less, the hot workability described above decreases. The O content was set at 0.005% or less because the deterioration effect would be less noticeable. (m) B, Mg, La, and Ce All of these components contain high Mo, high N, along with "resistance of S and O" and "addition of Al".
Since they have a uniform effect of improving the hot workability of steel, one or more types are added especially when it is necessary to further improve the hot workability.
If the content is less than 0.001%, no significant effect will be obtained on the above action, while if the content exceeds 0.100%, defects will occur in the steel block. or in combination
It was set at 0.001-0.100%. Note that Cr, Mo, and N are all essential components for improving the pitting and interlocking corrosion resistance of steel in a chloride solution environment, but they are closely related to each other and are It has the effect of improving pitting corrosion resistance and intermittent corrosion resistance, such as Cr (%) + 3Mo (%) + 10N (%) ≧ 38.0. In order to further stabilize the performance, it was decided that the Cr, Mo and N contents should be further adjusted comprehensively so as to satisfy the above formula. In addition, normally, in order to fix C in steel, Ti
However, in the steel of this invention, since N is added, no stabilizing elements are added. This is because, for example, when adding Ti,
This is because the Ti combines with N in the steel to produce TiN, reducing the effective amount of N. As mentioned above, the austenitic stainless steel of the present invention is a material that exhibits excellent corrosion resistance in the "H 2 S-Cl - " environment, which is more corrosive than the "Cl - -O 2 " environment. It goes without saying that it exhibits sufficiently excellent corrosion resistance even in a "Cl - -O 2 " environment. Next, the present invention will be explained using examples and in comparison with comparative examples, but it goes without saying that the technical scope of the present invention is not limited by the examples. <Example> First, steels 1 to 30 having the compositions shown in Table 1 were melted by a vacuum melting method. Next, this was hot rolled into a hot-rolled steel sheet in the usual manner, then subjected to solution heat treatment (held at 1100°C for 30 minutes, then water cooled), followed by TIG welding (no weld filler). , SCC test piece (75 mml × 10 mm w ×
2 pieces with dimensions of 2 mm t ) and 30
One with dimensions of mm l x 20mm w x 3mm t and one with dimensions of 30mm l x 15mm w
A piece with a size of 3mm x t ) was cut out and subjected to an SCC test and an interstitial corrosion test. In the SCC test, as shown in Fig. 2, the two test pieces 1, 1 are stacked and bent into a U-shape, and then inserted through fluorocarbon resin bushes 2, 2.
Restrained with Ti bolt 3 and Ti nut 4
【表】【table】
【表】【table】
【表】
を試験液中に一定時間浸漬すると言う“ダブルU
ベント試験”(5mm拘束)を採用した。なお、第
1図における符号5は溶接部を示すものであり、
また、試験条件は次の通りであつた。
試験液:H2S分圧が10気圧(室温)の食塩水
(Cl-濃度が105ppmのもの)、
液温:150℃、
試験時間:720時間。
そして、耐SCC性の評価は、該試験終了の後拡
大鏡観察或いは断面ミクロ観察にて割れの有無を
調査する方法によつた。
一方、〓間腐食試験には、第3図に示されるよ
うに、大小2枚の試験片6,6を重ね合わせて〓
間を形成し、そ中央部をTi製ボルト7及びTi製
ナツト8で強く締め付け(このとき、フツ素樹脂
製ワツシヤ9,9を介挿させた)、これを試験液
中に一定時間浸漬すると言う方法を採用した。な
お、第2図における符号10は溶接部を示してお
り、また、その試験条件は次の通りであつた。
試験液:H2S分圧が10気圧(室温)の食塩水
(Cl-濃度が104ppmのもの)、
液温:150℃
試験時間:720時間。
耐〓間腐食性の評価は、上記試験終了の後、肉
眼観察及び腐食減量による〓間腐食の有無を調査
する方法によつた。
又更に、熱間圧延後上記と同様の条件で固溶化
熱処理を施した熱延鋼板から20mml×50mmw×3
mmtの孔食試験片を切り出し、孔食試験をも実施
した。なお、試験は海水を模擬した次に示す条件
の迅速試験で行つた。
試験液:10%FeCl3+1/20NHCl溶液、
温度:60℃、
試験時間:48時間。
そして、耐孔食性の評価は、上記試験終了の
後、肉眼観察による孔食の有無を調査する方法に
よつた。
また、これとは別に熱間加工性の調査も実施し
た。
熱間加工性の調査は、熱延・固溶化処理後の前
記素材から機械加工により引張り試験片を切り出
し、1200℃での高温捩回試験を行つて、試験片が
破断するまでの捩り回数を求める方法によつて実
施した。
以上の試験結果を第2表に示した。
第2表に示される結果からも次のことが明らか
である。即ち、
耐SCC性について
本発明鋼1〜18では何らSCCを発生しなかつた
のに対して、Ni量が21.0%以下の比較鋼19〜21、
及びW又はCu量が0.3%未満の比較鋼22〜23には
SCCの発生がみられる。
耐〓間腐食性
本発明鋼1〜18では〓間腐食の発生がみられな
かつたのに対して、〔Cr(%)+3Mo(%)+10N
(%)〕の値が38.0未満の比較鋼21,22,24〜28お
よびMnが2%を越える29,30では〓間腐食を発
生することがわかる。
なお、本発明鋼は、“Cl-−O2”環境(例えば
海水)においても良好な耐隙間腐食性を有してい
ることも確認された。
耐孔食性
本発明鋼1〜18およびNiが低くかつ〔Cr(%)
+3Mo(%)+10N(%)〕の値が38.0以上の比較鋼
19、20では孔食の発生がみられなかつたのに対
し、〔Cr(%)+3Mo(%)+10N(%)〕の値が38.0
未満の比較鋼21,22,24〜28、〔Cr(%)+3Mo
(%)+10N(%)〕の値は38.0以上であるがSの高
い23およびMnが3%以上の29,30では孔食を発
生することがわかる。
熱間加工性
本発明鋼1〜18では破断に至るまでの捩り回数
が20回以上と、極めて優れた熱間加工性を示すの
に対して、鋼の成分組成条件が本発明の範囲から
外れている比較鋼19〜27,29,30は、いずれも捩
り回数が20回を下回つていることがわかる。
なお、比較鋼30は、Mo含有量が低いので優れ
た熱間加工性を示してはいるが、前述のように耐
食性が劣つているものである。
これらの実施例からも明らかなように、この発
明のオーステナイト系ステンレス鋼は、高Cr,
高Mo,高N,高Niとすることの複合効果を主体
にして、特に“高温H2S−Cl-”水溶液環境での
耐SCC性や耐隙間腐食性並びにCl-−O2環境での
耐孔食性を向上し、極低S化、極低O化並びに
Al添加等を主体として熱間加工性る改善したも
のである。
<総括的な効果>
以上説明したように、この発明によれば、海水
のような中性の高濃度塩化物環境(O2−Cl-環
境)での優れた耐食性はもちろんのこと、H2Sを
含む塩化物環境(H2S−Cl-環境)での優れた耐
SCC性をも有し、かつ熱間加工性や強度の点でも
申し分のないオーステナイト系ステンレス鋼を提
供でき、苛酷な腐食環境等で使用される各種設備
や装置類の性能を一段と向上することが可能とな
るなど、産業上極めて有用な効果がもたらされる
のである。[Table] ``Double U'' is a method of immersing a substance in a test liquid for a certain period of time.
"Bent test" (5 mm restraint) was adopted. In addition, the reference numeral 5 in Fig. 1 indicates the welded part.
Moreover, the test conditions were as follows. Test solution: Saline solution with a H 2 S partial pressure of 10 atm (room temperature) (Cl - concentration of 10 5 ppm), solution temperature: 150°C, test time: 720 hours. The SCC resistance was evaluated by examining the presence or absence of cracks through magnifying glass observation or cross-sectional microscopic observation after the test was completed. On the other hand, for the interstitial corrosion test, as shown in Fig. 3, two large and small test pieces 6, 6 are overlapped.
After forming a gap, the central part is strongly tightened with a Ti bolt 7 and a Ti nut 8 (at this time, fluororesin washers 9, 9 were inserted), and this is immersed in the test liquid for a certain period of time. I adopted the method of saying. Note that the reference numeral 10 in FIG. 2 indicates a welded portion, and the test conditions were as follows. Test solution: Saline solution with H 2 S partial pressure of 10 atm (room temperature) (Cl - concentration of 10 4 ppm), solution temperature: 150°C, test time: 720 hours. The interstitial corrosion resistance was evaluated by examining the presence or absence of interstitial corrosion by visual observation and corrosion weight loss after the above test. Furthermore, 20 mml x 50 mmw x 3 was obtained from a hot rolled steel sheet that had been subjected to solution heat treatment under the same conditions as above after hot rolling.
A pitting corrosion test piece of mmt was cut out and a pitting corrosion test was also conducted. The test was conducted as a rapid test under the following conditions, simulating seawater. Test solution: 10% FeCl 3 +1/20NHCl solution, temperature: 60°C, test time: 48 hours. The pitting corrosion resistance was evaluated by visually observing the presence or absence of pitting corrosion after the above test was completed. Separately, we also conducted a hot workability investigation. To investigate hot workability, a tensile test piece is cut out by mechanical processing from the above material after hot rolling and solution treatment, and a high temperature twisting test is performed at 1200°C to calculate the number of twists until the test piece breaks. It was carried out using the method required. The above test results are shown in Table 2. The following is clear from the results shown in Table 2. That is, regarding SCC resistance, inventive steels 1 to 18 did not cause any SCC, whereas comparative steels 19 to 21, which had a Ni content of 21.0% or less,
and comparative steels 22 to 23 with a W or Cu content of less than 0.3%.
Occurrence of SCC is observed. Interpolation corrosion resistance Inventive steels 1 to 18 showed no occurrence of interpolation corrosion, whereas [Cr (%) + 3Mo (%) + 10N]
(%)] is less than 38.0, and comparison steels 29 and 30 with a Mn content of more than 2% show that interstitial corrosion occurs. It was also confirmed that the steel of the present invention has good crevice corrosion resistance even in a "Cl - -O 2 " environment (for example, seawater). Pitting corrosion resistance Invention steels 1 to 18 and low Ni and [Cr (%)
Comparative steel with a value of +3Mo (%) + 10N (%)] of 38.0 or more
No pitting corrosion was observed in samples 19 and 20, but the value of [Cr (%) + 3Mo (%) + 10N (%)] was 38.0.
Comparative steels less than 21, 22, 24~28, [Cr (%) + 3Mo
(%) + 10N (%)] is 38.0 or more, but it can be seen that pitting corrosion occurs in 23 with a high S content and 29 and 30 with a Mn content of 3% or more. Hot workability Inventive steels 1 to 18 show extremely excellent hot workability, with the number of twists until fracture being 20 or more, but the compositional conditions of the steels are outside the scope of the present invention. It can be seen that comparative steels 19 to 27, 29, and 30 were all twisted less than 20 times. Note that although Comparative Steel 30 has a low Mo content and exhibits excellent hot workability, it has poor corrosion resistance as described above. As is clear from these examples, the austenitic stainless steel of the present invention has high Cr,
Mainly based on the combined effects of high Mo, high N, and high Ni, we have improved SCC resistance and crevice corrosion resistance in a "high-temperature H2S -Cl- " aqueous environment, as well as Cl -- O2 environment. Improved pitting corrosion resistance, extremely low S, extremely low O, and
It has improved hot workability mainly due to the addition of Al. <Overall Effects> As explained above, according to the present invention, not only excellent corrosion resistance in a neutral high concentration chloride environment such as seawater (O 2 -Cl - environment), but also excellent corrosion resistance in H 2 Excellent resistance in chloride environments containing S (H 2 S−Cl - environments)
We can provide austenitic stainless steel that has SCC properties and is perfect in terms of hot workability and strength, and can further improve the performance of various equipment and equipment used in harsh corrosive environments. This brings about extremely useful effects industrially.
第1図は、高Mo高N含有オーステナイト系ス
テンレス鋼の熱間加工性に及ぼすSの影響を示す
グラフ、第2図は、応力腐食割れ(SCC)試験で
使用したダブルUベンド試験片を示す概略図、第
3図は、〓間腐食試験で使用した試験片を示す概
略図である。
1,6……試験片、2……フツ素樹脂製スリー
ブ、3,7……Ti製ボルト、4,8……Ti製ナ
ツト、5,10……溶接(TIGなめ溶接)部、9
……フツ素樹脂製ワツシヤ。
Figure 1 is a graph showing the influence of S on the hot workability of high-Mo, high-N content austenitic stainless steel. Figure 2 shows the double U-bend specimen used in the stress corrosion cracking (SCC) test. Schematic diagram, FIG. 3 is a schematic diagram showing the test piece used in the interstitial corrosion test. 1, 6... Test piece, 2... Fluorine resin sleeve, 3, 7... Ti bolt, 4, 8... Ti nut, 5, 10... Welded (TIG lick weld) part, 9
... Fluorine resin washers.
Claims (1)
食性及び熱間加工性の優れたオーステナイト系ス
テンレス鋼。 2 重量割合にて、 C:0.03%以下、Si:1.5%以下、 Mn:2.0%以下、 Cr:19.0%以上22.5%未満、 Ni:21.0%以上30.0%未満、 Mo:6.0超〜10.0%、 W又はCuの1種以上:0.3〜2.0%、Al:0.01〜
0.15%、 N:0.05〜0.30%、 B,Mg,La又はCeの1種以上:0.001〜0.100%、 P:0.03%以下、S:0.002%以下、 O:0.005%以下、 残部:Fe及び他の不可避的不純物 から成り、かつ、式 Cr(%)+3Mo(%)+10N(%)≧38.0 を満足する成分組成であることを特徴とする、耐
食性及び熱間加工性の優れたオーステナイト系ス
テンレス鋼。[Claims] 1. In terms of weight percentage, C: 0.03% or less, Si: 1.5% or less, Mn: 2.0% or less, Cr: 19.0% or more and less than 22.5%, Ni: 21.0% or more and less than 30.0%, Mo: More than 6.0 to 10.0%, One or more of W or Cu: 0.3 to 2.0%, Al: 0.01 to 0.15%, N: 0.05 to 0.30%, P: 0.03% or less, S: 0.002% or less, O: 0.005% or less , the remainder: Fe and other unavoidable impurities, and the composition satisfies the formula Cr (%) + 3Mo (%) + 10N (%) ≧ 38.0, and has excellent corrosion resistance and hot workability. Superior austenitic stainless steel. 2 In terms of weight percentage, C: 0.03% or less, Si: 1.5% or less, Mn: 2.0% or less, Cr: 19.0% or more and less than 22.5%, Ni: 21.0% or more and less than 30.0%, Mo: more than 6.0 to 10.0%, One or more of W or Cu: 0.3~2.0%, Al: 0.01~
0.15%, N: 0.05-0.30%, one or more of B, Mg, La or Ce: 0.001-0.100%, P: 0.03% or less, S: 0.002% or less, O: 0.005% or less, balance: Fe and others An austenitic stainless steel with excellent corrosion resistance and hot workability, which is characterized by a composition that satisfies the formula Cr (%) + 3Mo (%) + 10N (%) ≧ 38.0. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20937484A JPS6187855A (en) | 1984-10-05 | 1984-10-05 | Stainless steel having superior corrosion resistance and hot workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20937484A JPS6187855A (en) | 1984-10-05 | 1984-10-05 | Stainless steel having superior corrosion resistance and hot workability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6187855A JPS6187855A (en) | 1986-05-06 |
JPH0357181B2 true JPH0357181B2 (en) | 1991-08-30 |
Family
ID=16571868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20937484A Granted JPS6187855A (en) | 1984-10-05 | 1984-10-05 | Stainless steel having superior corrosion resistance and hot workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6187855A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0660369B2 (en) * | 1988-04-11 | 1994-08-10 | 新日本製鐵株式会社 | Cr-Ni type stainless steel that is less likely to crack during the casting process or the subsequent hot rolling process |
US5024812A (en) * | 1990-07-02 | 1991-06-18 | Carondelet Foundry Company | Hydrochloric acid resistant stainless steel |
JP6212920B2 (en) * | 2013-04-23 | 2017-10-18 | 新日鐵住金株式会社 | Metal material |
JP6446470B2 (en) * | 2014-11-11 | 2018-12-26 | 新日鐵住金ステンレス株式会社 | High corrosion resistance austenitic stainless steel sheet |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS581044A (en) * | 1981-06-24 | 1983-01-06 | Sumitomo Metal Ind Ltd | High strength alloy having superior stress corrosion cracking resistance for oil well pipe |
JPS581043A (en) * | 1981-06-24 | 1983-01-06 | Sumitomo Metal Ind Ltd | High strength alloy having superior stress corrosion cracking resistance for oil well pipe |
JPS586929A (en) * | 1981-07-03 | 1983-01-14 | Sumitomo Metal Ind Ltd | Production of high-strength oil well pipe of high stress corrosion cracking resistance |
JPS589923A (en) * | 1981-07-10 | 1983-01-20 | Sumitomo Metal Ind Ltd | Production of high strength oil well pipe of high stress corrosion cracking resistance |
JPS589924A (en) * | 1981-07-10 | 1983-01-20 | Sumitomo Metal Ind Ltd | Production of high strength oil well pipe of high stress corrosion cracking resistance |
-
1984
- 1984-10-05 JP JP20937484A patent/JPS6187855A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS581044A (en) * | 1981-06-24 | 1983-01-06 | Sumitomo Metal Ind Ltd | High strength alloy having superior stress corrosion cracking resistance for oil well pipe |
JPS581043A (en) * | 1981-06-24 | 1983-01-06 | Sumitomo Metal Ind Ltd | High strength alloy having superior stress corrosion cracking resistance for oil well pipe |
JPS586929A (en) * | 1981-07-03 | 1983-01-14 | Sumitomo Metal Ind Ltd | Production of high-strength oil well pipe of high stress corrosion cracking resistance |
JPS589923A (en) * | 1981-07-10 | 1983-01-20 | Sumitomo Metal Ind Ltd | Production of high strength oil well pipe of high stress corrosion cracking resistance |
JPS589924A (en) * | 1981-07-10 | 1983-01-20 | Sumitomo Metal Ind Ltd | Production of high strength oil well pipe of high stress corrosion cracking resistance |
Also Published As
Publication number | Publication date |
---|---|
JPS6187855A (en) | 1986-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3271262B2 (en) | Duplex stainless steel with excellent corrosion resistance | |
JP4367412B2 (en) | Martensitic stainless steel | |
CA2875644C (en) | Duplex stainless steel | |
JPH05132741A (en) | High strength duplex stainless steel excellent in corrosion resistance | |
US6159310A (en) | Wire for welding high-chromium steel | |
JP5640777B2 (en) | Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone | |
JPH0375337A (en) | Martensitic stainless steel having high strength and excellent corrosion resistance and its manufacture | |
JP2007321181A (en) | Method for forming martenstic stainless steel material welded part | |
JP3555579B2 (en) | High corrosion resistance martensitic stainless steel | |
JP3156170B2 (en) | Martensitic stainless steel for line pipe | |
JP2002226947A (en) | Martensitic stainless steel welded joint having excellent strain aging resistance | |
JPH0357181B2 (en) | ||
JP4502131B2 (en) | Duplex stainless steel with excellent hot workability | |
KR102692774B1 (en) | Austenitic heat-resistant steel | |
JPS6363608B2 (en) | ||
JP4465066B2 (en) | Welding materials for ferrite and austenitic duplex stainless steels | |
JP4774588B2 (en) | Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint | |
JPS6363610B2 (en) | ||
JP2756545B2 (en) | Austenitic stainless steel with excellent corrosion resistance in hot water | |
JPS6199661A (en) | High strength and high toughness welded clad steel pipe for line pipe | |
JP5365499B2 (en) | Duplex stainless steel and urea production plant for urea production plant | |
JPH0232343B2 (en) | ||
JPS5819741B2 (en) | Austenitic stainless steel with excellent stress corrosion cracking resistance and weldability in high-temperature pure water | |
JPS645101B2 (en) | ||
JPS6363606B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |