JPH0356284B2 - - Google Patents
Info
- Publication number
- JPH0356284B2 JPH0356284B2 JP62011114A JP1111487A JPH0356284B2 JP H0356284 B2 JPH0356284 B2 JP H0356284B2 JP 62011114 A JP62011114 A JP 62011114A JP 1111487 A JP1111487 A JP 1111487A JP H0356284 B2 JPH0356284 B2 JP H0356284B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- powder
- boride
- layer
- periodic table
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 claims description 42
- 239000002184 metal Substances 0.000 claims description 42
- 239000000919 ceramic Substances 0.000 claims description 30
- 239000000843 powder Substances 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 13
- 230000000737 periodic effect Effects 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 10
- 239000011882 ultra-fine particle Substances 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000003825 pressing Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 34
- 239000000463 material Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 239000011812 mixed powder Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 239000002905 metal composite material Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000000280 densification Methods 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- -1 that is Chemical compound 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、一体的に結合した 密な硬質表面層
をもつセラミツクス複合成形体及びその製造方法
に関するものである。さらに詳しくいえば、本発
明は、切削工具や耐摩耗用材料として好適な、高
強度及び高靭性を有するホウ化物−金属複合材料
から成る成形体の表面に、硬質セラミツクス層が
一体的に形成された新規な構造体及びこのものを
簡単な装置を用い簡単な手段で製造する方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a ceramic composite molded body having an integrally bonded dense hard surface layer and a method for manufacturing the same. More specifically, the present invention provides a structure in which a hard ceramic layer is integrally formed on the surface of a molded body made of a boride-metal composite material with high strength and high toughness, which is suitable for cutting tools and wear-resistant materials. The present invention relates to a new structure and a method for producing the same using simple equipment and simple means.
従来の技術
従来、硬質層を有する成形体の製造方法として
は、例えば金属から成る基体の表面に、CVD法
PVD法、溶射法などによつて硬質セラミツクス
層をコーテイングする方法などが知られている。Conventional technology Conventionally, as a method for manufacturing a molded body having a hard layer, for example, a CVD method is applied to the surface of a base made of metal.
Known methods include coating a hard ceramic layer using PVD, thermal spraying, and the like.
しかしながら、従来のコーテイング法による硬
質層の形成方法においては、硬質層と基体金属と
の熱応力差により、該硬質層が剥離しやすいとい
う欠点を伴う。この剥離を防ぐためには、種類の
異なつた複数の層から成るコーテイングを行う必
要があるが、これを行うには製造工程が著しく複
雑となる結果コスト高になるのを免れない。これ
らのことを考慮して、特に最近では、金属と非金
属の粉末混合物の局所に着火することにより反応
がさらに混合物の次の層へと伝播する条件下で自
己増殖的に合成反応を進展させ、硬質セラミツク
ス層を表面に有する無機化合物成形体の製造方法
が提案されている。(特願昭61−071669号)
発明が解決しようとする問題点
本発明の目的は、このような従来の硬質層を表
面に有する成形体がもつ欠点を改良し、切削工具
や耐摩耗用材料や超耐熱材料として好適な高強度
及び高靭性を備え、しかも表面硬質層が一体的に
基体に結合して剥離することのない新規なセラミ
ツクス成形体を提供することである。基体材料と
して金属をマトリツクスとした複合材を合成し、
さらにその表面にセラミツクス単体を形成させる
場合には相対密度は95%以下で硬質層の緻密化に
は限界があつた。また一部の成形体では基体のマ
トリツクス金属の侵入によつて表面に金属層が露
出することがあつた。 However, the conventional method of forming a hard layer using a coating method has the disadvantage that the hard layer tends to peel off due to a difference in thermal stress between the hard layer and the base metal. In order to prevent this peeling, it is necessary to apply a coating consisting of a plurality of layers of different types, but this inevitably complicates the manufacturing process and increases costs. Taking these into consideration, particularly recently, synthetic reactions have been developed in a self-propagating manner under conditions where the reaction propagates to the next layer of the mixture by locally igniting a powder mixture of metals and non-metals. , a method for manufacturing an inorganic compound molded body having a hard ceramic layer on the surface has been proposed. (Japanese Patent Application No. 61-071669) Problems to be Solved by the Invention The purpose of the present invention is to improve the drawbacks of conventional molded products having a hard layer on the surface, and to improve cutting tools and wear-resistant materials. It is an object of the present invention to provide a novel ceramic molded body having high strength and high toughness suitable as a super heat-resistant material, and in which a hard surface layer is integrally bonded to a base material and does not peel off. Synthesizing a composite material with a metal matrix as the base material,
Furthermore, when a single ceramic is formed on the surface, the relative density is less than 95%, and there is a limit to the densification of the hard layer. Furthermore, in some molded bodies, the metal layer was sometimes exposed on the surface due to the invasion of the matrix metal of the base.
問題を解決するための手段
本発明者は、高強度と高靭性とを合わせ有し、
かつ剥離しない緻密な硬質層を表面にもつセラミ
ツクス成形体を開発するために鋭意研究を重ねた
結果、ある種の金属ホウ化物を金属又は合金で結
合した基体の表面に緻密な硬質セラミツクス層を
一体的に形成させる方法として、超微粒子の粉末
層を基体が合成される時の反応熱で焼結させるこ
とにより相対密度95%以上の焼結層を形成しその
目的を達成しうることを見出し、この知見に基づ
いて本発明をなすに至つた。Means for Solving the Problem The present inventor has proposed a method that combines high strength and high toughness,
As a result of intensive research to develop a ceramic molded body with a dense hard layer on the surface that does not peel off, we have integrated a dense hard ceramic layer on the surface of a base made of a certain type of metal boride bonded with metal or alloy. As a method for forming a sintered layer with a relative density of 95% or more, we have discovered that the purpose can be achieved by sintering a powder layer of ultrafine particles using the reaction heat when the substrate is synthesized. Based on this knowledge, the present invention was accomplished.
すなわち本発明は、周期律表第A族及び第
A族から選ばれた少なくとも1種の金属のホウ化
物と結合用金属又は合金とから成る基体表面に、
緻密な硬質セラミツクス層を一体的に形成させた
セラミツクス複合成形体を提供するものである。 That is, the present invention provides a substrate surface comprising a boride of at least one metal selected from Groups A and A of the Periodic Table and a bonding metal or alloy.
The object of the present invention is to provide a ceramic composite molded article in which a dense hard ceramic layer is integrally formed.
本発明の成形体は周期律表第A族及び第A
族に属する金属、すなわち、チタン、ジルコニウ
ム、ニオブ、タンタルの中から選ばれた少なくと
も1種のホウ化物を結合用金属又は合金で結合し
たホウ化物−金属複合材料を基体し、その表面部
分に緻密な硬質セラミツクス層を設けた組織構造
を有している。結合用金属としては、上記のホウ
化物の成分として用いた周期律表第A族及び第
A族の金属や、ホウ素と反応させたときにホウ
化物を生成しない周期律表B族の金属すなわち
銅、金、銀あるいはそれらの合金を用いるのがそ
の製造が容易であるという点で有利である。この
基体における組成としては、金属ホウ化物50〜99
重量%、結合用金属又は合金50〜1重量%の範囲
が好ましい。 The molded articles of the present invention are group A and group A of the periodic table.
The base material is a boride-metal composite material in which at least one boride selected from metals belonging to the Group 1, ie, titanium, zirconium, niobium, and tantalum is bonded with a bonding metal or alloy, and the surface portion thereof is densely bonded. It has a structure with a hard ceramic layer. As the bonding metal, metals from Groups A and A of the periodic table used as the components of the above-mentioned borides, and metals from Group B of the periodic table that do not produce borides when reacted with boron, that is, copper. It is advantageous to use gold, silver, or their alloys because they are easy to manufacture. The composition of this substrate is 50 to 99 metal borides.
A range of 50 to 1% by weight of the bonding metal or alloy is preferred.
また、基体表面に設けられる硬質セラミツクス
層は、硬質セラミツクス例えば金属の窒化物、炭
化物、ホウ化物、酸化物でもよいし、あるいは硬
質材料の粉末例えばこれらの金属化合物、炭化ホ
ウ素、炭化ケイ素、窒化ホウ素、ダイヤモンドな
どの粉末を分散したセラミツクスでもよい。特に
好ましいのは、基体の構成成分の金属ホウ化物自
体で構成された層である。この硬質セラミツクス
層は、基体の表面におよそ0.1〜1mmの厚みで形
成させれば十分である。 The hard ceramic layer provided on the surface of the substrate may be made of hard ceramics such as metal nitrides, carbides, borides, or oxides, or powders of hard materials such as these metal compounds, boron carbide, silicon carbide, and boron nitride. , ceramics in which powder such as diamond is dispersed may also be used. Particularly preferred are layers composed of the metal borides themselves, which are constituents of the substrate. It is sufficient to form this hard ceramic layer on the surface of the substrate to a thickness of about 0.1 to 1 mm.
本発明の成形体においては、上記のホウ化物−
金属複合材料から成る基体と硬質セラミツクス層
が一体的に結合していることが必要であるが、こ
のような成形体は例えば以下の方法によつて製造
することができる。 In the molded article of the present invention, the above-mentioned boride-
Although it is necessary that the base body made of a metal composite material and the hard ceramic layer are integrally bonded, such a molded body can be manufactured, for example, by the following method.
すなわち、(A)基体中に存在するホウ化物を生成
させるのに必要な周期律表第A族及び第A族
に属する金属の粉末とホウ素粉末とを、前者が化
学量論的に過剰になるような割合で混合し、この
混合物を鋳型内に充填し、次にこの表面を(B)セラ
ミツクスの超微粒子で被覆した後、混合物の局所
に強熱着火させ発熱反応が漸次伝播するようにし
てホウ化物の生成と金属の溶融を行わせる。この
反応はホウ化物の生成を確実にし、かつ緻密化の
ために加圧しながら行うことが必要である。この
反応により、基体部分において周期律表第A族
及び第A族の金属のホウ化物が生成するととも
に、過剰の金属が溶融してこのホウ化物を結合し
ホウ化物−金属複合材料を形成する。一方、表面
部分には反応熱により焼結した緻密な硬質セラミ
ツクス層が形成され、これは基体部分に一体的に
結合される。 That is, (A) powder of a metal belonging to Group A and Group A of the periodic table and boron powder, which are necessary to generate a boride present in the substrate, are used in a stoichiometric excess of the former; This mixture is filled into a mold, the surface is coated with (B) ultrafine ceramic particles, and the mixture is locally ignited with ignition so that an exothermic reaction gradually propagates. Causes boride formation and metal melting to take place. This reaction must be carried out under pressure to ensure the formation of borides and to achieve densification. As a result of this reaction, borides of metals of Groups A and A of the periodic table are generated in the base portion, and the excess metal is melted to bond the borides to form a boride-metal composite material. On the other hand, a dense hard ceramic layer sintered by the heat of reaction is formed on the surface portion, and this layer is integrally bonded to the base portion.
前記の(A)において、周期律表第A族及び第
A族の金属を過剰に用いて結合剤とする代りにそ
の過剰分をホウ素と反応しない金属例えば周期律
表第B族の金属又はその合金で置きかえること
もできる。また硬質セラミツクス層を形成させる
原料として、前記の(A)で用いたと同種の金属の超
微粒子粉末に硬質材料例えばB4C、Al2O3、
ZrO2、TiC、SiCなどの超微粒子の粉末を加えた
ものを用いることもできる。この硬質材料の超微
粒子配合割合としては10〜95重量%の範囲が適当
である。 In (A) above, instead of using an excess of metals from Groups A and A of the periodic table as a binder, the excess is used as a binder, such as a metal from Group B of the periodic table or a metal that does not react with boron. It can also be replaced with an alloy. Further, as a raw material for forming a hard ceramic layer, ultrafine particle powder of the same kind of metal as used in (A) above is combined with a hard material such as B 4 C, Al 2 O 3 ,
It is also possible to use a material to which ultrafine powder of ZrO 2 , TiC, SiC, etc. is added. The appropriate proportion of ultrafine particles in this hard material is in the range of 10 to 95% by weight.
この方法は加圧しながら行うことが必要である
が、この加圧はバネ圧縮(特願昭60−298619号)
や静水圧圧縮(特願昭61−284879号)など任意の
手段により少なくとも5MPaの圧力で行われる。 This method needs to be performed while applying pressure, but this pressurization is performed using spring compression (Japanese Patent Application No. 60-298619).
It is carried out at a pressure of at least 5 MPa by any means such as or hydrostatic compression (Japanese Patent Application No. 61-284879).
次に、反応の開始のための着火は、例えば2本
のタングステン線の端部に白金などの金属線を溶
接した着火治具を混合粉末の端部に挿入し、電流
を通すことによつて行うことができる。 Next, ignition to start the reaction is carried out by inserting an ignition jig made by welding a metal wire such as platinum to the ends of two tungsten wires into the end of the mixed powder and passing an electric current through it. It can be carried out.
本発明の成形体は、任意の形状、例えば板状、
棒状、円柱状、筒状、ブロツク状などに成型する
ことができる。 The molded article of the present invention can have any shape, such as a plate shape,
It can be molded into a rod shape, cylinder shape, tube shape, block shape, etc.
発明の効果
本発明方法によると、高強度及び高靭性を有す
るホウ化物−金属複合材料から成る基体の表面に
緻密な硬質セラミツクス層を有するセラミツクス
複合成形体を簡単な装置と操作で製造することが
できる。Effects of the Invention According to the method of the present invention, a ceramic composite molded body having a dense hard ceramic layer on the surface of a substrate made of a boride-metal composite material having high strength and high toughness can be manufactured using simple equipment and operations. can.
本発明のセラミツクス複合成形体は、例えば切
削工具や耐摩耗用材料や超耐熱材料として好適に
用いられる。 The ceramic composite molded article of the present invention is suitably used as, for example, a cutting tool, a wear-resistant material, or a super heat-resistant material.
実施例
次に実施例により本発明をさらに詳細に説明す
る。Examples Next, the present invention will be explained in more detail with reference to Examples.
実施例 1
減圧可能な容器内に黒鉛で内張りした金属製鋳
型を設置し、この鋳型内にチタンとホウ素の粉末
をモル比11:9の割合で十分に混合した混合粉末
を充填し、さらにTiB2の超微粒子を約1mmの厚
さで充填した。次に上下より20MPaの圧力をか
け、バネを圧縮すると同時に圧粉を行い、着火治
具(2本のタングステン線の端部に0.2mm径の白
金線を溶接したもの)に電流を瞬時流してチタン
とホウ素とのモル比が11:9の混合粉末層の端部
に着火し反応を開始させた。Example 1 A metal mold lined with graphite was placed in a container that could be depressurized, and the mold was filled with a mixed powder of titanium and boron powders at a molar ratio of 11:9, and further TiB was added. The ultrafine particles of No. 2 were filled to a thickness of about 1 mm. Next, a pressure of 20 MPa was applied from above and below to compress the spring and compact the powder at the same time, and a current was instantaneously passed through the ignition jig (a platinum wire with a diameter of 0.2 mm was welded to the ends of two tungsten wires). The end of the mixed powder layer containing titanium and boron in a molar ratio of 11:9 was ignited to initiate a reaction.
反応が圧粉体の端部から進展するにしたがつて
約3000Kに加熱された合成帯において、ホウ化チ
タンの合成反応と過剰量のチタンの溶融が生じ、
緻密化が進行し反応によつて収縮した分はバネの
伸長によつて逐次補われ、緻密化に必要な圧力が
連続的に試料に加えられる。 As the reaction progresses from the edge of the powder compact, a synthesis reaction of titanium boride and the melting of an excess amount of titanium occur in the synthesis zone heated to approximately 3000K.
As densification progresses, the amount of contraction due to reaction is compensated for by the expansion of the spring, and the pressure necessary for densification is continuously applied to the sample.
反応終了後、冷却した成形体を鋳型から取り出
したところ、TiB−Ti複合材料から成る基体の
表面に耐剥離性に優れたTiB2層を有する成形体
が得られた。 After the reaction was completed, the cooled molded body was taken out of the mold, and a molded body having two TiB layers with excellent peeling resistance on the surface of the TiB-Ti composite material substrate was obtained.
実施例 2
基体を形成するための原料組成物として、チタ
ン粉末とホウ素粉末とをモル比1:2の割合で含
有し、かつ銅粉末を3重量%含有する混合粉末を
用い、硬質層を形成するための原料組成物として
TiB2の超微粒子を用いて、実施例1と同様な方
法でTiB2−Cu複合材料から成る基体の表面に、
耐剥離性に優れた緻密なTiB2層を有する成形体
を得た。Example 2 A hard layer was formed using a mixed powder containing titanium powder and boron powder at a molar ratio of 1:2 and copper powder at 3% by weight as a raw material composition for forming the base. As a raw material composition for
Using ultrafine particles of TiB 2 , the surface of a substrate made of a TiB 2 -Cu composite material was coated in the same manner as in Example 1.
A compact with two dense TiB layers with excellent peeling resistance was obtained.
実施例 3
基体を形成するための原料組成物として、ジル
コニウム粉末とホウ素粉末とをモル比1:1の割
合で含有する混合粉末を用い、硬質層を形成する
ための原料組成物としてSiCの超微粒子粉末を用
いて、実施例1と同様な方法でZrB2−Zr複合材
料から成る基体の表面に、耐剥離性に優れた緻密
なSiC層を有する成形体を得た。Example 3 A mixed powder containing zirconium powder and boron powder at a molar ratio of 1:1 was used as the raw material composition for forming the substrate, and a super SiC powder was used as the raw material composition for forming the hard layer. A molded body having a dense SiC layer with excellent peeling resistance on the surface of a base made of a ZrB 2 -Zr composite material was obtained in the same manner as in Example 1 using fine particle powder.
実施例 5
基体を形成するための原料組成物として、ニオ
ブ粉末とホウ素粉末とをモル比1:2の割合で含
有し、かつ銅粉末を3重量%含有する混合粉末を
用い、硬質層を形成するための原料組成物として
TiNの超微粒子粉末を用いて、実施例1と同様
な方法でNbB2−Cu複合材料から成る基体の表面
に、耐剥離性に優れた緻密なTiN層を有する成
形体を得た。Example 5 A mixed powder containing niobium powder and boron powder at a molar ratio of 1:2 and 3% by weight of copper powder was used as the raw material composition for forming the substrate, and a hard layer was formed. As a raw material composition for
A molded body having a dense TiN layer with excellent peeling resistance on the surface of a base made of a NbB 2 -Cu composite material was obtained in the same manner as in Example 1 using ultrafine TiN powder.
Claims (1)
なくとも1種の金属のホウ化物と、ホウ化物を形
成した金属及び第B族から選ばれた少なくとも
1種の結合用金属又は合金とから成る基体表面に
超微粒子の焼結層から成るち密な硬質セラミツク
ス層を一体的に形成させたセラミツクス複合成形
体。 2 鋳型内に(A)周期律表A族及び第A族から
選ばれた少なくとも1種の金属の粉末とホウ素粉
末とを、金属ホウ化物生成に際し、前者が化学量
論的に過剰になる割合で含む混合物を充填し、さ
らにその上を、(B)硬質セラミツクスの超微粒子の
少なくとも1種からなる粉末層で被覆したのち、
鋳型内底部に着火して真空下上方から加圧しなが
ら発熱反応を進行させ、反応進展時の発生熱で超
微粒子の粉末層を焼結させることにより、周期律
表A族及び第A族から選ばれた少なくとも1
種の金属ホウ化物と、ホウ化物を形成した金属と
ほぼ同種の結合用金属又は合金とから成る基体表
面にち密な硬質セラミツクス層を一体的に形成さ
せたセラミツクス複合成形体の製造方法。 3 鋳型内に(A)周期律表A族及び第A族から
選ばれた少なくとも1種の金属の粉末とホウ素粉
末とを、金属ホウ化物生成に際し、前者が化学量
論的量になる割合で含み、さらに第B族から選
ばれた少なくとも1種の金属の粉末を含む混合物
を充填し、その上を、(B)硬質セラミツクスの超微
粒子の少なくとも1種からなる粉末層で被覆した
のち、鋳型内底部に着火して真空下上方から加圧
しながら発熱反応を進行させ、反応進展時の発生
熱で超微粒子の粉末層を焼結させることにより、
周期律表A族及び第A族から選ばれた少なく
とも1種の金属のホウ化物と、第B族から選ば
れた少なくとも1種の結合用金属又は合金とから
成る基体表面にち密な硬質セラミツクス層を一体
的に形成させたセラミツクス複合成形体の製造方
法。[Scope of Claims] 1. A boride of at least one metal selected from Groups A and A of the Periodic Table, a metal forming the boride, and at least one metal selected from Group B of the periodic table. A ceramic composite molded body in which a dense hard ceramic layer made of a sintered layer of ultrafine particles is integrally formed on the surface of a base made of metal or alloy. 2. In the mold, (A) powder of at least one metal selected from Groups A and A of the periodic table and boron powder are placed in a proportion in which the former is in stoichiometric excess when producing a metal boride. Filled with a mixture containing the above, and further coated with a powder layer consisting of at least one type of (B) ultrafine particles of hard ceramics,
By igniting the inner bottom of the mold and applying pressure from above under a vacuum, an exothermic reaction progresses, and the heat generated during the reaction sinters the powder layer of ultrafine particles. at least 1
A method for manufacturing a ceramic composite molded body in which a dense hard ceramic layer is integrally formed on the surface of a base body comprising a seed metal boride and a bonding metal or alloy of approximately the same type as the metal forming the boride. 3. Into the mold, (A) powder of at least one metal selected from Groups A and A of the periodic table and boron powder are added in a proportion such that the former is in a stoichiometric amount when producing a metal boride. The mold is filled with a mixture containing powder of at least one metal selected from Group B, and coated with a powder layer of at least one type of ultrafine particles of (B) hard ceramics. By igniting the inner bottom and applying pressure from above under a vacuum, an exothermic reaction proceeds, and the heat generated during the reaction progresses to sinter the powder layer of ultrafine particles.
A dense hard ceramic layer on the surface of a substrate comprising a boride of at least one metal selected from Groups A and A of the periodic table and at least one bonding metal or alloy selected from Group B. A method for manufacturing a ceramic composite molded body integrally formed with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1111487A JPS63179006A (en) | 1987-01-20 | 1987-01-20 | Composite ceramic molding and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1111487A JPS63179006A (en) | 1987-01-20 | 1987-01-20 | Composite ceramic molding and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63179006A JPS63179006A (en) | 1988-07-23 |
JPH0356284B2 true JPH0356284B2 (en) | 1991-08-27 |
Family
ID=11768981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1111487A Granted JPS63179006A (en) | 1987-01-20 | 1987-01-20 | Composite ceramic molding and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63179006A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS518615A (en) * | 1974-07-10 | 1976-01-23 | Yoshinobu Myaji | TOJOCHUKEI JABARA |
JPS6123705A (en) * | 1984-07-10 | 1986-02-01 | Tatsuro Kuratomi | Diamond tool material and its production |
JPS62227005A (en) * | 1986-03-28 | 1987-10-06 | Agency Of Ind Science & Technol | Ceramic molding and its production |
-
1987
- 1987-01-20 JP JP1111487A patent/JPS63179006A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS518615A (en) * | 1974-07-10 | 1976-01-23 | Yoshinobu Myaji | TOJOCHUKEI JABARA |
JPS6123705A (en) * | 1984-07-10 | 1986-02-01 | Tatsuro Kuratomi | Diamond tool material and its production |
JPS62227005A (en) * | 1986-03-28 | 1987-10-06 | Agency Of Ind Science & Technol | Ceramic molding and its production |
Also Published As
Publication number | Publication date |
---|---|
JPS63179006A (en) | 1988-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6336950B1 (en) | Electrode rod for spark deposition, process for the production thereof, and process for covering with superabrasive-containing layer | |
EP0435854B1 (en) | Method of sintering metal-dispersed reinforced ceramics | |
KR0134956B1 (en) | Magnetic support composite manufacturing method | |
US6500557B1 (en) | Composite and method for producing the same | |
RU2135327C1 (en) | Composite containing high-abrasive particles and method of manufacturing thereof | |
US7553563B2 (en) | Composite material consisting of intermetallic phases and ceramics and production method for said material | |
US6432150B1 (en) | Diamond-containing stratified composite material and method of manufacturing the same | |
EP0731186B1 (en) | Composite material and process for producing the same | |
JPH0356284B2 (en) | ||
JP2717541B2 (en) | Method of forming ceramic layer on metal body | |
RU2184644C2 (en) | Diamond-containing laminate composition material and method for making such material | |
JPH045722B2 (en) | ||
RU96107902A (en) | COMPOSIT AND METHOD OF ITS PRODUCTION | |
JP2005082815A (en) | Highly thermal conductive wear resistant material, and its production method | |
JP4566296B2 (en) | Method for producing titanium nitride sintered body | |
JP2000087108A (en) | Manufacture of cemented carbide | |
JP2803827B2 (en) | Manufacturing method of high density and high hardness ceramics sintered body | |
RU2000103494A (en) | DIAMOND-CONTAINING LAYERED COMPOSITE AND METHOD FOR PRODUCING IT | |
JPH05148021A (en) | Composite sintered material containing coated diamond having high hardness and density and its production | |
JPH0213028B2 (en) | ||
JPS60138044A (en) | Composite sintered structural body of cubic boron nitride and cermet and production thereof | |
JPS63179031A (en) | Metal-ceramics composite formed body and its production | |
JPH0243809B2 (en) | ||
JPH11246848A (en) | Super abrasive grain-containing composite material and its production | |
JPH10101433A (en) | Titanium boride-silicon carbide-based complex ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |