JP2005082815A - Highly thermal conductive wear resistant material, and its production method - Google Patents
Highly thermal conductive wear resistant material, and its production method Download PDFInfo
- Publication number
- JP2005082815A JP2005082815A JP2003312652A JP2003312652A JP2005082815A JP 2005082815 A JP2005082815 A JP 2005082815A JP 2003312652 A JP2003312652 A JP 2003312652A JP 2003312652 A JP2003312652 A JP 2003312652A JP 2005082815 A JP2005082815 A JP 2005082815A
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- cubic boron
- powder
- resistant material
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- Wire Bonding (AREA)
- Die Bonding (AREA)
- Ceramic Products (AREA)
Abstract
Description
本発明は高い熱伝導率と耐摩耗性とを兼ね備えた立方晶窒化硼素(以下cBNともいう)焼結体材料に関するものである。特に、ボンディングツール、ボンディング用ステージ、フリップチップ実装用ツールの先端面を構成するのに適したcBN焼結体材料に関するものである。 The present invention relates to a cubic boron nitride (hereinafter also referred to as cBN) sintered body material having both high thermal conductivity and wear resistance. In particular, the present invention relates to a cBN sintered body material suitable for constituting a tip surface of a bonding tool, a bonding stage, and a flip chip mounting tool.
ボンディングツール、ボンディング用ステージ、フリップチップ実装用ツールといった半導体実装用に使用される材料では、数万ショットの高精度実装に耐えうるために耐摩耗性が高いことや加熱実装時に均一な温度分布を実現するために高い熱伝導率が要求される。従って、一般的には、超硬合金、AlNが使用されているが、超硬合金の場合は、熱伝導率が不十分であり、AlNの場合は、耐摩耗性が不十分である。特に高い耐摩耗性と熱伝導率が要求されるボンディングツールでは、例えば、特許文献1では、Si,Si3N4を主成分とする焼結体、SiCを主成分とする焼結体、AlNを主成分とする焼結体および/またはこれらの複合体からなる基体に気相合成法で析出させた多結晶ダイヤモンドを被覆したものを工具先端部とすることが提案されており、この発明のツールは実用に供されている。しかしながら、このツールは先端部ダイヤモンド層を作製するための製造コストやツール形状に加工するためのコストが高く、用途は限られていた。 Materials used for semiconductor mounting such as bonding tools, bonding stages, and flip chip mounting tools have high wear resistance to withstand high-precision mounting of tens of thousands of shots, and have a uniform temperature distribution during heat mounting. High thermal conductivity is required to achieve this. Therefore, generally, cemented carbide and AlN are used, but in the case of cemented carbide, the thermal conductivity is insufficient, and in the case of AlN, the wear resistance is insufficient. In a bonding tool that requires particularly high wear resistance and thermal conductivity, for example, in Patent Document 1, a sintered body mainly composed of Si, Si 3 N 4 , a sintered body mainly composed of SiC, and AlN It has been proposed that a tool tip is formed by coating a polycrystalline body deposited by a gas phase synthesis method on a substrate comprising a sintered body mainly composed of The tool is in practical use. However, this tool has a high manufacturing cost for manufacturing the tip diamond layer and a high cost for processing into a tool shape, and its application is limited.
その他、耐摩耗性が高く、熱伝導率も高い材料としては、主として切削加工に使用されているダイヤモンド焼結体や立方晶窒化硼素(cBN)焼結体がある。ダイヤモンド焼結体の場合、700℃程度で劣化するため、熱圧着を行うのに十分な耐熱性がない。cBN焼結体の場合、耐摩耗性、耐熱性の点では十分であるが、cBNの含有率が高く熱伝導率が高いもの(例えば〔特許文献2〕)、でも、100W/mK程度しかなく、AlNと比べても低く、温度の均一性を確保するのに十分ではなかった。 In addition, examples of the material having high wear resistance and high thermal conductivity include a diamond sintered body and a cubic boron nitride (cBN) sintered body mainly used for cutting. In the case of a diamond sintered body, since it deteriorates at about 700 ° C., it does not have sufficient heat resistance to perform thermocompression bonding. In the case of a cBN sintered body, it is sufficient in terms of wear resistance and heat resistance, but the cBN content is high and the thermal conductivity is high (for example, [Patent Document 2]), but only about 100 W / mK. It was low compared with AlN and was not sufficient to ensure temperature uniformity.
また〔特許文献3〕では、先端面にcBN焼結体を用いるボンディングツールが開示されているが、このcBN焼結体は、熱伝導率を高めるために焼結助剤をほとんど含まない焼結体である。ボンディングツールは1本のツールで数十万〜百万個の半導体チップを実装するため、先端部の熱伝導率の高さと同時に耐摩耗性の向上も必要とされている。
上述の通り、従来の技術では、高い耐摩耗性と熱伝導率とを兼ね備えて、しかも、幅広い用途に使用でき、しかも経済的有利に半導体実装用ツールに利用できる材料は未だ得られていない。そこで本発明は高い耐摩耗性と200W/m・K以上という高い熱伝導率を同時に兼ね備えたcBNを主体とする焼結体材料を提供することを目的とするものである。 As described above, the conventional technology has not yet obtained a material that combines high wear resistance and thermal conductivity, can be used in a wide range of applications, and can be economically used for a semiconductor mounting tool. Accordingly, an object of the present invention is to provide a sintered material mainly composed of cBN that has both high wear resistance and high thermal conductivity of 200 W / m · K or more.
すなわち、本発明者らは上記の目的を達成するため鋭意努力した結果、ダイヤモンドに次ぐ高い硬度と熱伝導率をもつcBNを本発明で開示する方法で焼結することにより、 高い耐摩耗性と200W/mK以上、特に200W/mK〜270W/mK程度の高い熱伝導率をもつ焼結体材料が得られることを見出し本発明に到達したものである。 That is, as a result of diligent efforts to achieve the above-mentioned object, the present inventors sintered cBN having the second highest hardness and thermal conductivity next to diamond by the method disclosed in the present invention. It has been found that a sintered body material having a high thermal conductivity of 200 W / mK or more, particularly about 200 W / mK to 270 W / mK, can be obtained, and the present invention has been achieved.
上記の目的は、以下に示す各発明又は発明特定事項によって達成することができる:
(1)立方晶窒化硼素と第2相としての結合相および不可避的不純物を含む多結晶体であり、立方晶窒化硼素の粒子としての体積含有率が少なくとも80%以上95%以下、好ましくは85%以上95%以下であり、該多結晶体を構成する立方晶窒化硼素粒子が互いに結合しており、第2相がAlNおよびMgB2を含むことを特徴とする高熱伝導性耐摩耗材料。
(2)立方晶窒化硼素粒子の平均粒径が20μm以上200μm以下であることを特徴とする上記(1)に記載の高熱伝導性耐摩耗材料。
The above object can be achieved by the following inventions or invention-specific matters:
(1) A polycrystalline body containing cubic boron nitride, a binder phase as a second phase, and inevitable impurities, and the volume content of cubic boron nitride as particles is at least 80% to 95%, preferably 85 A highly heat-resistant wear-resistant material, characterized in that the cubic boron nitride particles constituting the polycrystal are bonded to each other and the second phase contains AlN and MgB 2 .
(2) The high thermal conductive wear-resistant material as described in (1) above, wherein the cubic boron nitride particles have an average particle size of 20 μm or more and 200 μm or less.
(3)平均粒径が20μm以上200μm以下、好ましくは30μm以上150μm以下、更に好ましくは50μm以上110μm以下の立方晶窒化硼素の粉末と、AlとMgのモル比が1.9≦Al/Mg≦2.1、好ましくは1.95≦Al/Mg≦2.05であるAl−Mg合金の層とを接するように配置し、金属カプセルに充填する工程と、該金属カプセルを4.0GPa以上6.0GPa以下、好ましくは4.5GPa以上5.5GPa以下の圧力、700℃以上1200℃以下、好ましくは900℃以上1100℃以下の温度で一定時間処理することで、立方晶窒化硼素にAl−Mg融液を溶浸させると同時に立方晶窒化硼素粉末と反応/焼結させる工程と、その後に圧力と温度を常圧、常温に戻し、金属カプセルを回収する工程とを有することを特徴とする上記(1)又は(2)に記載の高熱伝導性耐摩耗材料の製造方法。 (3) The cubic boron nitride powder having an average particle size of 20 μm or more and 200 μm or less, preferably 30 μm or more and 150 μm or less, and more preferably 50 μm or more and 110 μm or less, and the molar ratio of Al to Mg is 1.9 ≦ Al / Mg ≦ 2.1, preferably 1.95 ≦ Al / Mg ≦ 2.05 is disposed so as to be in contact with the Al—Mg alloy layer and filled in a metal capsule, and the metal capsule is set to 4.0 GPa or more 6 The cubic boron nitride is treated with Al—Mg by treatment at a pressure of 0.0 GPa or less, preferably 4.5 GPa or more and 5.5 GPa or less, 700 ° C. or more and 1200 ° C. or less, preferably 900 ° C. or more and 1100 ° C. or less. A step of infiltrating the melt and simultaneously reacting / sintering with the cubic boron nitride powder, a step of recovering the metal capsule by returning the pressure and temperature to normal pressure and room temperature, and Method for producing a highly heat-conductive wear resistant material according to (1) or (2), characterized in that it has.
(4)立方晶窒化硼素粉末と接触させるAlとMgのモル比が1.9≦Al/Mg≦2.1であるAl−Mg合金の層が、Al−Mg合金板であることを特徴とする上記(3)に記載の高熱伝導性耐摩耗材料の製造方法。
(5)立方晶窒化硼素粉末と接触させるAlとMgのモル比が1.9≦Al/Mg≦2.1であるAl−Mg合金の層が、Al−Mg合金粉末の圧粉末であることを特徴とする上記(3)に記載の高熱伝導性耐摩耗材料の製造方法。
(4) The Al—Mg alloy layer in which the molar ratio of Al to Mg in contact with the cubic boron nitride powder is 1.9 ≦ Al / Mg ≦ 2.1 is an Al—Mg alloy plate, The manufacturing method of the highly heat conductive wear-resistant material as described in (3) above.
(5) The Al—Mg alloy layer in which the molar ratio of Al to Mg in contact with the cubic boron nitride powder is 1.9 ≦ Al / Mg ≦ 2.1 is a pressed powder of Al—Mg alloy powder. The method for producing a highly heat-conductive wear-resistant material as described in (3) above.
(6)平均粒径が20μm以上200μm以下、好ましくは30μm以上150μm以下、更に好ましくは50μm以上110μm以下の立方晶窒化硼素の粉末と、モル比が1.9≦Al/Mg≦2.1好ましくは1.95≦Al/Mg≦2.15となるように混合したAlとMgの混合粉末とを乾式混合する工程と、該混合粉末を金属カプセルに充填する工程と、該金属カプセルを4.0GPa以上6.0GPa以下、好ましくは4.5GPa以上5.5GPa以下の圧力、700℃以上1200℃以下、好ましくは900℃以上1100℃以下の温度で一定時間処理することで、立方晶窒化硼素とAl−Mg融液を反応/焼結させる工程と、その後に圧力と温度を常圧、常温に戻し、金属カプセルを回収する工程とを有することを特徴とする上記(1)又は(2)に記載の高熱伝導性耐摩耗材料の製造方法。 (6) A cubic boron nitride powder having an average particle size of 20 μm or more and 200 μm or less, preferably 30 μm or more and 150 μm or less, more preferably 50 μm or more and 110 μm or less, and a molar ratio of 1.9 ≦ Al / Mg ≦ 2.1 1. A dry mixing of mixed powder of Al and Mg mixed so as to satisfy 1.95 ≦ Al / Mg ≦ 2.15, a step of filling the mixed powder into a metal capsule, and 4. By treating for a certain period of time at a pressure of 0 GPa to 6.0 GPa, preferably 4.5 GPa to 5.5 GPa, 700 ° C. to 1200 ° C., preferably 900 ° C. to 1100 ° C., cubic boron nitride and A step of reacting / sintering the Al-Mg melt, and then returning the pressure and temperature to normal pressure and room temperature to recover the metal capsule. Serial (1) or (2) the production method of the high thermal conductivity wear resistant material according to.
以上のように、本発明によれば、熱伝導率および耐摩耗性に優れたボンディングツール、ボンディング用ステージ、フリップチップ実装用ツールの先端面を構成するのに適した焼結体材料を経済的有利に得ることができ、また、具体的な応用面においてツール寿命が長くなるという効果が得られる。 As described above, according to the present invention, a sintered material suitable for constituting the tip surface of a bonding tool, a bonding stage, and a flip chip mounting tool having excellent thermal conductivity and wear resistance is economical. It can be advantageously obtained, and the effect that the tool life is extended in a specific application is obtained.
本発明に係るcBN焼結体の熱伝導率と硬度を所望の水準とするにはcBNの含有率、cBN粒子の粒径、結合材の組成等の適当な調整が必要である。以下これらについて詳細に説明する。
先ず、高熱伝導性を実現するためには、上記(2)及び(3)に記載したとおりcBNはできるだけ粗い粒子を高い比率で含有させ、cBN同士を強固に結合させる結合材が望ましい。熱伝導率の点からはcBNの粒径は大きければ大きいほど好ましいが、cBNの粒径が大き過ぎると、半導体実装用ツールへの加工性が悪くなることや、強度の低下が生じるため、大きさは限られてくる。すなわち、cBN粒径の好ましい範囲は20μm以上200μm以下であり、さらに好ましくは30μm以上150μm以下、さらに好ましくは、50μm以上110μm以下である。
In order to obtain the desired thermal conductivity and hardness of the cBN sintered body according to the present invention, appropriate adjustments such as the content of cBN, the particle size of the cBN particles, and the composition of the binder are necessary. These will be described in detail below.
First, in order to realize high thermal conductivity, as described in the above (2) and (3), it is desirable that cBN contains a coarse particle as much as possible in a high ratio, and a binding material that strongly bonds cBN to each other is desirable. From the viewpoint of thermal conductivity, the larger the particle size of cBN, the better. However, if the particle size of cBN is too large, the processability to a semiconductor mounting tool is deteriorated and the strength is reduced. The size is limited. That is, the preferable range of the cBN particle size is 20 μm or more and 200 μm or less, more preferably 30 μm or more and 150 μm or less, and further preferably 50 μm or more and 110 μm or less.
また、例えば30μmから50μmの粒度分布を持つcBN粉末と100μmから130μmの粒度分布を持つcBN粉末を混合するといったように、2種類以上の粒度分布をもつcBN粉末を混合して使用しても良い。その場合の混合割合は適宜に設定することができる。 Also, cBN powders having two or more types of particle size distributions may be mixed and used, for example, a cBN powder having a particle size distribution of 30 μm to 50 μm and a cBN powder having a particle size distribution of 100 μm to 130 μm. . The mixing ratio in that case can be set appropriately.
高い熱伝導率、耐摩耗性を維持するための焼結材料中のcBN含有率の好ましい範囲は、上記(1)に記載のとおり、体積比で80%以上95%以下、より好ましくは85%以上95%以下である。 The preferable range of the cBN content in the sintered material for maintaining high thermal conductivity and wear resistance is 80% or more and 95% or less, more preferably 85% in volume ratio as described in (1) above. It is 95% or less.
次に結合材であるが、その熱伝導率が高いことおよびcBN粒子同士の結合をより強固にできるものが望ましい。cBN同士を強固に結合させる結合材としては、hBN原料からcBNを合成する際に使用される溶媒材料が適当である。cBN合成用の溶媒材料は、Li、Ca、Al、Mg等様々な材料が知られているが、焼結体の結合材としては安定性の高い材料が必要である。 Next, it is desirable to use a binder that has a high thermal conductivity and that can further strengthen the bond between the cBN particles. As a binding material that bonds cBN firmly together, a solvent material used when synthesizing cBN from an hBN raw material is appropriate. Various materials such as Li, Ca, Al, and Mg are known as solvent materials for cBN synthesis. However, a highly stable material is required as a binder for a sintered body.
本発明者らが種々検討した結果、上記(1)に記載のとおり、AlとMgを結合材とした場合にcBN粒子同士がより強固に結合されることがわかった。これが本発明の特徴の一つである。AlとMgのモル比率は、Al2モルに対してMgを1モルの比率とした場合に、焼結プロセス中の反応は、下記式(1):
(数1)
2BN+2Al+Mg→2AlN+MgB2 (1)
で示されるように進行する。
AlとMgの比率がこの比と異なる場合、AlもしくはMgの窒化物あるいは硼化物が生成して焼結体の熱伝導率に悪影響を及ぼしたり、未反応のAlやMgが残留して焼結体の強度が劣化したりする。従って、AlとMgのモル比は1.9≦Al/Mg≦2.1であることが好適である。より好ましくは1.95≦Al/Mg≦2.05の範囲とする。
As a result of various studies by the present inventors, it was found that cBN particles are more firmly bonded to each other when Al and Mg are used as a binder as described in (1) above. This is one of the features of the present invention. When the molar ratio of Al to Mg is 1 mol of Mg with respect to 2 mol of Al, the reaction during the sintering process is represented by the following formula (1):
(Equation 1)
2BN + 2Al + Mg → 2AlN + MgB 2 (1)
Proceed as indicated by.
When the ratio of Al and Mg is different from this ratio, Al or Mg nitrides or borides are formed, which adversely affects the thermal conductivity of the sintered body, or unreacted Al or Mg remains and sinters. The strength of the body deteriorates. Accordingly, the molar ratio of Al to Mg is preferably 1.9 ≦ Al / Mg ≦ 2.1. More preferably, the range is 1.95 ≦ Al / Mg ≦ 2.05.
以下に本発明に係る高熱伝導性、高耐摩耗性cBN焼結体材料の製造方法を要約すると、上記(3)〜(6)で表されるとおりである。すなわち、上記(3)においては、先ず平均粒径が20μm以上200μm以下のcBN粒子からなる粉末と、AlとMgのモル比がAl/Mg=2であるAl−Mg合金の層とを接するように配置し、Moのような金属カプセルに充填する。この場合Al−Mg合金(Al/Mg=2)層は上記(4)のように常法に従い粉末焼結法によって合金板とすることによって調製することができるし、合金板の代わりに上記(5)に示されるようにAl−Mg合金粉末の圧粉体を用いることもできる。圧粉体はAl粉末とMg粉末を所定の割合で混合し、温度500℃〜800℃、圧力50〜150MPa程度に加熱加圧して調製することができる。また、金属カプセル用の金属としてはMoのほかW、Nb、Ta等を用いることもできる。 The following is a summary of the method for producing a high thermal conductivity, high wear-resistant cBN sintered material according to the present invention as described in (3) to (6) above. That is, in the above (3), first, a powder made of cBN particles having an average particle diameter of 20 μm or more and 200 μm or less is brought into contact with an Al—Mg alloy layer in which the molar ratio of Al to Mg is Al / Mg = 2. Placed in a metal capsule such as Mo. In this case, the Al—Mg alloy (Al / Mg = 2) layer can be prepared by forming an alloy plate by a powder sintering method according to a conventional method as described in the above (4). As shown in 5), a green compact of Al-Mg alloy powder can also be used. The green compact can be prepared by mixing Al powder and Mg powder at a predetermined ratio and heating and pressing at a temperature of 500 ° C. to 800 ° C. and a pressure of about 50 to 150 MPa. In addition to Mo, W, Nb, Ta or the like can be used as the metal for the metal capsule.
こうして原料を充填された金属カプセルは、4.0GPa以上6.0GPa以下、好ましくは4.5GPa以上5.5GPa以下の圧力、700℃以上1200℃以下、好ましくは800℃以上1000℃以下の温度で一定時間処理することで、cBNにAl−Mg融液を溶浸させると同時にcBN粉末と反応/焼結させる。
圧力・温度ともにこの条件を満たさないときは、上記の反応と焼結が充分に進行しない。次いで、圧力と温度を常圧、常温に戻し、金属カプセルを回収して全工程を終了する。
The metal capsule filled with the raw material in this manner has a pressure of 4.0 GPa to 6.0 GPa, preferably 4.5 GPa to 5.5 GPa, 700 ° C. to 1200 ° C., preferably 800 ° C. to 1000 ° C. By treating for a certain period of time, the Al—Mg melt is infiltrated into cBN and simultaneously reacted / sintered with the cBN powder.
If neither pressure nor temperature satisfies these conditions, the above reaction and sintering do not proceed sufficiently. Next, the pressure and temperature are returned to normal pressure and room temperature, the metal capsule is recovered, and the entire process is completed.
上記の製造方法は〔上記(3)の方法〕、AlとMgのモル比が1.9≦Al/Mg≦2.1であるAl−Mg合金の層をcBN粒子と接触させているが、上記(4)の方法では、予め1.9≦Al/Mg≦2.1となるように混合したAlとMgの混合粉末をcBN粉末と乾式混合して金属カプセルに充填し、次いで超高圧高温度条件に付してcBNとAl−Mg融液を反応・焼結させることを特徴とするものである。この場合も上記と同様に、圧力・温度ともに上記の条件を満たさないときは反応・焼結が充分に進行しない。
このようにして、作製された焼結体材料はcBN粒子同士が強固に結合しており、熱伝導率、耐摩耗性ともに超硬合金やAlNといった既存の実装用ツール用材料を上回る。またコスト的にも本焼結材料を使用したツールはダイヤモンドを用いたツールよりも有利である。
In the above production method [Method (3) above], the Al—Mg alloy layer in which the molar ratio of Al to Mg is 1.9 ≦ Al / Mg ≦ 2.1 is brought into contact with the cBN particles. In the method of (4) above, a mixed powder of Al and Mg mixed beforehand so as to satisfy 1.9 ≦ Al / Mg ≦ 2.1 is dry-mixed with cBN powder and filled into a metal capsule, and then the ultra-high pressure and high It is characterized by reacting and sintering cBN and Al—Mg melt under temperature conditions. Also in this case, as described above, when neither the pressure nor the temperature satisfies the above conditions, the reaction / sintering does not proceed sufficiently.
Thus, the produced sintered compact material has the cBN particle | grains couple | bonded firmly, and heat conductivity and abrasion resistance surpass the existing materials for mounting tools, such as a cemented carbide and AlN. In terms of cost, a tool using this sintered material is more advantageous than a tool using diamond.
次に本発明の詳細を実施例により説明するが限定を意図するものではない。 Next, the details of the present invention will be described by way of examples, but are not intended to be limiting.
表1に示す粒径のcBN粉末をAlとMgのモル比がAl/Mg=2であるAl−Mg合金板と接するように配置し、Mo製の金属カプセルに充填した。このカプセルをベルト型超高圧発生装置に装填し、圧力5GPa、温度900℃の条件で5分間保持した後、圧力・温度を徐々に常温・常圧まで下げた。回収したMo容器の上下を平面研削盤で検索して成形体を得た。この成形体を長さ10mm、幅4mm、厚み1mmに加工して、試料の両端に温度差をつけて試料中の温度勾配から熱伝導率を求める方法(定常法)にて熱伝導率測定を行った。平均粒径が20μm以下のcBN粉末を使用して作製した焼結体およびAl/Mgのモル比率が1.9≦Al/Mg≦2.0を外れた結合材を使用して焼結した焼結体を比較例として作製した。 The cBN powder having a particle size shown in Table 1 was placed in contact with an Al—Mg alloy plate having an Al / Mg molar ratio of Al / Mg = 2, and filled in a metal capsule made of Mo. This capsule was loaded into a belt-type ultrahigh pressure generator and held for 5 minutes under conditions of a pressure of 5 GPa and a temperature of 900 ° C., and then the pressure and temperature were gradually lowered to room temperature and normal pressure. The upper and lower sides of the recovered Mo container were searched with a surface grinder to obtain a molded body. The molded body is processed into a length of 10 mm, a width of 4 mm, and a thickness of 1 mm, and a thermal conductivity measurement is performed by a method (steady method) for obtaining a thermal conductivity from a temperature gradient in the sample by adding a temperature difference to both ends of the sample. went. A sintered body produced using a cBN powder having an average particle diameter of 20 μm or less and a sintered body sintered using a binder having an Al / Mg molar ratio of 1.9 ≦ Al / Mg ≦ 2.0. A knot was produced as a comparative example.
表2に示す粒径のcBN粉末とAlとMgの粉末をAlとMgのモル比が1.9≦Al/Mg≦2.1となるように混合したAl−Mg混合粉とを乾式混合し、該混合粉末をMo製の金属カプセルに充填した。このカプセルをベルト型超高圧発生装置に装填し、圧力5GPa、温度900℃の条件で5分間保持した後、圧力・温度を徐々に常温・常圧まで下げた。回収したMo容器の上下を平面研削盤で検索して成形体を得た。
この成形体を長さ10mm、幅4mm、厚み1mmに加工して、試料の両端に温度差をつけて試料中の温度勾配から熱伝導率を求める方法(定常法)にて熱伝導率測定を行った。平均粒径が20μm未満のcBN粉末を使用して作製した焼結体およびAl/Mgのモル比率が1.9≦Al/Mg≦2.1を外れた結合材を使用して焼結した焼結体を比較例として作製した。
The dry mixing of cBN powder having the particle size shown in Table 2 and Al-Mg powder mixed with Al-Mg powder so that the molar ratio of Al and Mg is 1.9 ≦ Al / Mg ≦ 2.1. The mixed powder was filled into a metal capsule made of Mo. This capsule was loaded into a belt-type ultrahigh pressure generator and held for 5 minutes under conditions of a pressure of 5 GPa and a temperature of 900 ° C., and then the pressure and temperature were gradually lowered to room temperature and normal pressure. The upper and lower sides of the recovered Mo container were searched with a surface grinder to obtain a molded body.
The molded body is processed into a length of 10 mm, a width of 4 mm, and a thickness of 1 mm, and a thermal conductivity measurement is performed by a method (steady method) for obtaining a thermal conductivity from a temperature gradient in the sample by adding a temperature difference to both ends of the sample. went. A sintered body produced using a cBN powder having an average particle size of less than 20 μm and a sintered body sintered using a binder having an Al / Mg molar ratio of 1.9 ≦ Al / Mg ≦ 2.1. A knot was produced as a comparative example.
本発明によれば高い熱伝導率と耐摩耗性とを兼備した先端面を有するボンディングツール、ボンディング用ステージ、フリップチップ実装用ツールが提供されるので当業界に資するところ大である。 According to the present invention, a bonding tool, a bonding stage, and a flip chip mounting tool having a tip surface having both high thermal conductivity and wear resistance are provided.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003312652A JP2005082815A (en) | 2003-09-04 | 2003-09-04 | Highly thermal conductive wear resistant material, and its production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003312652A JP2005082815A (en) | 2003-09-04 | 2003-09-04 | Highly thermal conductive wear resistant material, and its production method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005082815A true JP2005082815A (en) | 2005-03-31 |
Family
ID=34413845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003312652A Pending JP2005082815A (en) | 2003-09-04 | 2003-09-04 | Highly thermal conductive wear resistant material, and its production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005082815A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006114682A2 (en) * | 2005-04-26 | 2006-11-02 | Element Six (Production) (Pty) Ltd | Cubic boron nitride compacts |
WO2007010670A1 (en) * | 2005-07-15 | 2007-01-25 | Sumitomo Electric Hardmetal Corp. | Composite sintered compact |
WO2007145071A1 (en) * | 2006-06-12 | 2007-12-21 | Sumitomo Electric Hardmetal Corp. | Composite sinter |
WO2016157464A1 (en) * | 2015-03-31 | 2016-10-06 | 新電元工業株式会社 | Transmission member and pressurization unit |
CN112661517A (en) * | 2020-12-31 | 2021-04-16 | 富耐克超硬材料股份有限公司 | Preparation method of heat dissipation composite material |
-
2003
- 2003-09-04 JP JP2003312652A patent/JP2005082815A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006114682A2 (en) * | 2005-04-26 | 2006-11-02 | Element Six (Production) (Pty) Ltd | Cubic boron nitride compacts |
WO2006114682A3 (en) * | 2005-04-26 | 2007-01-18 | Element Six Pty Ltd | Cubic boron nitride compacts |
WO2007010670A1 (en) * | 2005-07-15 | 2007-01-25 | Sumitomo Electric Hardmetal Corp. | Composite sintered compact |
KR101123490B1 (en) * | 2005-07-15 | 2012-03-23 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | Composite sintered compact and cutting tool |
JP5032318B2 (en) * | 2005-07-15 | 2012-09-26 | 住友電工ハードメタル株式会社 | Composite sintered body |
WO2007145071A1 (en) * | 2006-06-12 | 2007-12-21 | Sumitomo Electric Hardmetal Corp. | Composite sinter |
US8999023B2 (en) | 2006-06-12 | 2015-04-07 | Sumitomo Electric Hardmetal Corp. | Composite sintered body |
US10307829B2 (en) | 2006-06-12 | 2019-06-04 | Sumitomo Electric Hardmetal Corp. | Composite sintered body |
WO2016157464A1 (en) * | 2015-03-31 | 2016-10-06 | 新電元工業株式会社 | Transmission member and pressurization unit |
JPWO2016157464A1 (en) * | 2015-03-31 | 2017-04-27 | 新電元工業株式会社 | Transmission member and pressure unit |
CN106663637A (en) * | 2015-03-31 | 2017-05-10 | 新电元工业株式会社 | Transmission member and pressurization unit |
CN112661517A (en) * | 2020-12-31 | 2021-04-16 | 富耐克超硬材料股份有限公司 | Preparation method of heat dissipation composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6182084B2 (en) | Dense composite material, manufacturing method thereof, joined body, and member for semiconductor manufacturing apparatus | |
KR100219930B1 (en) | Superhard composite member and its production | |
US20060157884A1 (en) | Method for producing a composite material | |
JP2004505786A (en) | Manufacturing method of polishing products containing diamond | |
JP2004506094A (en) | Manufacturing method of polishing products containing cubic boron nitride | |
TW201446647A (en) | Dense composite material, method for producing the same, and component for semiconductor production equipment | |
JP5371740B2 (en) | Method for producing cubic boron nitride molded body | |
WO2006107628A2 (en) | Intermetallic bonded diamond composite composition and methods of forming articles from same | |
EP0698447B1 (en) | Abrasive body | |
JP2014083664A (en) | Cutting tool and surface-coated cutting tool utilizing cubic crystal boron nitride based ultrahigh-pressure sintered body as tool base body | |
JPH0782031A (en) | Cubic boron nitride-containing sintered compact and its production | |
JP2008069420A (en) | Cemented carbide and coated cemented carbide, and manufacturing methods therefor | |
JPH08109431A (en) | Diamond sintered compact containing hard alloy as binding material and its production | |
JP2005281084A (en) | Sintered compact and manufacturing method therefor | |
JP2005082815A (en) | Highly thermal conductive wear resistant material, and its production method | |
JP5045953B2 (en) | Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride | |
JP6849267B1 (en) | Diamond-based composite materials and their manufacturing methods, heat dissipation members and electronic devices | |
JP5308296B2 (en) | Method for producing titanium silicon carbide ceramics | |
JP2003095743A (en) | Diamond sintered compact and method of manufacturing the same | |
JP4362582B2 (en) | Method for producing sintered metal ceramic titanium silicon carbide | |
JPH11292630A (en) | Diamond-silicon carbide composite sintered compact and its production | |
JP2001180919A (en) | Silicon carbide-carbon composite powder and its composite material | |
JP3946896B2 (en) | Method for producing diamond-silicon carbide composite sintered body | |
JP2000218411A (en) | Cubic boron nitride sintered body cutting tool | |
JPS6213311B2 (en) |