[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0349445B2 - - Google Patents

Info

Publication number
JPH0349445B2
JPH0349445B2 JP62137100A JP13710087A JPH0349445B2 JP H0349445 B2 JPH0349445 B2 JP H0349445B2 JP 62137100 A JP62137100 A JP 62137100A JP 13710087 A JP13710087 A JP 13710087A JP H0349445 B2 JPH0349445 B2 JP H0349445B2
Authority
JP
Japan
Prior art keywords
eye
refractive power
examined
fog
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62137100A
Other languages
Japanese (ja)
Other versions
JPS6323638A (en
Inventor
Muneaki Kodama
Yasumi Hikosaka
Masanao Fujeda
Akihiro Hayashi
Nobuyuki Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP62137100A priority Critical patent/JPS6323638A/en
Publication of JPS6323638A publication Critical patent/JPS6323638A/en
Publication of JPH0349445B2 publication Critical patent/JPH0349445B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】 イ 発明の目的 イ−1 産業上の利用分野 本発明は、被検眼を雲霧視させる固視標投影系
を有する他覚式自動眼屈折力測定装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION A. OBJECTIVES OF THE INVENTION A-1. Field of Industrial Application The present invention relates to an objective type automatic eye refractometer having a fixation target projection system that causes a subject's eye to have a foggy vision.

イ−2 従来技術 眼の屈折力を測定する装置として、測定時間が
早いと、測定に熟練を要せず、従つて検者による
測定差が少ないこと等の理由により、数多くの他
覚式自動屈折力測定装置が提案されているが、そ
の共通な方式は、被検眼の眼底に測定用視標を投
影し、被検眼眼底からの反射光を受光素子にて検
出し、検出毛結果に基づいて被検眼の屈折力情報
を得るというものである。これらの装置では測定
時に被検者の視線を安定させる目的で固視標が設
けられている。しかし、被検者が装置内の固視評
を覗き見るとき、被検眼に調節力が働くので、こ
のままの状態では正確な屈折力測定ができない。
そこで、従来の装置では、測定開始とともに調節
力が働いている状態の屈折力を測定し、その後適
当なデイオプタ分だけに位置するように固視チヤ
ートを設定することにより、被検眼を雲霧視状態
にさせて、その調整力を除いていた。これらの1
連の過程は内蔵したマイクロコンピユータに制御
され、自動的に行われるので、オートフオグとい
われている(それ以外の方式をマニユアル式とこ
こではいう)。
A-2 Prior Art As a device for measuring the refractive power of the eye, there are many objective-type automatic devices because the measurement time is fast, the measurement does not require skill, and there is little difference in measurement between examiners. Refractive power measuring devices have been proposed, but the common method is to project a measurement target onto the fundus of the eye to be examined, detect the reflected light from the fundus of the eye to be examined with a light receiving element, and then measure the refractive power based on the results of the detected hairs. This method obtains refractive power information of the eye to be examined. These devices are provided with a fixation target for the purpose of stabilizing the subject's line of sight during measurement. However, when the subject looks at the fixation test in the device, an accommodative force acts on the subject's eye, so it is not possible to accurately measure refractive power in this state.
Therefore, with conventional devices, the refractive power is measured when the accommodative force is working at the beginning of the measurement, and then the fixation chart is set so that it is positioned only at an appropriate diopter, so that the subject's eye is placed in a foggy vision state. The adjustment power was removed. 1 of these
The process is controlled by a built-in microcomputer and is carried out automatically, so it is called an auto-fog (other methods are referred to here as manual methods).

しかしなが、このようなオートフオグ方式には
向かない被検眼がある。被検眼に強度の乱視があ
るときは、固視標のボケ量が大きく、安定して固
視標を注視することができない。また調節力が大
きい子供の被検眼オートフオグでは十分な雲霧効
果がでない。
However, there are some eyes to be examined that are not suitable for such an auto-fogging method. When the subject's eye has severe astigmatism, the amount of blur in the fixation target is large, making it impossible to stably gaze at the fixation target. Furthermore, an auto fogger for the eye of a child with a large accommodative ability does not produce a sufficient fogging effect.

本発明の目的は、上記従来装置の欠点に鑑み、
オートフオグ方式では適正な測定ができない人で
も、適切な雲霧視状態での測定が可能な他覚式自
動眼屈折力測定装置を提供することにある。
In view of the drawbacks of the above-mentioned conventional devices, an object of the present invention is to
To provide an objective type automatic eye refractive power measurement device that allows even a person who cannot perform proper measurement using an autofog method to perform measurement in an appropriate foggy vision state.

ロ 発明の構成 ロ−1 問題点を解決するための手段 上記した目的を達成するための本発明の要旨
は、被検眼の眼定に測定用指標を投影し、被検眼
眼底からの反射光を受光素子にて検出し、被検眼
の屈折力情報を得ることができる他覚式自動屈折
力測定装置において、 測定光学系の光路とは分岐された位置に配置さ
れた被検眼に固視させるための固視標投影系と、 該固視標と被検眼との間に配置された屈折度の
調整が可能な乱視矯正光学系を含む矯正光学系
と、 予備測定値に基づいて該矯正光学系を所定の量
と時間まで変更し被検眼に雲霧を加える第1雲霧
付与手段と、 前記矯正光学系の屈折度を任意の量で変更し被
検眼に雲霧を加える第2雲霧付与手段と、 第1雲霧付与手段と第2雲霧付与手段とを選択
するフオグ切り換え用スイツチとを有することを
特徴としている。
B. Structure of the Invention B-1 Means for Solving Problems The gist of the present invention for achieving the above-mentioned object is to project a measuring index on the ophthalmoscope of the eye to be examined, and to measure the reflected light from the fundus of the eye to be examined. In an objective automatic refractive power measuring device that can detect with a light receiving element and obtain refractive power information of the eye to be examined, the refractive power measurement device uses a light receiving element to detect the refractive power of the eye to be examined. a fixation target projection system; a correction optical system including an astigmatism correction optical system arranged between the fixation target and the subject's eye and capable of adjusting the degree of refraction; a first mist applying means that changes the refractive power of the corrective optical system by an arbitrary amount and applies a mist to the eye to be examined; The present invention is characterized by having a fog changeover switch for selecting between the first fog applying means and the second fog applying means.

ロ−2 実施例 以下、本発明の実施例を図面に基づいて説明す
る。
RO-2 Embodiments Hereinafter, embodiments of the present invention will be described based on the drawings.

第1図はこの発明に係る他覚式自動眼屈折力測
定装置の1実施例の光学系配置図である。
FIG. 1 is an optical system layout diagram of one embodiment of the objective automatic eye refractive power measuring device according to the present invention.

1は赤外線領域に波長をもつ測定用光源、2,
3は集光レンズ、4は被検眼8の眼底共役な位置
に配置されるべく移動可能なスポツト絞り(測定
用視標、以下単にスポツト絞りという)、5,6
は対物レンズ、7,9はプリズム、10はミラ
ー、11,12はリレーレンズ、13は被検眼8
の角膜と共役位置に配置されている帯状の角膜反
射除去マスク、14は前記スポツト絞り4と共に
移動する移動レンズ、15は結像レンズである。
16は測定用受光素子を示し、前記測定用光源1
及び角膜反射除去マスク13と同期して光軸を中
心に回動するようになつている。17は光軸上を
移動可能な第1リレーレンズで、その移動量は被
検眼の球面屈折力と比例関係にある。公知のよう
に2枚の円柱レンズで円柱成分が作り出すとき
は、球面効果を考慮して補正する必要がある。1
8,19は焦点距離の等しい正の円柱レンズであ
り、両者は同一方向又は反対方向に同量だけ光軸
を中心に回転可能になつている。20は第2リレ
ーレンズ、21は第2リレーレンズ20の焦点位
置に配置されている固視標、22は集光レンズ、
23は照明ランプである。
1 is a measurement light source with a wavelength in the infrared region; 2;
3 is a condenser lens; 4 is a movable spot diaphragm (measurement target; hereinafter simply referred to as spot diaphragm) to be placed at a position conjugate to the fundus of the eye 8 to be examined; 5, 6;
is an objective lens, 7 and 9 are prisms, 10 is a mirror, 11 and 12 are relay lenses, and 13 is the eye to be examined 8
14 is a moving lens that moves together with the spot diaphragm 4, and 15 is an imaging lens.
Reference numeral 16 indicates a light receiving element for measurement, which is connected to the light source 1 for measurement.
It rotates around the optical axis in synchronization with the corneal reflection removal mask 13. A first relay lens 17 is movable on the optical axis, and the amount of movement thereof is proportional to the spherical refractive power of the eye to be examined. As is well known, when a cylindrical component is created using two cylindrical lenses, it is necessary to take the spherical effect into account and make corrections. 1
Reference numerals 8 and 19 are positive cylindrical lenses having the same focal length, and both are rotatable about the optical axis by the same amount in the same direction or in opposite directions. 20 is a second relay lens, 21 is a fixation target placed at the focal position of the second relay lens 20, 22 is a condensing lens,
23 is an illumination lamp.

第2図及び第3図は固視標光学系の他の実施例
を示すものであり、第2図の18a,19aは焦
点距離の等しい正の円柱レンズであり、両者同一
方向は反対方向に同量だけ光軸を中心に回転可能
になつている。第3図において18bは正の円柱
レンズであり、光軸上を移動可能になつている。
19bは負の円柱レンズを示し、正の円柱レンズ
18bは一緒に光軸を中心に回転するようになつ
ている。さらにこれら両円柱レンズと第1リレー
レンズが一緒に光軸上を移動可能になつている。
この他にも種々の組み合わせがあるが、これらを
除外する意味はない。
Figures 2 and 3 show other embodiments of the fixation target optical system, and 18a and 19a in Figure 2 are positive cylindrical lenses with equal focal lengths, and the same direction is opposite. It is possible to rotate around the optical axis by the same amount. In FIG. 3, 18b is a positive cylindrical lens, which is movable on the optical axis.
Reference numeral 19b indicates a negative cylindrical lens, and the positive cylindrical lens 18b rotates around the optical axis together. Further, both of these cylindrical lenses and the first relay lens are movable together on the optical axis.
There are various other combinations, but there is no point in excluding them.

第4図は固視標光学系内の第1リレーレンズ1
7及び円柱レンズ18,19を作動させる経路を
示すブロツク図であり、24は図示しないボデー
側部に設けられているダイヤルでロータリーエン
コーダの回転によりパルス信号を発生するように
なつている。25はパルスカウンタ、26は他覚
及び自覚測定に関するすべての動作を制御するマ
イクロコンピユータ、27は表示器、28はパル
スモータドライバ、29は円柱レンズ、18,1
9を光軸を中心に回転させて柱面屈折力及ひ軸角
度を変えるためのパルスモータ、30はデジタル
信号をアナログ信号に変換させるD/A変換器、
31は第1リレーレンズ17を光軸に沿つて移動
させ球面屈折力を変えるためのDCモータ、32
はA/D変換器である。
Figure 4 shows the first relay lens 1 in the fixation target optical system.
7 and the cylindrical lenses 18 and 19. Reference numeral 24 denotes a dial provided on the side of the body (not shown), which generates a pulse signal by rotating a rotary encoder. 25 is a pulse counter, 26 is a microcomputer that controls all operations related to objective and subjective measurements, 27 is a display, 28 is a pulse motor driver, 29 is a cylindrical lens, 18, 1
9 is a pulse motor for rotating around the optical axis to change the cylindrical refractive power and the axis angle; 30 is a D/A converter for converting digital signals into analog signals;
31 is a DC motor for moving the first relay lens 17 along the optical axis and changing the spherical refractive power; 32
is an A/D converter.

以上のような構成となつており、光源1から出
た光エネルギーは集光レンズ2及び3、スポツト
絞り4、対物レンズ5を経て、被検眼8の角膜上
に集光した眼底に到達する。一方照明ランプ23
からの光は集光レンズ22を通つて固視標を被検
眼の眼底に投影し、被検眼8を固視させる。眼底
から反射した光はミラー10で反射し、リレーレ
ンズ11,12を通過後結像レンズによつて受光
素子に結増する。受光素子16に入射した光エネ
ルギーはマイクロコンピユータ26にデジタル信
号として供給される。被検眼8に対するアライメ
ント完了後測定ポタン(図示せず)を押すと、マ
イクロコンピユータ26はスポツト絞り4の位置
が被検眼8の眼底と共役な位置にくるまでスポツ
ト絞り4と移動レンズ14を移動させる。同時に
固視標21が被検眼8の眼底上に結像し、その後
適当なデイオプタ分だけ自動的に雲霧がかかるよ
うに第1リレーレンズ17を移動させる。その後
で、測定用光源1、角膜反射除去マスク13及び
測定用受光素子16を光軸の回りに180°回動させ
る。回動中、受光素子からの信号によりスポツト
絞り4及び移動レンズ14は移動し、その移動量
により各経路に対する屈折力値を知ることができ
る。
With the above configuration, the light energy emitted from the light source 1 passes through the condensing lenses 2 and 3, the spot diaphragm 4, and the objective lens 5, and reaches the fundus of the eye where the light is condensed on the cornea of the eye 8 to be examined. On the other hand, the lighting lamp 23
The light passes through the condenser lens 22 and projects a fixation target onto the fundus of the eye to be examined, causing the eye 8 to be examined to fixate. The light reflected from the fundus of the eye is reflected by a mirror 10, passes through relay lenses 11 and 12, and is focused on a light receiving element by an imaging lens. The light energy incident on the light receiving element 16 is supplied to the microcomputer 26 as a digital signal. When the measurement button (not shown) is pressed after the alignment for the eye 8 to be examined is completed, the microcomputer 26 moves the spot diaphragm 4 and the moving lens 14 until the position of the spot diaphragm 4 is conjugate with the fundus of the eye 8 to be examined. . At the same time, the fixation target 21 is imaged on the fundus of the eye 8 to be examined, and then the first relay lens 17 is moved so that fog is automatically applied by an appropriate diopter. Thereafter, the measurement light source 1, the corneal reflection removal mask 13, and the measurement light receiving element 16 are rotated by 180° around the optical axis. During rotation, the spot diaphragm 4 and the movable lens 14 are moved by signals from the light receiving element, and the refractive power value for each path can be determined from the amount of movement.

以上のように、フオグ切り換え用スイツチ(図
示せず)を押さないかぎり、オートフオグ(自動
雲霧)がかかるようになつている。これは、オー
トフオグによつて測定できない人は少数であるか
らであつて、それ以上の格別な意味はない。フオ
グ切換え用スイツチを押すとマニユアルフオグに
切り換わる。この場合、固視標をそのまま用いて
もよいし、あるいは試視力表に切り換えてもよ
い。
As described above, automatic fogging is applied unless the fogging switch (not shown) is pressed. This is because there are only a few people who cannot be measured by autofog, and there is no special meaning beyond that. Press the fog switch to switch to manual fog. In this case, the fixation target may be used as is, or it may be switched to a trial sight chart.

この状態で、例えば被検者が固視標を十分に視
認できなかつたり、あるいは例えば正常視力であ
る1.0に相当するランドルト環を視認できないと
きは以下の手動操作により矯正光学系を移動させ
る。この要領の基本は自覚式屈折力を測定するの
と同じである。すなわち、球面屈折力の測定を行
うときは、球面屈折力測定用スイツチを押し、ダ
イヤル24を回転させるとカウンタ25によりパ
ルス信号がマイクロコンピユータ26に入力され
D/A変換器30を介してDCモータ31が作動
し、第1リレーレンズを光軸上で移動させる。柱
面屈折力の測定を行う場合には、柱面屈折力測定
スイツチを、軸角度の測定を行う場合には軸角度
測定用スイツチを押してダイヤル24を回転させ
るとマイクロコンピユータ26によりパルスモー
タ29が動作し、円柱レンズ18及び19をそれ
ぞれ独立して回転させる。ダイヤル24は例えば
2°の回転により1パルス発生し、球面及び柱面屈
折力については0.25Dに相当し、軸角度について
は1°に相当するように設定されている。ダイヤル
24の回転に従つて表示器27に屈折力値が表示
される。第2図に示す実施例の場合も全く同様で
ある。第3図に示す実施例においては、DCモー
タ31により第1リレーレンズ17、円柱レンズ
18b及び19bを一体的に移動させて球面屈折
力を、円柱レンズ18bを移動させて柱面屈折力
を設定する。また、パルスモータ29により円柱
レンズ18bを及び19bが一体的に移動する。
In this state, for example, if the subject cannot sufficiently see the fixation target or, for example, cannot see the Landolt ring corresponding to normal visual acuity of 1.0, the corrective optical system is moved by the following manual operation. The basics of this procedure are the same as for measuring subjective refractive power. That is, when measuring the spherical refractive power, when the spherical refractive power measurement switch is pressed and the dial 24 is rotated, a pulse signal is inputted to the microcomputer 26 by the counter 25 and sent to the DC motor via the D/A converter 30. 31 is activated to move the first relay lens on the optical axis. When measuring the cylindrical power, press the cylindrical power measuring switch, and when measuring the axial angle, press the axial angle measuring switch and rotate the dial 24. The microcomputer 26 starts the pulse motor 29. The cylindrical lenses 18 and 19 are rotated independently. For example, the dial 24 is
One pulse is generated by a rotation of 2°, and the spherical and cylindrical refractive powers are set to correspond to 0.25D, and the axial angle is set to correspond to 1°. As the dial 24 is rotated, the refractive power value is displayed on the display 27. The same applies to the embodiment shown in FIG. In the embodiment shown in FIG. 3, the first relay lens 17 and cylindrical lenses 18b and 19b are integrally moved by the DC motor 31 to set the spherical refractive power, and the cylindrical lens 18b is moved to set the cylindrical refractive power. do. Further, the cylindrical lenses 18b and 19b are moved integrally by the pulse motor 29.

もつとも、ここではどの程度フオグをかければ
正確な他覚測定ができるかが問題であるから、上
記の操作手順を大幅に簡略化して行う。このよう
にして被検者のおおよその屈折度数を得たなら
ば、それに基づき被検眼の性質に応じて、検者は
適切な量と時間のフオグをかけて測定ボタンを押
し測定する。もつとも精密な自覚検査を先行さ
せ、その値に基づいて適当なフオグをかけ、他覚
測定を行い、自覚検査の結果を確認するという方
法でもよい。
However, since the problem here is how much fog should be applied to achieve accurate objective measurement, the above operating procedure will be greatly simplified. Once the approximate refractive power of the subject has been obtained in this manner, the examiner applies fog for an appropriate amount and time depending on the characteristics of the eye to be examined, and then presses the measurement button to take the measurement. It is also possible to conduct a more precise subjective test first, apply appropriate fogging based on the results, perform objective measurements, and confirm the results of the subjective test.

精密な自覚検査を先行させない通常の場合に
は、他覚測定後自覚測定切換え用スイツチ(図示
せず)を押し、自覚式屈折力測定に切り換える
と、マイクロコンピユータ26の制御により先ず
他覚測定で得た値の位置まで第1リレーレンズ1
7が移動し、円柱レンズ18及び19が夫々回転
する従つて、被検眼8は他覚測定で得られた屈折
力を補正した状態を初期値として前記したような
手順で自覚測定が行われる。
In normal cases where a detailed subjective test is not performed first, after the objective measurement, the switch for switching to subjective measurement (not shown) is pressed to switch to the subjective refractive power measurement, and the microcomputer 26 controls the objective measurement first. 1st relay lens 1 to the obtained value position
7 moves and the cylindrical lenses 18 and 19 rotate, the subjective measurement of the subject's eye 8 is performed in the same manner as described above, with the corrected refractive power obtained in the objective measurement as the initial value.

ハ 発明の効果 以上の説明から明らかなように本発明によれ
ば、手動により固視標投影系の屈折力を連続的又
は段階的に変えることができるので、オートフオ
グでは十分な効果が期待できない人や適応できな
い人にも適切な量の雲霧をかけて被検眼の調節力
を除き、正確な屈折力の測定が可能となる。
C. Effects of the Invention As is clear from the above explanation, according to the present invention, the refractive power of the fixation target projection system can be changed manually in a continuous or stepwise manner. By applying an appropriate amount of mist to remove the accommodative power of the subject's eye, it is possible to accurately measure refractive power even for people who are unable to adapt to the test.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る眼屈折度測定装置の光
学系配置図、第2図及び第3図は固視標項各系の
他の実施例を示す光学系配置図、第4図はブロツ
ク図である。 1……測定用光源、4……スポツト絞り、5,
6……対物レンズ、8……被検眼、13……角膜
反射除去マスク、14……移動レンズ、16……
受光素子、17……第1リレーレンズ、18,1
9……円柱レンズ、21……視標
FIG. 1 is an optical system layout diagram of an eye refractometer according to the present invention, FIGS. 2 and 3 are optical system layout diagrams showing other embodiments of each fixation target system, and FIG. 4 is a block diagram. It is a diagram. 1...Light source for measurement, 4...Spot aperture, 5,
6... Objective lens, 8... Eye to be examined, 13... Corneal reflection removal mask, 14... Moving lens, 16...
Light receiving element, 17...first relay lens, 18,1
9...Cylindrical lens, 21...Optotype

Claims (1)

【特許請求の範囲】 1 被検眼の眼定に測定用指標を投影し、被検眼
眼底からの反射光を受光素子にて検出し、被検眼
の屈折力情報を得ることができる他覚式自動眼屈
折力測定装置において、 測定光学系の光路とは分岐された位置に配置さ
れた被検眼に固視させるための固視標投影系と、 該固視標と被検眼との間に配置された屈折度の
調整が可能な乱視矯正光学系を含む矯正光学系
と、 予備測定値に基づいて該矯正光学系を所定の量
と時間で変更し被検眼に雲霧を加える第1雲霧付
与手段と、 前記矯正光学系の屈折度を任意の量で変更し被
検眼に雲霧を加える第2雲霧付与手段と、 第1雲霧付与手段と第2雲霧付与手段とを選択
するフオグ切り換え用スイツチと を有することを特徴とする他覚式自動眼屈折力測
定装置。
[Scope of Claims] 1. An objective automatic system capable of projecting a measuring index onto the eye to be examined, detecting reflected light from the fundus of the eye with a light receiving element, and obtaining refractive power information of the eye to be examined. In an eye refractive power measuring device, a fixation target projection system for causing the eye to be examined to fixate is placed at a position where the optical path of the measurement optical system is branched, and a fixation target projection system is placed between the fixation target and the eye to be examined. a corrective optical system including an astigmatism correcting optical system capable of adjusting the refractive power; and a first mist applying means for applying a mist to the subject's eye by changing the correcting optical system by a predetermined amount and time based on preliminary measurement values. , a second fog applying means that changes the refractive power of the corrective optical system by an arbitrary amount and applies a fog to the eye to be examined, and a fog changeover switch that selects between the first fog applying means and the second fog applying means. An objective automatic eye refractive power measuring device characterized by the following.
JP62137100A 1987-05-29 1987-05-29 Objective automatic eye refraction power measuring apparatus Granted JPS6323638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62137100A JPS6323638A (en) 1987-05-29 1987-05-29 Objective automatic eye refraction power measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62137100A JPS6323638A (en) 1987-05-29 1987-05-29 Objective automatic eye refraction power measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6323638A JPS6323638A (en) 1988-01-30
JPH0349445B2 true JPH0349445B2 (en) 1991-07-29

Family

ID=15190857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62137100A Granted JPS6323638A (en) 1987-05-29 1987-05-29 Objective automatic eye refraction power measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6323638A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125390A (en) * 1977-04-08 1978-11-01 Nippon Chemical Ind Device for measuring eye*s refractivity by matching images
JPS56161031A (en) * 1980-05-15 1981-12-11 Canon Kk Eye refraction meter
JPS5725834A (en) * 1980-07-19 1982-02-10 Nippon Chemical Ind Visual eye refractive force measuring apparatus having automatic cloud and mist apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125390A (en) * 1977-04-08 1978-11-01 Nippon Chemical Ind Device for measuring eye*s refractivity by matching images
JPS56161031A (en) * 1980-05-15 1981-12-11 Canon Kk Eye refraction meter
JPS5725834A (en) * 1980-07-19 1982-02-10 Nippon Chemical Ind Visual eye refractive force measuring apparatus having automatic cloud and mist apparatus

Also Published As

Publication number Publication date
JPS6323638A (en) 1988-01-30

Similar Documents

Publication Publication Date Title
US9585553B2 (en) Apparatus and method for operating a real time large diopter range sequential wavefront sensor
EP1223849B1 (en) Wavefront sensor having multi-power beam modes
JPH04200436A (en) Ophthamologic apparatus
JP7024295B2 (en) Awareness-based optometry device
JP3655071B2 (en) Eye refractive power measurement device
WO2003039357A1 (en) Device for measuring optical characteristic of eye
JPS6351016B2 (en)
JPH0554771B2 (en)
JPH0349445B2 (en)
JP2775183B2 (en) Eye accommodation power measuring device
JP6825042B2 (en) Ophthalmic equipment
JPH0612729Y2 (en) Optometry device
JPH0430291B2 (en)
JPS621723B2 (en)
JPH06304140A (en) Eye examination device
JPH0123133B2 (en)
JP2004033379A (en) Eye refractivity measuring device
JPH0439332B2 (en)
JP7133995B2 (en) Ophthalmic device and its control method
JPH0554325B2 (en)
JPH0554326B2 (en)
JP3386613B2 (en) Objective eye refractometer
JPH09271461A (en) Ophthalmometer
JPH02161Y2 (en)
JPH0323043B2 (en)